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Abstract

The wood frog, Rana sylvatica, from Interior Alaska survives freezing at –16uC, a temperature 10–13uC below that tolerated
by its southern conspecifics. We investigated the hepatic freezing response in this northern phenotype to determine if its
profound freeze tolerance is associated with an enhanced glucosic cryoprotectant system. Alaskan frogs had a larger liver
glycogen reserve that was mobilized faster during early freezing as compared to conspecifics from a cool-temperate region
(southern Ohio, USA). In Alaskan frogs the rapid glucose production in the first hours of freezing was associated with a 7-
fold increase in glycogen phosphorylase activity above unfrozen frog levels, and the activity of this enzyme was higher than
that of frozen Ohioan frogs. Freezing of Ohioan frogs induced a more modest (4-fold) increase in glycogen phosphorylase
activity above unfrozen frog values. Relative to the Ohioan frogs, Alaskan frogs maintained a higher total protein kinase A
activity throughout an experimental freezing/thawing time course, and this may have potentiated glycogenolysis during
early freezing. We found populational variation in the activity and protein level of protein kinase A which suggested that the
Alaskan population had a more efficient form of this enzyme. Alaskan frogs modulated their glycogenolytic response by
decreasing the activity of glycogen phosphorylase after cryoprotectant mobilization was well under way, thereby
conserving their hepatic glycogen reserve. Ohioan frogs, however, sustained high glycogen phosphorylase activity until
early thawing and consumed nearly all their liver glycogen. These unique hepatic responses of Alaskan R. sylvatica likely
contribute to this phenotype’s exceptional freeze tolerance, which is necessary for their survival in a subarctic climate.
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Introduction

The wood frog, Rana sylvatica, is one of several amphibians

known to tolerate the freezing of its body fluids as an adaptation to

survive winter’s cold [1]. This species is widely distributed in North

America, ranging from north of the Arctic circle to as far south as

Georgia, USA [2]. Freeze tolerance is likely key to the survival of

this amphibian throughout its range because it hibernates in

shallow depressions in the soil, under the leaf litter, where it can be

exposed to the harsh temperatures of winter. The wood frog can

survive the freezing of up to 65–70% of its body water and tolerate

temperatures as low as –6uC; however, a recent study [3] reported

that wood frogs from Alaska, near the northern limit of their

geographic range, can recover from freezing to at least –16uC.

Freeze tolerance in wood frogs is based in part on a glycemic

response that is initiated once freezing begins. Glucose, generated

from liver glycogen, is quickly exported from the liver and

transported to corporal tissues before circulation ceases [4].

Glucose serves as a cryoprotectant by colligatively reducing ice

content and cellular dehydration, and by exerting specific effects

on membranes and proteins [1]. Glucose improves freeze

tolerance at the cellular, tissue, and organismal levels in a

concentration dependent manner [5]. The glucose concentration

ultimately achieved in frozen tissues is dependent on the size of the

hepatic glycogen reserve, rapidity of its catabolism, rate of tissue

freezing, and other factors [6].

Freezing mobilization of glucose in the wood frog involves b-

adrenergic stimulation of hepatocytes, which results in a rapid

activation of protein kinase A (PKA, EC 2.7.11.11) in the first

minutes of freezing [7]. Binding of four cAMP molecules to the

two regulatory subunits of PKA activates the enzyme by releasing

the two catalytic subunits (PKAc) from the inactive tetrameric

holoenzyme [8]. PKA phosphorylates glycogen phosphorylase

kinase (PhK, EC 2.7.11.19), which in turn phosphorylates

glycogen phosphorylase (GP, EC 2.4.1.1) [4]. Phosphorylation of

GP converts the inactive form of the enzyme, GPb, to the active

form, GPa, triggering glycogenolysis and consequent production of

the cryoprotectant glucose (Figure 1) [9]. Efficiency of this

enzymatic pathway is essential to allow the distribution of glucose

throughout the blood and tissues early in the freezing process, as

cryoprotectant distribution is curtailed as freezing progresses and

ice accumulates [10].

The capacity for freeze tolerance depends in large part on the

cryoprotectant levels that can be reached in the corporal tissues

[5,11,12]. No single study has compared the glycemic freezing

response of wood frogs from different populations; however, other
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freeze-tolerant ectotherms that rely on a glucosic cryoprotectant

system show larger glycogen reserves in northern populations and

these populations can mobilize more cryoprotectant during

freezing as compared to southern populations [12–14]. To rapidly

achieve high glucose concentrations in the tissues would be

advantageous for northern populations, given that they would

likely experience much lower winter temperatures. Furthermore,

all else being equal, northern frogs would tend to freeze faster as

they are smaller than their southern counterparts, resulting in less

time for cryoprotectant to reach tissues [2,10,15].

The purpose of this study was to examine the glucosic

cryoprotectant system of a wood frog population from near the

northern limit of this species’ range. Frogs from Interior Alaska

tolerate much lower temperatures than frogs from more temperate

locations, such as Ohio and Pennsylvania [3]. We hypothesize that

the higher freeze tolerance of this northern population is in part

the result of an enhanced cryoprotectant system. We tested this

hypothesis by using a comparative approach, analyzing the

hepatic freezing response in Alaskan and Ohioan wood frogs

during freezing and thawing by measuring activity and protein

levels of GP and PKA in liver. Additionally, we examined the

quantity of glycogen in liver, and its turnover during freezing, to

ascertain whether differential responses of key enzymes and

carbohydrates could be responsible for the enhanced freeze

tolerance of the Alaskan population.

Materials and Methods

Ethics Statement
Wood frogs were collected near Fairbanks, Alaska, USA

(64.8uN, 147.7uW), on public land, during early August, 2011,

under a permit issued by the Alaskan Department of Fish and

Game. Additional R. sylvatica were collected in late winter

(February, 2011) in Adams County, south-central Ohio, USA

(38.8uN, 83.3uW), on private land with the permission of the

landowner, under a permit issued by the Ohio Division of Wildlife.

Frogs were collected by hand or using a dip net. Experimental

frogs were euthanized by double-pithing before being dissected.

Rearing and experimental protocols were approved by the

Institutional Animal Care and Use Committee (IACUC) of Miami

University (research protocol number 812).

Experimental Animals and Acclimatization
Alaskan frogs were held in a programmable environmental

chamber (Percival, model I-35X; Boone, IA, USA) and exposed

over 5 weeks to dynamic, diel cycles of temperature and ambient

light, which, based on long-term records of weather (obtained

from the National Oceanic and Atmospheric Administration’s

National Climatic Data Center, NOAA NCDC), were seasonal

and appropriate to their origin. Initially, temperature varied daily

from 17 to 8uC and the photophase was 16.5 h, but by the end of

acclimatization, in mid September, temperature varied daily from

13 to 3uC and the photophase was 13.3 h. Throughout, frogs were

fed three times weekly with crickets that were dusted with a

vitamin supplement (ReptoCal, Tetrafauna, Blacksburg, VA,

USA). Following acclimatization, frogs were kept at 4uC, in

darkness, in simulated hibernation until used in mid November.

Ohioan frogs were kept, unfed, on damp moss within darkened

plastic boxes (4uC) for 3 weeks after collection from the field.

Thereafter they were kept outside in a 48-m2 pen at the Ecology

Research Center (39.5uN, 84.7uW), Miami University, until

autumn. Frogs had access to a pool of water and were fed

vitamin-fortified crickets three times weekly, and this diet was

supplemented by a host of arthropods that was attracted to a

‘‘black light’’ hung in the pen. Feeding was suspended in late

October, and in November, the frogs, on the verge of dormancy,

were recaptured and kept at 4uC, in darkness, in simulated

hibernation until used in January.

We aimed to sample only adult males to eliminate potential

gender- and age-based differences in physiology. This objective

was largely achieved in the Ohioan frog samples. However, as

secondary sex characteristics were not evident in August, Alaskan

frogs collected and used in this study comprised about 37%

females, which were randomly distributed amongst treatment

treatments.

Experimental Freezing and Thawing
Frogs used in this experiment were frozen and thawed following

an established protocol that facilitates cryoprotective responses,

promotes survival, and mimics natural freezing and thawing

episodes [16]. Prior to freezing, bladder fluid was removed and the

standard body mass of each frog was measured. Each frog was

placed in a 50-ml polypropylene tube with an insulated

thermocouple probe positioned against its abdomen. Throughout

the experiment, body temperature (Tb) was recorded at 30-s

intervals on a multichannel data logger (Omega, model RD3752;

Stamford, CT, USA). Tubes containing these frogs were

submerged to the cap in a refrigerated bath (Neslab, model

RTE 140; Portsmouth, NH, USA) containing ethanol. After each

frog had supercooled slightly (Tb,–1uC), freezing was initiated by

inoculating the skin with small ice crystals created by applying

aerosol coolant to the exterior of the tube. Initiation of freezing

was confirmed by the occurrence of a freezing exotherm that

resulted from the change in the physical state of body water. The

temperature of the bath decreased 0.05uC h–1 to the target

temperature, –2.5uC, which was reached after 30 h; some frogs

were kept frozen for an additional 18 h, remaining frozen for a

total of 48 h. Groups of frogs (N = 5–6) were removed from the

bath and sampled at 2, 6, 30, and 48 h after freezing commenced.

Other frogs were frozen for 48 h and sampled after thawing at 4uC
for either 6 h (N = 5–6), or 120 h (5 d, N = 4–6). A reference group

Figure 1. Hepatic glycogenolysis. Simplified representation of the
pathway leading to the breakdown of glycogen into glucose in
vertebrate liver. Protein kinase A (PKA) and its catalytic subunit (PKAc),
glycogen phosphorylase kinase (PhK), glycogen phosphorylase (GPb
and GPa) are the main enzymes involved in this process. The pathway
involves a phosphorylation cascade, leading to glycogen breakdown.
Inactive or dephosphorylated enzymes are italicized. Enzymes assayed
in this study are inside grey boxes.
doi:10.1371/journal.pone.0079169.g001
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of unfrozen frogs (N = 7–8) was sampled directly from their holding

cups (or plastic boxes) in the 4uC chamber.

Tissue Harvesting
Frogs were weighed to 0.1 g, double-pithed, and dissected at

4uC. The liver was excised rapidly (i.e., within 2 min) and a small

sample of tissue was blotted to remove excess moisture, weighed to

0.01 mg, and placed in a 65uC oven for 3–5 d, to determine tissue

dry mass. The remaining tissue, destined for enzymatic, protein,

and metabolite analyses, was immediately frozen in liquid N2.

Initial water concentration in the tissue, expressed as mg water g–1

dry matter, was determined by dividing the mass lost upon drying

the sample by its dry mass. Liver samples were stored at –80uC
before enzyme assays and metabolite analyses were carried out.

Metabolite Analyses
Deproteinized extracts of liver samples were prepared by

homogenization in cold 7% (w/v) perchloric acid. Liver samples

were assayed for glycogen using an enzymatic procedure [17].

Briefly, a separate portion of the whole-tissue homogenate (100 ml)

was neutralized with KOH and incubated with amyloglucosidase

(1 mg ml21) at 40uC for 2 h in a 0.2 M sodium acetate buffer,

pH 4.8. After incubation, the reaction was stopped by adding cold

7% (w/v) perchloric acid and the free glucose in the sample was

determined using a colorimetric assay kit (Pointe Scientific,

Canton, MI, USA); glycogen concentration was expressed as

mmol glucosyl units g21 dry liver tissue after subtraction of initial

free glucose, assayed as above, in the initial homogenate. We also

expressed glycogen levels on a mmol liver21 basis, calculated by

multiplying the liver glycogen concentration by the dry mass of the

entire liver, thus obtaining an estimate of the organ’s total

glycogen content. We estimated the cumulative glucose output

from the liver during freezing by subtracting the mean liver

glycogen remaining at each sample time from the mean liver

glycogen content of unfrozen frogs.

Enzyme Activity Assays
PKA activity was measured in liver extracts using a non-

radioactive assay kit (PepTagH, Promega, Madison, WI, USA) that

determines phosphotransferase activity with fluorescent kemptide

(PepTagH A1 peptide) as the substrate. Frozen liver tissue was

homogenized (1:10) on ice in cold Tris-HCl buffer (pH 7.4) and

centrifuged at 4uC (14,000 g, 5 min), per the manufacturer’s

instructions. To determine activity of the free catalytic subunit of

PKA (PKAc activity), samples were assayed without cAMP;

additionally, samples were assayed with 1 mM cAMP to release the

catalytic subunits bound to the regulatory subunits, thereby

providing a measure of total PKA activity [7]. Additionally,

samples were run with and without PKI, a synthetic PKAc

inhibitor, to determine any non-specific activity, which was then

subtracted from measures of PKAc and total PKA activity [18].

Preliminary experiments showed that a final concentration of

10 mM of PKI resulted in maximal inhibition in our samples. Non-

specific activity averaged 20.460.8% of total PKA activity.

PKA activity was assayed at 22uC for 30 min, after which the

reaction was stopped by boiling the samples at 95uC for 10 min.

Phosphorylated and non-phosphorylated PepTagH A1 peptides

were separated by 0.8% agarose gel electrophoresis. The

fluorescence of the phosphorylated peptides was recorded with

an Alpha Inotech Imager (ProteinSimple, Santa Clara, CA) and

the bands were analyzed by densitometry with the use of a

standard curve of fluorescent kemptide present in each gel. Each

liver extract was run in duplicate and the average of the activity

values was taken to represent the individual. The percentage of

PKA present as the free catalytic subunit was calculated by

dividing the activity of PKAc by the total PKA activity and

multiplying the ratio by 100. Liver extracts from the unfrozen

group were also assayed for total PKA activity at 0uC. The

reaction was set up as described above, except that the incubation

was done for 30 min on ice. We used the activities measured at

22uC and at 0uC to compute the temperature coefficient (Q10) for

total PKA activity. Enzyme activity was expressed as U mg21 of

total soluble protein, where one Unit was defined as the number of

nanomoles of phosphate transferred to the substrate per minute.

GP activity was measured at 22uC using a coupled-enzyme

assay under conditions detailed by Swanson et al. [19]. Liver tissue

was homogenized (1:10) on ice in cold imidazole-HCl buffer

(pH 7.5) containing inhibitors of protein kinases and phosphatases

that preserve the enzyme’s phosphorylation state. GPa activity was

determined spectrophotometrically from the change in absorbance

caused by conversion of NADP to NADPH, which is coupled with

the GP-catalyzed breakdown of glycogen. Total activity of GP

(GPa+ GPb) was determined in a separate trial in which the

reaction medium included AMP at a final concentration of

1.6 mmol l21 [19]. Each liver extract was run in duplicate and the

average of the activity values was taken to represent the individual.

The percentage of enzyme present as GPa was calculated by

dividing the activity of GPa by the total GP activity and

multiplying the ratio by 100. Liver extracts from the unfrozen

group were also assayed for total GP activity at 0uC. The reaction

was set up as described above, except that the absorbance was

measured using a water-jacketed cuvette holder through which

chilled ethanol was circulated. The temperature of the assay

mixture determined at the beginning and end of the assay was

0uC. We used the activities measured at 22uC and at 0uC to

compute the Q10 for total GP activity. Enzyme activity was

expressed as U mg21 of total soluble protein, where one Unit

formed 1.0 mmol of a-D-glucose 1-phosphate from glycogen and

orthophosphate per minute.

For each liver extract, the supernatant was assayed for protein

concentration using the Bio-Rad protein assay (Bio-Rad, Hercules,

CA) with bovine serum albumin (BSA) as the standard.

Immunoblotting
Liver tissue collected from unfrozen, 48 h-frozen, and 120 h-

thawed frogs was homogenized whilst frozen in RIPA buffer

(1:10), on ice, containing a protease-inhibitor cocktail (cat. #
P2714, Sigma-Aldrich Chemical Company, Saint Louis, MO,

USA). The homogenate was centrifuged (3,000 g for GP; 14,000 g

for PKAc) for 5 min at 4uC. Following centrifugation, the

supernatant was assayed for protein concentration using the Bio-

Rad protein assay (Bio-Rad), with bovine serum albumin (BSA) as

the standard, aliquoted, and frozen at 280uC.

Total soluble protein (30 mg for GP; 15 mg for PKAc) was mixed

with Laemmli sample buffer (containing 5% b-mercaptoethanol)

and heated at 95uC for 5 min. SDS-PAGE of the protein samples

was performed using a 4–15% Tris-HCl gradient gel (Bio-Rad).

To allow comparisons among different gels, we loaded into all gels

a standard relative to which all protein bands were normalized.

Following electrophoresis, proteins were transferred to a

nitrocellulose membrane (GE Healthcare, Waukesha, WI, USA).

After the transfer, each membrane was stained with 0.2% (w/v)

Ponceau S (Sigma-Aldrich) containing 5% (v/v) acetic acid to

verify uniformity of protein transfer; these membranes were

digitized for densitometry analysis of the total protein loaded. After

the membranes were digitally scanned, they were destained using

0.1 M NaOH, rinsed for 3 min with ultrapure water, and blocked

Glycogenolysis in Subarctic Wood Frogs
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overnight in 10% non-fat milk in TBS-T buffer (10 mmol l21 Tris,

500 mmol l21 NaCl, and 0.1% Tween-20; pH 7.5). Goat primary

antibody for GP (Santa Cruz Biotechnologies, Santa Cruz, CA,

USA) was used to detect total GP in liver samples; rabbit primary

antibody for PKAc (Abcam, Cambridge, MA, USA) was used to

detect PKAc in liver samples. Nitrocellulose membranes were

incubated in anti-GP antibody solution (1:2000 dilution) or anti-

PKAc antibody solution (1:3000) overnight, at 4uC, with constant

oscillation. Secondary antibodies were horseradish peroxidase-

linked donkey anti-goat for GP (Santa Cruz Biotechnologies) and

goat anti-rabbit for PKAc (Sigma-Aldrich). All primary and

secondary antibodies were diluted in a 5% non-fat milk TBS-T

solution. Following three 15-min washes in TBS-T, membranes

were incubated in secondary antibody (1:3000) for 2 h at room

temperature with constant oscillation. Membranes were thrice

washed in TBS-T for 15 min, incubated for 2 min in ECL

(enhanced chemiluminescence) detection reagents (GE Health-

care), and exposed to autoradiography film.

PKAc and GP antibodies were exposed to their respective

antigenic peptides in a competition assay to determine the

specificity of the bands visible in the blot (results not shown). We

analyzed only the bands that were specific to each antibody.

Bands from digitally scanned radiography films were semi-

quantified using AlphaView spot densitometry (ProteinSimple).

We had intended to use b-tubulin as a loading control but found

that the b-tubulin concentration in livers of unfrozen Alaskan frogs

was about double that of the unfrozen Ohioan frogs (t = 2.683,

P = 0.028, data not shown); thus, we instead elected to use total

protein as a loading control. Following Aldridge et al. [20], a

densitometric measurement of total protein was performed on the

scanned membranes by selecting a thin strip in the center of each

lane that encompassed all proteins in the lane. For densitometry of

the probed proteins, target bands were selected using a uniform

sampling area that encompassed the band of interest. Background

optical density was determined individually for each band.

Densitometry values determined for individual protein bands

were standardized to total protein densitometry values. These

ratios were divided by the standard present in all gels, thus

allowing comparisons among them. Each membrane contained

samples from unfrozen, 48 h-frozen, and 120 h-thawed groups

representing both populations, and was run in duplicate.

Statistical Analysis
Means 6 standard error of the mean (SEM) are the descriptive

summaries used for the variables measured. Mean values for

samples of unfrozen, frozen, and thawed frogs were compared

within each population using a one-way ANOVA; post-hoc

Dunnett’s test distinguished the mean for each group of frozen or

thawed frogs from that for unfrozen frogs. A two-way ANOVA

was used to examine the mean response of the variables as a

function of two factors, population (Alaskan and Ohioan) and

sample treatment (unfrozen, frozen for 2 h, 6 h, 30 h, or 48 h, and

thawed for 6 h or 120 h), or the interaction of these two factors. If

a significant interaction between the factors was found, Bonferroni

post-hoc test was used to distinguish between the two population

means for each sample treatment. Mean values for the enzyme

activity at 0uC and for the thermal coefficient of enzyme activity

were compared between Alaskan and Ohioan frogs using the

Student’s t-test. As necessary, data were transformed to the natural

logarithm to fulfill the parametric tests’ assumptions. Analyses

were performed using SYSTAT (Cranes Software International

Limited, Chicago, IL); significance was accepted at P,0.05.

Results

Exotherms were observed in the temperature recordings of all

frogs subjected to experimental freezing, confirming that frogs

from both populations were successfully frozen. Upon dissection,

Alaskan frogs contained relatively little ice, even after 48 h of

freezing, which was present beneath the skin ventral to the

submaxillary and rectus abdominis muscles. Frozen Ohioan frogs

had large, subcutaneous ice crystals present both dorsally and

ventrally along the body, in the coelom, and also between muscle

fibers of the hind limbs. Overall, Alaskan frogs were much more

pliable as compared to frozen Ohioan frogs, which were more

rigid. Survival was assessed in the 120 h-thawed groups before

they were dissected for tissue sampling. All frogs survived

experimental freezing and thawing except for one Alaskan frog,

which was eliminated from the study.

Liver Metabolites
Liver glycogen levels varied throughout the experiment in both

frog populations (Alaskan, F6,35 = 13.06, P,0.0005; Ohioan,

F6,29 = 11.52, P,0.0005; Figure 2a). Liver glycogen decreased

(P,0.01) noticeably in Alaskan frogs as early as 6 h of freezing, but

glycogenolysis slowed as freezing progressed, and these frogs

consumed only 63% of their initial glycogen store by 48 h of

freezing. On the other hand, Ohioan frogs first showed a

significant (P,0.0005) decrease in liver glycogen by 30 h of

freezing, and by 48 h had consumed 90% of their initial glycogen

store. Overall, Alaskan frogs had a higher (F1,64 = 7.24, P = 0.009)

liver glycogen content than Ohioan frogs, indicating that their

potential to mobilize glucose during freezing could be greater if

GP activity is also comparatively higher during early freezing. The

pattern of glucose output, deduced from the time course of

glycogen depletion, showed that Alaskan frogs mobilized glucose

more rapidly in the early stages of freezing, although by 48 h both

populations had produced identical amounts of glucose (Figure 2b).

Figure 2. Hepatic glycemic response during freezing and
thawing. Liver glycogen content (A) and glucose output (B) during
freezing and thawing in Alaskan and Ohioan R. sylvatica as compared to
that in unfrozen frogs (U) (mean 6 SEM; N = 4–8). Glucose output (B)
was calculated by subtracting the mean liver glycogen content (mmol
liver 21) remaining at each sample from the mean liver glycogen
content of unfrozen frogs. Asterisk indicates that the value differs from
the mean for the corresponding sample of unfrozen frogs (Dunnett’s,
P,0.05). Some overlapping values were slightly offset along the
abscissa for clarity.
doi:10.1371/journal.pone.0079169.g002
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Liver PKA
Activity of PKAc in the Alaskan frogs varied significantly

(F6,35 = 2.72, P = 0.028), although no sample treatment had an

activity level that differed from that of the unfrozen frogs (Figure 3).

Activity of PKAc also varied (F6,29 = 13.05, P,0.0005) with

freezing/thawing in the Ohioan frogs, decreasing to 12% of the

values of unfrozen frogs by 30 h; however, activity levels were

restored to basal values by 120 h of thawing (Figure 3). Results of

the ANOVA showed that Alaskan frogs had a higher (F1,64 = 6.3,

P = 0.015) activity of PKAc.

Total PKA activity did not vary throughout the experiment in

either population (Alaskan, F6,35 = 0.70, P = 0.652; Ohioan,

F6,29 = 2.23, P = 0.069), but the values were substantially higher

(F1,64 = 29.35, P,0.0005) in the Alaskan frogs (Table 1). The

percentage of enzyme present as PKAc decreased during the

experiment in both populations (Alaskan, F6,35 = 4.51, P = 0.002;

Ohioan, F6,29 = 13.30, P,0.0005), with Ohioan frogs showing an

earlier change; however, the percentage of enzyme present as

PKAc returned to basal levels during thawing in both populations

(Table 1).

Total activity of PKA in enzyme preparations incubated at 0uC
did not differ (t = 1.94, d.f. = 11, P = 0.095) between populations,

and the values, 0.3660.05 U mg21 for Alaskan frogs and

0.2560.02 U mg21 for Ohioan frogs, were ca. 66% lower than

those determined for preparations incubated at 22uC. The

resultant Q10 values for Alaskan and Ohioan frogs, 1.660.09

and 1.860.10, respectively, were not statistically distinguishable

(t = 1.87, d.f. = 11, P = 0.089).

Incubation with primary antibody for PKAc yielded in all

samples a band of ca. 42 kDa, and some samples showed an

additional band of ca. 60 kDa. In the competition assay, in which

the antibody was pre-incubated with its antigenic peptide prior to

incubation with the samples, the 42 kDa band disappeared,

whereas the 60 kDa band retained equal intensity; thus, we

analyzed only the former, which was specific to the antibody.

Immunoblotting results showed that the quantity of PKAc in the

liver of Alaskan frogs increased (P = 0.025) 1.5-fold with freezing

but returned to basal values by 120 h of thawing (Figure 4). In

contrast, Ohioan frogs showed no change (F2,13 = 1.85, P = 0.196)

in PKAc protein levels. However, these frogs had approximately

twice the amount of PKAc protein as did Alaskan frogs

(F1,29 = 29.77, P,0.0005).

Liver GP
In the Alaskan frogs, activity of GPa rose with freezing

(F6,34 = 46.87, P,0.0005), increasing 7-fold over values for

unfrozen frogs within 2 h, but subsequently fell such that it was

no longer distinguishable from basal levels by 48 h of freezing

(Figure 5). Ohioan frogs also showed an elevated GPa activity with

freezing (F6,29 = 13.35, P,0.0005), displaying a 4-fold increase

over basal values within 2 h; however, this increased activity was

maintained throughout the freezing exposure and even during the

early hours of thawing (Figure 5). A two-way ANOVA confirmed

this difference in the GPa response between populations, showing

a significant interaction (F6,63 = 13.36, P,0.0005) between popu-

lation and sample treatment. Specifically, GPa activity was similar

(P.0.99) in unfrozen frogs from both populations, but by 30 h of

freezing was about two-fold higher (P = 0.007) in Alaskan frogs

than in Ohioan frogs. This trend was reversed later in the freezing

exposure and by 6 h of thawing Ohioan frogs had the higher

(P,0.0005) activity (Figure 5).

Overall, changes in both the percentage of enzyme present as

GPa and total GP activity reiterated the GPa response observed in

both populations. Alaskan frogs showed an increase in both the

percentage of GPa (F6,34 = 58.08, P,0.0005) and total GP activity

(F6,34 = 23.93, P,0.0005) during early freezing, but by 6 h of

thawing, values for Alaskan frogs had returned to basal levels. In

contrast, Ohioan frogs showed increases in both the percentage of

GPa (F6,29 = 20.12, P,0.0005) and total GP activity (F6,29 = 6.90,

P,0.0005), and these only returned to basal values by 120 h of

thawing (Table 2). Thus, the pattern of change in the percentage

of GPa and total GP activity with freezing and thawing differed

between populations (F6,63 = 15.19, P,0.0005; F6,63 = 7.42,

P,0.0005, respectively).

Total GP activity in enzyme preparations incubated at 0uC was

not different (t = 0.29, d.f. = 12, P = 0.78) between populations.

These activity values, 0.01760.004 and 0.01960.004 U mg21 for

Alaskan and Ohioan frogs, respectively, were ca. 90% lower than

those determined for preparations incubated at 22uC. The

resultant values for Q10, 3.260.24 for Alaskan frogs and

3.360.14 for Ohioan frogs, respectively, were not statistically

distinguishable (t = 0.24, d.f. = 12, P = 0.82).

Incubation of enzyme preparations with GP primary antibody

resulted in a single band of ca. 95 kDa in all samples. In the

competition assay, no bands were visible when samples were

incubated with the antibody and antigenic peptide, confirming the

specificity of the band obtained under standard conditions. In

Alaskan frogs, GP protein levels did not vary (F2,16 = 0.47,

P = 0.636) throughout the experiment. However, in Ohioan frogs,

GP levels did vary (F2,13 = 5.00, P = 0.025) with freezing and

thawing, although none of the sample groups differed from values

for unfrozen frogs. GP levels in frogs sampled at 48 h of freezing

were 1.5-fold higher in Ohioan frogs as compared to Alaskan frogs

(P = 0.049; Figure 6).

Discussion

Glycogen Depletion and Glucose Mobilization
Liver glycogen is the main substrate used by freeze-tolerant

frogs when mobilizing the cryoprotectant, glucose, during freezing

[1,4]. We found that Alaskan R. sylvatica catabolized their liver

glycogen faster than Ohioan frogs during the early hours of

freezing, and this resulted in a presumably higher output of

Figure 3. Activity of liver PKAc during freezing and thawing.
Activity of hepatic PKAc (mean 6 SEM; N = 4–8) in frozen and thawed
Alaskan and Ohioan R. sylvatica as compared to that in unfrozen frogs
(U). Asterisk indicates that the value differs from the mean for the
corresponding sample of unfrozen frogs (Dunnett’s, P,0.05); dagger
indicates that the value differs between populations (Bonferroni,
P,0.05). Some overlapping values were slightly offset along the
abscissa for clarity.
doi:10.1371/journal.pone.0079169.g003
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glucose for the northern phenotype during this critical period.

Alaskan frogs are exposed to lower winter temperatures in their

hibernacula as compared to their southern counterparts, and their

smaller body size [2] confers them with reduced thermal

capacitance, making them especially vulnerable to rapid-freezing

injury [16]. Because cryoprotectant distribution becomes severely

impaired when higher ice contents are reached [10], quickly

mobilizing large amounts of cryoprotectant in the early hours of

freezing is likely essential for the survival of this phenotype under

subarctic conditions.

We found that Alaskan frogs had larger amounts of glycogen in

their livers as compared to Ohioan frogs. It has been proposed that

larger hepatic glycogen stores are associated with faster glucose

mobilization during freezing [21]. However, in winter-acclima-

tized R. sylvatica, rates of glycogenolysis in hepatocytes in vitro are

not usually correlated with glycogen content [22]. This has also

been observed in chorus frogs [23], but contrasts with the case in

other vertebrates, which have more modest glycogen reserves

[24,25]. Nevertheless, as freezing progresses and glucose mobili-

zation proceeds, reduced substrate availability may eventually

constrain glycogenolysis rates. The comparatively high glycogen

content in Alaskan frogs may obviate or at least defer this

constraint, possibly allowing high rates of glycogenolysis to

continue for longer periods and, thus, more glucose to be

mobilized. The potential for Alaskan frogs to produce even more

glucose than they did is evidenced by the fact that they retained a

substantial reserve of glycogen (37% of unfrozen frog values) after

48 h of freezing; in contrast, Ohioan frogs retained only 10%.

Distribution of the cryoprotectant to non-hepatic tissues is

facilitated by their comparatively low ice content and persistence

of tissue perfusion during freezing [3].

The exceptionally large store of liver glycogen in Alaskan frogs

may also be important in fueling metabolism during the lengthy

subarctic winter, which lasts about 9 months of the year [26–28],

during which time frogs depend on stored nutrients. Presumably

Table 1. Percentage of enzyme present as PKAc and total PKA activity during freezing and thawing in R. sylvatica.

Alaskan Ohioan

Treatment Percentage of PKAc Total PKA activity Percentage of PKAc Total PKA activity

Unfrozen 25.563.1 1.0360.14 28.861.4 0.8760.05

Frozen 2 h 24.964.2 1.0860.14 39.165.4{ 0.6760.09

6 h 31.164.7 1.0660.13 31.263.1 0.7460.12

30 h 17.762.7 1.0260.11 6.461.6* 0.4860.06{

48 h 15.661.7 0.8060.10 12.462.4* 0.6560.09

Thawed 6 h 10.362.1* 1.0360.13 11.263.4* 0.6260.09

120 h 22.063.9 1.0860.17 32.166.6 0.6660.05

Values are mean 6 SEM (N = 4–8). Total activity of PKA is in U mg21 protein. Asterisk indicates that the value differs from the mean for the corresponding sample of
unfrozen frogs (Dunnett’s, P,0.05); dagger indicates that the value differs between populations (Bonferroni, P,0.05).
doi:10.1371/journal.pone.0079169.t001

Figure 4. Liver PKAc protein levels during freezing and
thawing. (A) Representative immunoblots of hepatic PKAc protein in
Alaskan and Ohioan unfrozen (U), 48 h-frozen (F), and 120 h-thawed (T)
frogs (2 samples per treatment). (B) Hepatic PKAc protein amounts
(mean 6 SEM; N = 4–8) during freezing (48 h) and thawing (120 h) in
Alaskan and Ohioan R. sylvatica as compared to that in unfrozen frogs
(U). Asterisk indicates that the value differs from the mean for the
corresponding sample of unfrozen frogs (Dunnett’s, P,0.05); dagger
indicates that the value differs between populations (Bonferroni,
P,0.05).
doi:10.1371/journal.pone.0079169.g004

Figure 5. Activity of liver GPa during freezing and thawing.
Activity of hepatic GPa (mean 6 SEM; N = 4–8) during freezing and
thawing in Alaskan and Ohioan R. sylvatica as compared to that in
unfrozen frogs (U). Asterisk indicates that the value differs from the
mean for the corresponding sample of unfrozen frogs (Dunnett’s,
P,0.05); dagger indicates that the value differs between populations
(Bonferroni, P,0.05).
doi:10.1371/journal.pone.0079169.g005
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freezing episodes in Interior of Alaska are longer than those

encountered by wood frogs from more temperate locales [29]. In

frozen tissues, cells rely on anaerobic metabolism, which can only

be fueled by glucose. The northern phenotype’s larger hepatic

glycogen reserve potentially could provide the abundant glucose

needed to fuel metabolism during extended freezing episodes.

Furthermore, the higher muscle glycogen concentration present in

Alaskan frogs [3] may also serve as a source of fuel for anaerobic

metabolism during prolonged freezing.

PKA Response to Freezing and Thawing
Stimulation of b-adrenergic receptors in the hepatocyte

membrane triggers a cAMP-mediated activation of PKA within

minutes of ice formation, increasing the activity of this enzyme

through a rise in the percentage of enzyme present as the free

catalytic subunit (PKAc) [4]. PKAc phosphorylates PhK, and this

enzyme, in turn, phosphorylates GP, enhancing glycogenolysis [4].

Alaskan frogs potentially could have attained higher glycogenolysis

rates by achieving a comparatively large activation of PKAc

during the early hours of freezing and/or by maintaining higher

total PKA activity. Whereas the latter condition was true, contrary

to an earlier finding [7], we did not observe a significant increase

in PKAc activity with freezing in either the northern or southern

phenotype. In Holden and Storey [7], activity of PKAc rose

during the first hour of freezing and dropped afterwards,

suggesting that the window to detect the increase in the activity

of PKAc is narrow. As our first sample of frozen frogs was not

collected until 2 h post-nucleation, it is possible that we missed an

earlier, transient increase in PKAc activity. Nevertheless, this

enzyme was activated even before freezing began; indeed, the

percentage of enzyme present as PKAc (, 25%) in our unfrozen

frogs was substantially higher than that (,7%) determined in the

earlier study [7]. This disparity may be attributed to the different

acclimatization states of the animals: our frogs were winter

acclimatized, whereas the frogs used by Holden and Storey [7]

were collected following spring emergence. Although PKAc

activity was not distinct between the phenotypes during early

freezing, the fact that Alaskan frogs maintained a higher total PKA

activity throughout the experiment suggests that they have the

potential to achieve a superior PKAc activity, and thus potentiate

the glucose mobilization response, which perhaps would be

evident under more challenging conditions than those used in

our study.

As freezing progresses and glycogenolysis proceeds, it becomes

unnecessary to sustain high PKAc activity [4]. Accordingly, we

observed a decrease in PKAc activity during late freezing in both

populations, similar to that reported for Canadian R. sylvatica [7].

This change may result from decreased oxygen availability in the

tissue due to the ultimate cessation of pulmonary ventilation,

freezing of extracellular fluids, and reduced circulation that

accompanies progressive freezing [4]. Freezing and anoxia are

strong modifiers of PKAc activity, as both independently cause a

decrease in PKAc activity in the freeze-tolerant insect Eurosta

solidaginis [30] and the marine periwinkle (Littorina littorea) [31].

Anoxia also decreases PKAc activity in freeze-intolerant species,

such as the freshwater crayfish (Orconectes virilis) and an anoxia-

tolerant turtle (Trachemys scripta elegans) [32,33]. Thawing and the

resultant reestablishment of normoxia in various freeze-tolerant

animals cause activity of this enzyme to increase to or above

Table 2. Percentage of enzyme present as GPa and total GP activity during freezing and thawing in R. sylvatica.

Alaskan Ohioan

Treatment Percentage of GPa Total GP activity Percentage of GPa Total GP activity

Unfrozen 30.064.2 0.2260.04 36.063.9 0.2460.05

Frozen 2 h 91.461.4* 0.6160.08* 84.662.2* 0.4460.02*

6 h 89.461.6* 0.5560.04* 84.261.9* 0.4460.03*

30 h 81.263.8* 0.5060.04* 68.166.9* 0.3460.05{

48 h 44.565.5* 0.3060.04 71.2610.2*{ 0.3560.04

Thawed 6 h 21.463.3 0.1460.02 82.461.2*{ 0.4360.06*{

120 h 23.665.1 0.1060.02 26.764.8 0.1460.03

Values are mean 6 SEM (N = 4–8). Total GP activity is in U mg21 protein. Asterisk indicates that the value differs from the mean for the corresponding sample of
unfrozen frogs (Dunnett’s, P,0.05); dagger indicates that the value differs between populations (Bonferroni, P,0.05).
doi:10.1371/journal.pone.0079169.t002

Figure 6. Liver GP protein levels during freezing and thawing.
(A) Representative immunoblots of hepatic GP protein in Alaskan and
Ohioan unfrozen (U), 48 h-frozen (F) and 120 h-thawed (T) frogs (2
samples per treatment). (B) Hepatic GP protein amounts (mean 6 SEM;
N = 4–8) during freezing (48 h) and thawing (120 h) in Alaskan and
Ohioan R. sylvatica as compared to that in unfrozen frogs (U). Dagger
indicates that the value differs between populations (Bonferroni,
P,0.05).
doi:10.1371/journal.pone.0079169.g006

Glycogenolysis in Subarctic Wood Frogs

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e79169



control values [7,31], as was observed in this study. Accordingly,

our finding that the decrease in PKAc activity late in freezing was

more pronounced in Ohioan frogs supports our conjecture that

hypoxia drives the reduction in this enzyme’s activity. Our

dissections revealed that Ohioan frogs accumulated more ice

during freezing, which presumably would cause their tissues to

become more hypoxic, as compared to Alaskan frogs. Indeed, after

48 h of freezing, the plasma of these frogs had 1.5-fold the

concentration of lactate as that in Alaskan frogs (22.963.3 versus

14.861.0 mmol l–1, respectively; data from [3]), which further

suggests they were more hypoxic. On the other hand, experimen-

tal anoxia without freezing reportedly does not influence PKAc

activity in R. sylvatica [34], suggesting that additional signals may

contribute to the regulation of this important enzyme.

Livers of Alaskan frogs had a comparatively higher total PKA

activity (Table 1) and yet only about half the amount of PKAc

protein as that in Ohioan frogs (Figure 4), implying that the

enzyme in the northern phenotype has superior catalytic

efficiency. Conducting kinetic assays of purified native enzymes

is needed to confirm this contention; however, it is plausible that

the putative difference in enzyme efficiency between low and high

latitude populations of R. sylvatica derives from variation in the

PKAc gene or a post-translational modification of the protein [8].

Evolving a more efficient PKAc enzyme could have allowed R.

sylvatica to colonize Interior Alaska, where subnivian habitats are

particularly cold and the demand for rapid, copious production of

cryoprotectant is especially great [3]. The occurrence of a

regulatory enzyme with distinct catalytic efficiency in different R.

sylvatica populations would be exemplary among known cases of

intraspecific enzymatic adaptation along a latitudinal gradient

[35–37].

GP Response to Freezing and Thawing
One common physiological response to freezing in many freeze-

tolerant animals is the almost instantaneous activation of liver GP,

with a large amount of the enzyme shifting from the inactive form,

GPb, to the active form, GPa, through phosphorylation by PhK

[38]. This response is not universal, as, for example, in winter, the

chorus frog (Pseudacris triseriata) maintains a constituitively high

activity of GPa (ca. 21 U g21 fresh liver) that is not further

increased upon freezing [17]. In R. sylvatica, however, basal activity

of this enzyme is much lower (ca. 1 U g21 fresh liver), but

increases substantially, to ca. 15 U g21 fresh liver, upon freezing

[39]. These values, which were determined for R. sylvatica from

southern Canada, are on the same order as those we recorded for

frogs from both Alaskan and Ohioan populations.

Freezing induced a large increase over unfrozen frogs in the

activity of GPa (and total GP activity) in both Alaskan and Ohioan

frogs. However, in early freezing the activity of this enzyme was

significantly higher in Alaskan frogs, as compared to the southern

phenotype, for specimens frozen for 2 h or 30 h (Figure 5).

Therefore, the faster glycogenolysis seen in Alaskan frogs earlier in

freezing was likely driven by the higher activity of GPa measured

during the same period. In some freeze-tolerant species, GP

activity does not always correlate with rate of glycogen turnover

[21,40], although the two variables are necessarily related.

Whereas the increase in GPa activity can be explained by the

shift of GPb to GPa [38], the increase in total GP activity was not

mirrored by an increase in GP protein, suggesting that post-

translational modifications of the protein may have a role in the

rise of total enzyme activity [9,41]. The substantial increase in

GPa activity triggered with freezing and the resulting ability to

swiftly mobilize large amounts of glucose is likely an essential

component of the enhanced freeze tolerance in Alaskan frogs.

In Alaskan frogs, GPa activity (and total GP activity) returned to

basal levels by 48 h of freezing, whereas, in Ohioan frogs it

remained elevated through the early hours of thawing. Preserva-

tion of the hyperglycemic state during freezing is achieved through

a bypass of the usual glucoregulatory mechanisms and mainte-

nance of elevated GP activity in the liver [4]; thus, the drop in GP

activity in Alaskan frogs later in freezing suggests that such

mechanisms were somehow lost. Possibly, this change reflects the

action of insulin, which lowers glycemia through both direct and

indirect action in the liver [42]. Wood frogs from more temperate

populations exhibit an increase in serum insulin level during

freezing [43], but liver glycogenolysis nevertheless continues and

GPa activity remains elevated even after thawing [44]. Conceiv-

ably, suspension of glucoregulatory control could stem from

inhibition of the hormone’s action, as is seen in mammalian tissues

when intracellular dehydration induces insulin resistance [45].

However, the specific mechanism by which such inhibition is

putatively released late in the freezing of Alaskan frogs is unknown.

It would be instructive to determine if these frogs, when frozen to

temperatures lower than those used in our study, would longer

maintain elevated GPa activity and thereby more fully convert

their glycogen reserve to the cryoprotectant glucose.

Effect of Temperature on Enzyme Assays
Because the cryoprotective glycemic response is triggered by the

onset of freezing [1,4], the physiologically relevant temperatures

for the enzymatic processes under investigation lie within a narrow

range extending just below the equilibrium freezing point of body

fluids, ca. 20.6uC. However, given the convention of investigating

kinetic phenomena at room temperature, and in order to compare

our data with published values, we performed most of our assays at

22uC. We nevertheless conducted some tests at 0uC to determine if

using the higher temperature confounded comparisons between

the phenotypes, which could occur if, for example, the native

enzymes had different thermal optima. Our findings showed that

neither the total PKA activity nor total GP activity at 0uC differed

between phenotypes; thus, we are reasonably confident in the

conclusions drawn from the results of assays conducted at 22uC.

Comparing Q10 values for total PKA activity and total GP

activity showed that the thermal sensitivity of both enzymes was

similar between populations. The Q10 values for total PKA activity

in liver homogenates from Alaskan and Ohioan frogs were 1.6 and

1.8, respectively, similar to that determined for PKA purified from

R. sylvatica [46]. Thermal sensitivity of total GP activity is

comparatively greater, as the Q10 for this enzyme, known from

other ectotherms, ranges from 2.5 to 10 [47–49]. Accordingly, Q10

values for total GP activity from our Alaskan and Ohioan frogs

were 3.2 and 3.3, respectively. A study of hepatic glycogenolysis

rate as a function of temperature showed the Q10 for the process

was 1.98 [50], a value similar to our values for total PKA activity

but lower than the Q10 for total GP activity. Thus, there must be

cellular mechanisms that compensate for the relatively high

thermal sensitivity of GP, since the overall glycogenolytic pathway

seems to be less affected by temperature than this enzyme, which is

essential to glycogenolysis.

Protein Responses
The ability to change the expression levels of certain enzymes

and other proteins is an essential response conferring local

adaptation and stress tolerance [51]. In devising our immuno-

blotting protocol, we determined that, although freezing had no

effect on b-tubulin levels in liver, Alaskan frogs contained twice the

amount of this protein as did Ohioan frogs. Microtubules,

polymers of a- and b-tubulin, are the major component of the
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cytoskeleton, and, in addition to serving a structural role, function

in regulating cell volume and cold sensing [52–54]. The greater

abundance of b-tubulin in Alaskan frogs may contribute to their

ability to survive freezing to extremely low temperatures, although

more research is needed to probe the possible contribution of this

protein to freezing survival in this and other freeze-tolerant

species.

Changes in gene and protein expression are common responses

in freezing adaptation in myriad organisms. In R. sylvatica,

freezing-responsive genes include ones involved in metabolic

suppression, cell repair, and antioxidation, as well as those

encoding novel proteins [55]. Despite the importance of the

glycemic response to freezing survival, no study to date has

documented freezing regulation of the enzymes involved in

glycogenolysis. Indeed, levels of the GP protein in livers of both

Alaskan and Ohioan frogs remained unchanged with freezing,

which is consistent with results for frogs of a Canadian population

[9]. We did, however, find an increase in the abundance of PKAc

that was significant for the Alaskan population. Such a response in

the early hours of freezing may enhance the freezing mobilization

of glucose by potentiating GP activation. Curiously, the greater

abundance of PKAc was not associated with an increase in total

PKA activity; however a mismatch between protein levels and

enzyme activity is potentially explained by mechanisms such as

inhibition of enzyme activity by the natural inhibitor, PKI, or

glutathionylation of specific residues [56,57]. PKAc is involved in

the transcriptional regulation of several genes, including those

involved in metabolism and cell-cycle regulation [58]. Conse-

quently, the increased abundance of PKAc during freezing may

also reflect a shift in the transcriptome of hepatocytes.

Conclusion
In this study, we determined whether the enhanced freeze

tolerance of Alaskan R. sylvatica, which can survive freezing at

temperatures at least as low as –16uC [3], potentially could derive

from distinct freezing responses of hepatic enzymes, key to the

glucosic cryoprotectant response. Relative to Ohioan frogs, which

tolerate freezing only to ca. –5uC [5], Alaskan frogs catabolized

liver glycogen faster during the early hours of freezing by

maintaining a higher activity of GPa, and maintained higher total

PKA activity throughout the freezing time course. Furthermore,

Alaskan frogs modulated their glycogenolytic response by

decreasing the activity of GPa to basal levels after freezing was

underway, which presumably allows them to retain a substantial

reserve of glycogen during moderate freezing episodes. This

contrasted with the response of Ohioan frogs, which maintained a

high activity of GPa throughout freezing and consumed nearly all

their liver glycogen. The unique hepatic responses of Alaskan R.

sylvatica likely play an important role in this phenotype’s

exceptional freeze tolerance, which is essential for the survival of

this species in regions where winter conditions are so extreme.
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