
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year

Design and Implementation of Export

Shipping System with a Study of the

Requirements and Life-Cycle

Goudong Zhou
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/54

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1992-005

Design and Implementation of Export Shipping System
with a Study of the Requirements and Life Cycle

Goudong Zhou

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

Design and Implementation of Export Shipping System

with a Study of the Requirements and Life-Cycle

Goudong Zhou
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #92-005

Design and Implementation of Export Shipping System
with a Study of the Requirements and Life-Cycle

Presented in Partial Fulfillment of the Requirements
for the Degree of

Master of Systems Analysis
Graduate School of Miarni University

Guodong Zhou

Miami University

July 1, 1992

SYSTEMS ANALYSIS DEPARTMENT

MASTER'S PROJECT FINAL REPORT

Presented in Partial Fulfillment of the Requirements
for the Degree of

Master of Systems Analysis
in the

Graduate School of Miami University

TITLE: Design and Implementation of Export Shipping System
with a Study of the Requirements and Life-Cycle

PRESENTED BY: Guodong Zhou

DATE: July 1, 1992

COMMITI'EE MEMBERS :

James D. Kiper, Advisor

David C. Haddad

Alton F. Sanders

Design and Implementation of Export Shipping System
with a study of the Requirements and Life-Cycle

Guodong Zhou

Dept. of Systems Analysis
Miami University

Abstract

The Export Shipping System is focused primarily on upgrading the manual
system currently used for tracking export orders and inventory in the shipping
department at Square D Company. It consists of a group of program modules which
facilitate the receipt, shipment, and associated paperwork involved in the processing of
export orders from the time they reach the shipping department through the invoice and
subsequent accounting reports. This paper describes the project and the associated
software implemented. This description analyzes the project development life-cycle and
compares it with the alternative software development life-cycles, as described in the
literature in order to identify strengths and weaknesses of the method used in the Export
Shipping System. Finally, it will give some afterthoughts about the project development
to guide future project development.

Table of Contents

1. Introduction

2. Project Background
2.1. Overview Current Shipping Method
2.2. Findings and Recommendation
2.3. Export Shipping System Proposal

3. Data Model of Export Shipping System

4. System Design of Export Shipping System

5. System and Interface Implementation

6. Survey of Software Development Life-Cycles
6.1. Waterfall Model
6.2. Spiral Model
6.3. Fountain Model
6.4. Object-Oriented Model

7. Comparison of Export Shipping System Requirements and
Life-Cycle to Literature with Suggestions for Improvement

8. Conclusion

9. Bibliography

10. Appendix

A. Btrieve Database Table Definitions
B, NMAKE and LINK.LRF of the Export Shipping System
C. Picking List, Packing List, Invoice and Accounting Reports

1. Introduction

For the past year I have worked at the Square D Company, Oxford, Ohio as a
programmer. I have participated in the design and development of a large-scale
software system called the Export Shipping System. I worked under the direction of a
system analyst who is my primary source for the system requirements.

This paper will present an overview of the Export Shipping System, including
the form of the requirements, system proposal and the life-cycle used in the
development of the project . Next, it will review alternative software development life-
cycles described in the literature. Finally, it will conclude with a comparison of the
life-cycle used in Export Shipping System with the alternatives, and will identify ways
that the methods used at Square D Company can be improved.

2. Project Background

Square D Company is a worldwide electric products company. Its industrial
control and electrical distribution products, systems and services are used in industrial
facilities and machinery, in commercial and residential construction, and in original
equipment manufactures' products. The Oxford plant is one of its 58 plants, the
products of Oxford plant are mainly busway and wire management systems. The
organization chart of Oxford plant can be shown in Figure 2.1.

PLANT MANAGER

P
I

Manufacturing Engineering Marketing Manuf. Accounting Human
Department Department Dept. Service Info. Service Resource

Assurance

Figure 2.1 Organization Chart of Square D, Oxford Plant

2.1 Overview Current Export Shipping Methods

It is estimated that over 30% of annual revenue of the Oxford plant comes from
exporting. The current working model in the shipping department is inadequate for the
shipper to keep track of the orders and consequently for the persons in the accounting
department to generate accounting reports and invoices. Furthermore, there are no
control methods to guide the shipper with properly stuffing a crate. For example, the
same order may have two different shipping methods - by air or by ocean, items
shipped by air should not be put into the crate which will be shipped by ocean. Also
there is no good effective way to undo a shipping order if some errors occur or
customers change their orders. If the problems are not fixed, the company profits will
be effected, and customers will switch to other sources. The present working model can
be showed in Figure 2.2 below.

From Mainframe

Keep cards of crate
description, contents,
location, and etc.

Open Orders
)

Downloaded

Rearrange the shipment
cards to generate invoices
and accounting reports.

CM'S) Shipping Dept.

Figure 2.2 Current Export Shipping Working Method

Accounting Dept.

2.2 Findings and Recommendations

Currently, for each order that arrives at the shipping department, the shipper
needs to pick items to put into the crate and maintains a list of the crate specifications,
individual catalog numbers of each item, and item quantities. As crates are stacked for
shipping, each item must be checked against a copy of the shipping list. Often the
shippers have many page long lists and the same catalog number may be listed many
times on different pages.

The physical location of each shipping site of each crate is logged on index
cards, When the shipper needs to ship a crate out of plant, he needs to look up the
index cards to fill the packing list for a specific container (such as truck). For large
orders, the determination of when there are enough crates to fill a container is based on
frequent scans of all the order sheets. The shipper must mentally estimate the total
volume of the order based on length, width, and height for each crate and also need to
add up the weights to determine whether they can make a load.

When a load of export orders comes to the accounting department, the following
information is recorded on the packing list (sheets) for each order: Sequential number,

type of crate (Pallet, Crate, etc.), catalog number and its description, item quantities.
These data will be rearranged to generate an invoice and sub-sequential accounting
reports.

The study of the current system used at the shipping and accounting departments
revealed that the initial solution for the Export Shipping System should include the
following functions:

Receive export open orders and their items;
Put items into crates and temporally store before shipping out;
Ship crates, print out crate labels and generate picking list for each crate; if
needed, unpack a crate;

4). Pack crates for a container and generate packing list which needs to pass to the
accounting department in order to generate invoice and accounting report;

5). Let coordinators add shipment control comment to each item to guide the
shipper to properly pack the crates;

Figure 2.3 Export Shipping System

Export Shipping
System

2.3 Export Shipping System Proposal

After analyzing the initial user requirements, the decision was made that the
following functions and associated screens would be implemented, as shown in Figure
2.3. The system was considered to be a set of functions with data flowing from one to
another. Additionally, the staff decided to take advantage of in-house equipment and
software development tools in building the system.

Import

1). Import function: a list of open export orders and backorder quantities for each
item will be downloaded nightly to a Btrieve database on the network server from the
mainframe;

Document Maintenance Receive
Crate

Ship
Crate

Figure 2.4 Receive Order Screen

EXPORT SHIPPING SYSTEM
Receive Crate - Select Order Number

Order Number Customer PO Ship to Country

2). Receive function: allows the user to define a new crate and to assign items to that
crate; if needed, the user can change crate descriptions, or item quantity. He can also
add or delete some items from that crate.

2612806 EX75923 SPAIN
266583 1 EX75870 HONG KONG
3018015 EX75990 THAILAND

The screens of the Receive function consist of the following. When the user
selects the Receive function from main menu, the first screen, as shown in Figure 2.4
above, will display a list of SQD order numbers for all open export orders. The export
customer purchase order number and shipping to country name will also be listed as
cross-reference. The screen should be able to scroll up or down to hold all open orders.
The user will select an order by moving the cursor to the appropriate position then hit
<Enter > or click with a mouse.

-

After the user hits <Enter > from the Receive Order Screen, a second screen,
as shown in Figure 2.5, will pop up. This screen consists of two separate parts. The
user will key in the crate specifications, such as container type, dimensions, weight,
and storage location, into the upper portion of the screen. The lower portion of the
screen will display a list of all open items for the current order, the quantity due,
shipment control comments, and a place for the user to enter the quantity being
received. The crate number will be assigned to the next available number (the last crate
number plus one for this order), unless the user specifies a crate number to view or edit
an existing crate.

Hit <Enter > or click mouse to select an order <F1> Help

Figure 2.5 Create Crate Screen

EXPORT SHIPPING SYSTEM
Receive - new crates

Order No: 2908613 Customer PO: EX75984 Crate#: 45
Container: CRT H: 32 W: 43 L: 43 Weight: 436 Location: Floor1
Item Catalog No PromDate Due Qty Comment

3). Ship function: allows the user to select crates to be shipped. The printing of
picking lists and crate labels is available as well.

AA HF67F 04/15 20 14 1-OCE-ENGLAND
AB CFH2516G18 04/15 234 234 1-OCE-ENGLAND
AC CFH2516G17 04/20 11 0 2-AIR-ENGLAND
AD CFH2516EB 04/20 23 0 2-AIR-ENGLAND
AE HF68G 0412 1 210 0 3-AIR-ENGLAND
AF CFH2616G19 04/15 12 12 3-AIR-ENGLAND
AG CFH2616G20 04/21 15 0 3-AIR-ENGLAND

The first screen of the Ship function will display a list of all orders for existing
crates in the shipping area. The total weight, volume, and status (complete or
incomplete), and shipping comment will be displayed as well. The user can use
< Space bar > to tag selected orders to ship all crates associated to the orders. The
required prototype screen is shown in Figure 2.6. A printed picking list shows each
crate item, and information for selected orders will be offered.

-

Enter qty in crate or click mouse to set to qty-due <F1> Help

Figure 2.6 Ship Order Screen

7

EXPORT SHIPPING SYSTEM
Ship - Select by Order

Ship? Order# Customer PO Weight Volume Comment

2612806 EX75839 20 1 27 1-AIR-SPAIN
V 2665831 EX75875 3 101 124 1-OCE-ENGLAND

3018015 EX76036 184 54 1-AIR-THAILAND
V 3018016 EX76036 92 12 2-AIR-THAILAND

3091 108 EX76078 123 69 1-AIR-EGYPT

Accumulated Wgt: 3 193 Vol: 136

-

<SPACE > Tag to select/unselect orders <F1> Help

The user may "zoom" to the next screen which displays a list of the crates
accumulated for the selected order. The container type, dimensions, weight, physical
location and date received will be displayed for each crate. The user may select
individual crates by tagging them for shipment. As the user tags the crates, the
accumulated weight and volume data is displayed as an aid to determine the container
requirements, as shown in Figure 2.7.

The user can also "zoom" to next screen, as shown in Figure 2.8, which
displays the individual items in the select crate. This screen is for viewing only; an
editing function is not provided.

4). Document functions: this function has three major purposes: first to let the
coordinator add shipment comments before the shipper generates the crate, and to
preload some invoice header information which he knows as far; second, to generate a
packing list after the shipper receives crates and ships them out of the plant; third, to
generate an invoice and subsequent accounting reports. The Document functions have
been divided into three sub-menu choices.

Template: allows user to add shipment comments to each item before the shipper
packs a crate, as shown in Figure 2.9; and to create, edit and assign invoice header
templates, shown in Figure 2.10. One template can be used for multi-invoice
headers for the same order number with a slight modification. For a specific order,
the user can create several templates. The system will brings up the next available
control number when the user wants to create a new template.

Figure 2.7 Ship Crate Screen

8

I

EXPORT SHIPPING SYSTEM
Ship - Select by Crate

Order Number: 26 12806 Customer PO: EX75839
Ship? Crate# Container H x W x L Weight Location ReceDate

1 CRT 52 x 42 x 64 201 Floor1 03/12/92
V 2 PLT 30 x 42 x 64 198 Floor2 03/14/92

3 CRT 31 x 42 x 64 245 Floor1 03/14/92
V 4 CTN 52 x 42 x 64 1600 Floor3 03/14/92

5 BDL 30 x 42 x 64 489 Floor1 03/15/92

Accumulated Wgt: 1798

-,

< SPACE > Tag to select/unselect crates < F l > Help

Figure 2.8 View Crate Contents Screen

EXPORT SHIPPING SYSTEM
Ship - View Crate Contents

Order Number: 26 12806 Crate#: 4
Item Catalog Number Description Crate Qty

Packing Li t : this option allows the user to create a packing list from a list of

TA PKA36125GN01 -5 15
TB PKA36 125GN02 -5 8
TC PKA36125GNO3 -5 5
TD PKA36125GNO4 -5 12

crates for a specific order when the user puts these crates into a load and ships them
out of door, as shown in Figure 2.11. It also provides the user with a chance to

-

modify the shipping item information such as item catalog number, billing charges,
and to modify the order template as well (this part of screen is same as Figure
2.10).

Hit < ESC > to leave viewing screen <F1> Help

Invoice: this option allows user to create, edit, and view shipping order invoices. It
includes the three major screens, as shown in Figure 2.12.

1). View/Edit Invoice Header (same as Figure 2. lo), at this stage, all fields
should be filled;
2). ViewlMit Invoice Items (similar to the Figure 2.11, but rearranged to
reflect invoice layout .) ;
3). ViewIEdit Total Billing, shown in Figure 2.13. It used especially for the
freight, installation, or other specified charges. After the user confirms the
invoice and saves it, he can not change it again, but he can view the existing
invoice and print out a duplicate copy.

5). Maintenance Functions: rudimentary screens will be available for editing the raw
data which are downloaded from the mainframe to reflect the local changes. The
system provides four fundamental database table editors: orders, items, billing
information and sold to address table.

Figure 2.9 Template Create Screen (I)

EXPORT SHIPPING SYSTEM
Create / Edit Invoice Header

Header No. : 3 Shipping Comment: 3-AIR-ENGLAND

Use 3 as new header No.
for order number: 2612806

Figure 2.10 Template Create Screen (II)

-

EXPORT SHIPPING SYSTEM
Create 1 Edit Invoice Header

Header No. : 3 Shipping Comment: 3-AIR-ENGLAND

Hit <Enter > to accept the new header no. <F1> Help

Accnt No. 1 Order 1 Infl I Dest 1 Term

InvoiceDate
04/17/97

Order-Date
7903 1 1 941 1 9411 941 1 Net 90 d n p in NYSC 09 in9 19 1

9nld tn I tn

OceanIAirlLand: A Shipping Info . . . Shipping Marks . . .

3 CRTs, 2 PLTs, 1 CTNs
2345 Gross Pounds
1152 Gross Kilos
252.3 Cu.Ft.

Hit < ESC > to pop up exit menu <F1> Help

Route Via:
Cincinnati, Ohio

Order Complete?
Y

Ship to
162

Figure 2.11 Pack Crates Screen

EXPORT SHIPPING SYSTEM
Create Packing List - Select Crates

Order No: 2144593 Customer PO: EX75593 Comment: 3-OCE-SPAIN
Pack? Crate# Ship-Date

12 03/24
V 13 03/24
V 14 03/26

17 03 126
V 18 03/26
V 20 03 127
V 2 1 03/27

Figure 2.12 Invoice Screen

-

EXPORT SHIPPING SYSTEM
Create Invoice

Order No: 2144593 Customer PO: EX75593 Comment: 3-OCE-SPAIN

< Space > - Tagtuntag crates T- Tag all U- Untag all < F 1 > Help

/ Edit Header Data
Edit Item Data
Edit Billing Data
Print ORIGINAL Invoice
Print DUPLICATE Invoice
Save Invoice and Exit

\ Exit without SAVE J

-

<F1> Help

Figure 2.13 Invoice - Edit Billing Screen

I
EXPORT SHIPPING SYSTEM

Create Invoice - Edit Billing Data

Order No: 2144593 Customer PO: EX75593 Comment: 3-OCE-SPAIN

The above explanation roughly introduces the Export Shipping System
functional requirements and the user interface prototyping. Next, The database design
of the Export System will be presented.

Total EX Factory: xxxxxxx.xx
Export Packing: xxxxxxx.xx
Ocean Freight: xxxxxxx. xx

Air Freight: xxxxxxx.xx
Forwarding Charges: xxxxxxx.xx

Courier Charges: xxxxxxx.xx

Other Charge1 Description: xxxxxxx.xx
Other Charge2 Description: xxxxxxx.xx

Total Charges: xxxxxxxx.xx

3. Data Model of Export Shipping System

-

Data modeling consists of organizing the required data structure into a form
which can be represented by computer software [lo]. The end product of data analysis
is a data structure diagram which represents the structure of the data which is to be
stored in the database.

<F1> Help

By comparing the current manual system with what the user was asking for, an
overview of the system and its data model has been worked out. This process was a
continuous and repetitive process, but the principal part definition of the data tables
(the primary key of each table and the basic mapping relationship among the tables)
was determined at system design stage. After brainstorming and studying the forms and
raw data that were collected during the user requirements phase, a basic data flow was
found in the Export Shipping System, that could be represented as follows: order
information downloaded from mainframe, which was passed to the ship department to
generate crates, to pack a load, and then was passed to the accounting department to
generate invoices and subsequent accounting reports. The physical data flow currently
crosses the system as shown in Figure 3.1.

For the order part, two database tables were created: Table006 - Order Item and
Table020 - Export Order. Table006 contains all information about an item. Table 020

Invoices

I

/ Accounting Reports

Figure 3.1 Physical Dataflow of Export System

contains all information about an order, so that the relationship is a one to many
mapping from Table020 to Table006. For crate parts, two tables were created,
Table027 - Crate Quantity Table, and Table028 - Crate Physical Description Table to
describe length, width, height, location of each crate. For invoice part, another two
database tables were employed, Table021 - Invoice Item Information Table which
contains the item catalog number, invoice quantity, item billing, and Table026 -
Invoice Header Table, which contains all information about an invoice besides the item
information such as invoice number, invoice date, sold to and ship to address, and
statistical information.

Some support tables were provided, for example, Table023, containing
customer accounting number and correspond shipping to country name; Table037,
letting the user preload sold to address according to the customer account number. We
number these tables according to the general information system plan in the Oxford
plant.

For each table, the key0 is the primary key to identify the table; other keys,
called index in Btrieve database, are based on the program implementation and the
efficiency of running the system. The database table structure can be represented in
Figure 3.2. A detailed definition of each table, please see Appendix A.

Figure 3.2 Database Structure of Export System

CRATE DESC.
Table028

N 1

(1

-
ORDER

Table020
*

INVOICE HDR
Table026

1 N

\)

4. System Design of Export Shipping System

The normal design method involved considering the design as a number of
functional components. The system started with a high level viewpoint and then was
progressively refined into a more detailed design. This methodology is exemplified by
the top-down technique which is based on the notion that the structure of the problem
should determine the structure of the software 1141. By employing the top-down
method, the Export Shipping System was divided into the following seven components,
as shown in Figure 4.1, which represents the main menu choice of the Export Shipping
System.

Another major function, Import, was implemented as a stand-alone function
because it was used primarily by the shipping coordinator as a batch file running
nightly. The Import function downloaded the order and its item information into
Table006 and Table020.

Each function further refined into its own fundamental parts which were
introduced briefly below.

Receive 0

UnShip 0
Documents 0

Maintenanc

The Receive function allows the user to define a new crate and
to assign items to that crate

The Ship function allows the user to select crates to be shipped.
A picking list and crate label are available as well

The Receive function allows the user to edit the specification or
contents of an existing crate as well as to define a new crate

The UnShip function allows the user to "unship" crate which were
previous "shipped" under the Ship function

This choice presents a submenu from which the user may create 1
edit the invoice and packing lists

This choice presents a submenu from which the user may do
maintenance on the data tables directly

This choice presents a full screen help file viewer

Figure 4.1 Export Shipping System Funtions

14

Receive function

This function's primary purpose is to allow the user in the shipping department
to log a new crate into the system. The user will go through the following steps:

1). Select the order number of the items in the crate from a list of open orders
displayed on the screen;

2). Select a crate number for the crate. The default will be the next unused crate
number for this order;

3). Enter the crate physical parameters such as container type, dimensions, weight
and the location where the crate will be stored;

4). Enter quantity for each item in the crate. A list of all items due for the current
order number and the total quantity still due are displayed;

5). Hit < ESC > to bring up Exit menu;
6). Select "Review Crate Contents" to see a list of the items and quantities selected

for review. This step is optional;
7). Select "Log Crate to system" to save the crate into the system with the items

and quantities specified.

This function may also be used to edit a crate already logged into the system by
selecting an existing crate number. The user will have the option of editing any of the
descriptions or the quantity of each item.

Ship Function

This function's purpose is to allow the user to select crates to be shipped. The
user will have the option of shipping all crates for a given order number (Shown in
Figure 4.3), or selecting individual crates to be shipped for a specific order number. A
number of aids are provided to help the user determine what to ship:

1). Orders which are complete are noted;
2). The total accumulated weight and volume for all crates for each order number is

displayed;
3). The accumulated weight in pounds and kilos is displayed as individual crates are

selected for shipment;
4). A "zoom" function is provided to review the contents of an individual crate;
5). A picking list can be printed at any time for the selected order number or crates.

Load Order No from a list of
open orders still having qty due

Generate a crate for selected
Order No

Exit Menu

Do Not Exit

Review Crate Contents

Log Crate to System

Print Crate Label

Exit Without Saving

Figure 4.2 Control Flow of Receive

Load Order with crate
waiting to ship

Tag orders to ship
all crates belong to them

Exit Menu

Do Not Exit

Review Selected Order

Ship all Crates for selected Orders

Print Picking List

Print Crate Label

Exit Without Shipping

Figure 4.3 Ship by Order Control Flow

16

Edit Crate Function

This function's primary purpose is to allow the user in the shipping department
to edit the physical parameters and contents of a crate already logged to the system.

This function is identical to the Receive Function except that the order list
displays only the ones which have been received at least one crate so far to be shipped.
This function may also be used to receive new crates from an order. With the limitation
that you cannot receive a new crate for an order number which does not have any crates
so far. It may, in fact, be fast because of the shorter order number listing. Also see the
explanation for the Receive Function

Unship Function

This function's purpose is to allow the user to "unship" crates which have
already been logged as shipped under the Ship Function. The user will have the option
of "unshipping" all crates for a given order number or selecting individual crates to be
"unshipped".

Document Function

This function has three major purposes: to add shipment control comments; to
pack crates and generate packing list; and to generate invoice and subsequent
accounting report, see Figure 4.4.

It is important to note that after the user saves the invoice, the program will
automatically purge the database tables (Table027 and Table028) in order to keep the
system continuously running otherwise it will run out of storage space soon.

Templates n
Packing List n
Invoice n

This option presents a sub-menu of choices which
allow the user to create, edit and assign header templates

This option allows the user to create a packing list

This option presents a sub-menu of choices which allow
the user to create, edit, and view shipping invoices

Figure 4.4 Document Sub-functions

17

Maintenance Function

The basic purpose of the Maintenance function is to provide a tool to let the
shipment coordinator modify the raw data downloaded from the mainframe to reflect
the local changes. Four editing functions were provided, i.e. editors of Table006,
Table020, Table02 1 and Table037.

On-Line Help

Provides a structured text help file to support on-line help service when the user
hits the < F1> key.

5. System and Interface Implementation

Programming is a craft. It is dependent on individual skill, attention to detail,
and knowledge of how to use available tools in the best way [14]. The Export Shipping
System was written in C language using the commercial tool such as C-Scape for user
interface, and Btrieve and Xtrieve for database management.

C-scape is a powerful and flexible tool for controlling the user interface of C
programs with which the user can create and modify virtually any type of text or data
entry screen. The user can add a number of sophisticated features to the program such
as windowing, graphics support, context-sensitive help, text editing with word wrap,
scrolling lists and validation [23]. C-scape is even more powerful when used with the
Look & Feel Screen Designer which lets the user experiment with various interfaces for
the application before selecting a final one. All screens are saved in "filename.lnf"
files, and can be called from a program at run time. This helps shrink executable code
size and allows the user to change an application's screens without recompiling the
source codes.

The Btrieve is a server-based record management system for workstation
applications. All Btrieve requests from network stations are processed at a network
server. A concise interface call to all the Btrieve request was implemented during the
development of the Export Shipping System.

It was started with Look & Feel tool to create a screen file called Export.lnf
which included all of the screens required by the system. For each individual screen, it
was designed the almost the same layout which was confirmed by the user at the system
design stage. There were three types of screens, SED - the basic screen, SLED - a
screen which can be scrolled up or down, and TED - text editor screen. The field
movement, screen refreshing and special key handling were handled by calling the C-
scape library function.

The database tables were generated by using the Xtrieve, see Appendix A for
the detail definition of each table. In C language program, the corresponding data
structure was set up to hold the data read from the database in order to process them in
the program. Btrieve is a very low level record management system, the control of
retrieving the database is implemented by the programmer. For example, if the user
wanted to retrieve all the open orders which still had quantity due, the following
structure would be used:

Btrieve (B GETFIRST, T006, Key0)
while (!E~F)

if (still having quantity due)
display the order on the screen;

Btrieve(l3 - GETNEXT, T006, Key 0) ;
I

The Export Shipping System directory structure was set up as shown in Figure
5.1. For each major function, a sub-directory was set up, and the object files were put
into next level sub-directory called OW. It is usually wise to partition larger projects
into functional subsystems with each subsystem having its own directory. The
directories for the project form a hierarchical relationship identical to the partitioning of
the project itself. This kind of directory structure has several advantages over just
putting all the source and object files under one directory:

1). Easier to control the complexity of the system as it becomes large and large;
2). Easier for a team to develop the project, because each programmer generally

works only on a part of the project at any one time;
3). Have a clear and short list of source files under each directory because all OBJ

and MAP files have been put into their own next level sub-directories called
OBJ.

For the implementation details of this kind directory structure, please see the
NMAKE and LINI(.LRF file in Appendix B.

EXPORT

OBJ

SHIPCRAT - OBJ

TEMPLATE - OBJ

PACKLIST - OBJ

INVOICE - OBJ

BTRIEVE - OBJ

MISC - OBJ - ERRMSG - OBJ

Figure 5.1 The Export Directory Structure

6. Survey of Software Life-Cycles in the Literature

Software development life-cycle is a project management tool, used to plan,
execute, and control systems development projects. It breaks down the phases and
stages of the projects into tasks that are essential to systems development, no matter
what type or size of system you may try to build. Here four general software life-cycle
methods are presented.

6.1 Waterfall Model

The waterfall model was popularized in the 1970s and was used in most of the
software development activities. The waterfall model is illustrated in Figure 6.1 [9]. As
it shows, the process is structured as a cascade of phases, where the output of one
phase constitutes the input to the next one. 'Each phase, in turn, is structured as a set of
activities that might be executed by different people concurrently. Each phase of
activity is stated below [9].

m Feasibility Study: this evaluates the costs and benefits of the proposed
application. It is necessary to analyze the problem, at least at a global level, and
then try to anticipate future scenarios of software development. The result is a
document called a feasibility study document that should contain at least the
following items:

Feasibility
Study

Requirements
Analysis & Spec.

Design &
Specification

Coding &
Module Testing \

System Testing

Delivery I
1 Maintenance I

Figure 6.1 The Waterfall Software Life-Cycle [9]

1). A definition of the problem;
2). Alternative solutions and their expected benefits;
3). Require resources, costs, and delivery for each proposed alternative

solution.

Requirements Analysis and Specification: this states what qualities the
application must exhibit, not how these qualities are achieved by design and
implementation. For example, it should include definitions of what functions the
software must be provided, without stating how a certain module structure or an
algorithm may help. The requirements should not constrain the software engineer
in the design and implementation activities. The requirements specification should
include the following.

1). Functional requirements, which describe what the product does by using
informal, semiformal, formal notations, or a suitable mixture;

2). Non-functional requirements, which include the following categories:
reliability (availability, integrity, security, safety, etc.), accuracy of
results, performance, human-computer interface issues, operating
constraints, physical constraints, portability issues, and others;

3). Requirements on the development and maintenance process, these
include quality control procedures - in particular, a system test procedure
- priorities of the required functions, likely changes to the system
maintenance procedures, and other requirements

Design and Specification: the design involves decomposing the system into
modules. The result is a design speczjication document, which contains a
description of the software architecture or what each module is intended to do and
the relationships among modules. The exact format of the design specification
document is usually defined as a part of company wide standards. The standards
may also indicate suggested design methods and practice, along with notations that
should be used to document the design.

Coding and Module Testing: this actually writes programs using a programming
language. The output of this phase is an implemented and tested collection of
modules. It was the only recognized development phase in early developmental
processes. Module testing is the main quality control activity that is carried out in
this phase.

Integration and System Testing: Integration amounts to assembling the application
from the set of components that were developed and tested separately. This phase is
not always recognized as being separate from coding the program. In fact, the use
of incremental development may provide progressive integration and testing of
components as they are developed. The difference between the two is that the
coding phase deals with programming on a small scale, while integration deals with
programming on a large scale. The system testing is to test the system under
realistic conditions.

Delivery and Maintenance: maintenance is a set of activities that are performed
after the system is delivered to the customer. Basically, it consists of correcting any
remaining errors in the system, adapting the application to changes in the
environment, and improving, changing, or adding features and qualities to the
application.

A Critical Evaluation of the Waterfall Model

The waterfall model has played an important role because it has imposed much-
needed discipline on the software development process, thus overcoming unstructured
code-and-fix processes. The model has made two fundamental contributions to the
understanding of software processes [9].

1). The software development process should be subject to discipline, planning, and
management;

2). Implementing the product should be postponed until after the objects of doing so
are well understood.

The waterfall model provides a phased view of the software life-cycle. It is
based on the assumption that software development may proceed in a linear fashion
from analysis down to coding. The waterfall model is monolithic in the sense that all
planning is oriented to a single delivery date [2]. All analysis is performed before any
designing and implementation is done.

In practice, this is not realistic, because the development of a software system
requires constant feedback, and disciplined forms of feedback loops should be
accounted for. If mistakes are made during the analysis, and these mistakes are not
caught during analysis, then these errors be identified only after delivery of the system
to the user. Moreover, since the development process may be long for complex
applications - perhaps years - the application may be delivered when the user's needs
have changed. Thus, all these will require immediate rework on the application.

Another underlying assumption of the waterfall model is phase rigidity, that the
result of each phase are frozen before proceeding to the next phase 191. This
assumption does not recognize the need for customer-developer interaction regarding
the requirements throughout the life cycle.

Some activities, however, are ongoing and span the entire life-cycle. Among
these activities are documentation, verification, and management. Documentation is

Feasibility
Study

Requirements
Analysis & Spec.

,
Design &

Specification

Coding &
Module Testing

Integration &

Figure 6.2 The Waterfall with Feedback [9]

intrinsic to the waterfall model, since most deliverables of the various phases are in fact
documents. Based on the output, a transition to the next phase may be permitted or
denied. Indeed, the waterfall process may be called a document driven method [3].

Verification is performed as a process of quality control, and is done at every
stage on various kinds of activities even though we only singled out two specific phases
where verification is performed (module testing and system testing). Management is a
fundamental activity that shapes and monitors the entire development and maintenance
process.

Software evolution is vital, but it is rarely anticipated nor planned [I]. Thus, it
is usually done under pressure and within limited budget. Moreover, since the system
that is eventually delivered may not match the user's expectations, maintenance must
start immediately. This brings the question of who is responsible for the additional
costs incurred during maintenance?

The reasons for the high maintenance costs of today's software systems can be
traced to the characteristics of the waterfall model. In particular, because it is difficult
to produce complete and correct requirement specification, this results in greater
maintenance later. In fact, much of maintenance amounts to eliminate requirements
errors, such as, introducing into the system exactly those functions that the user wants,
but that were disregarded or misunderstood in the first place during requirement
analysis and specifications [9 1.

To allow explicit and disciplined feedback, a revised waterfall life-cycle model
is introduced as shown in Figure 6.2 [9]. It confines the feedback loops to the
immediately preceding stages, in order to minimize the amount of rework involved in
unconstrained repetition of previous phases.

In conclusion, the waterfall model has introduced much discipline into the
software development process, but this discipline is accomplished through too much
rigidity. This rigidity, in turn, introduces new problems into the process, especially
when the software is being developed for poorly understood requirements [9].

6.2 Spiral Model

The spiral model creates a risk-driven approach to the software process rather
than a primarily document-driven or code-driven process. The spiral model may be
viewed as a metarnodel, as shown in Figure 6.3 151, because it can be accommodated
with any process development life-cycle model (e.g. waterfall).

Risks are potentially adverse circumstances that may impair the development
process and the quality of products. Risk management is a discipline whose objectives
are to identify, address, and eliminate software risk items before they become either

threats to successful software operation or a major source of expensive software rework
PI .

The main characteristic of the spiral model is that it is cyclic and not linear like
waterfall model. Each cycle of the spiral consists of four stages, and each stage is
represented by one quadrant of the Cartesian diagram. The radius of the spiral
represents the cost accumulated so far in the process; the angular dimension represents
the progress in the process [9]. The spiral model focuses on identifying and eliminating
high-risk problems through a carefully processed design, rather than treating both
trivial and severe problems uniformly. Here a four stage frame was presented to
develop a system under the spiral model [5].

Stage 1: identifies the objectives of the portion of the product under
consideration, in terms of qualities to achieve. Furthermore, it identifies
alternatives - such as whether to buy, design, or reuse any of the software - and
the constraints on the application of the alternatives. The alternatives are then
evaluated in stage 2.

0 Stage 2: The alternatives in stage 1 are evaluated and the potential risk areas are
identified and dealt with. Risk assessment may require different kinds of activities
to be planned, such as prototyping or simulation.

I. Stage 3: consists of developing and verifying the next level product, the strategy
followed by the process is dictated by risk analysis also.

Stage 4: consists of reviewing the results of the stages traversed so far and
planning for the next iteration of the spiral, if any.

A Critical Evaluation of the Spiral Model

An important feature of the spiral model is that each cycle is completed by a
review involving the primary people or organizations concerned with the project [5].
The spiral model accommodates the favorable features of the existing software process
model, and its risk driven approach avoids many difficulties.

It focuses on options for reusing of existing software early in the process, and
provides a mechanism for incorporating software quality objectives into the software
product development.

This model provides a viable framework for integrated software system
development and eliminates errors and unattractive alternatives early [9]. It
accommodates preparation for life-cycle evolution, growth, and changes of the software
product.

Progress through

Evaluate alternatives,

Determine Objectives
alternatives, constraints

Figure 6.3 The Spiral Model [5]

Challenges still exist regarding the spiral model. It relies on risk-assessment
expertise to identify and manage sources of project risk. However, it is sometimes
difficult to estimate the risk-assessment. The spiral model needs further elaboration of
its steps to ensure that all software development participants operate in a consistent
context [5].

If the requirements for the application are understood reasonably well, a
conventional waterfall model may be chosen, which leads to a simple one-turn spiral.
In less understood end-user applications, however, the next step may be evolutionary in
nature, several spiral turns may be required in order to achieve the desired results [9].

6.3 Fountain Model

Through the discussion above, some of the general concepts of the software
development life-cycle can be clear. The overall life-cycle should take into account
implicitly a high degree of overlap and iteration, although the basic activities in the
software development are almost the same, i.e. analysis of user requirements, design of

the system, and implementation and maintenance of the system. The fountain model, as
shown in Figure 6.4 [8], provides a vehicle to implement the system in an iteration
viewpoint and meanwhile emphases on the early phases of system development.

Fountain model represents the activities of different software development
phases by the overlap circle. The phases in the model can be related to those of the
waterfall model.

A Critical Evaluation of the Fountain Model

The fountain model provides a diagrammatic version of the development phases
present in the software life-cycle and a clearer representation of the iteration and
overlap in the system development [S].

The foundation of a successful software project is its requirements analysis and
specification; this phase has been placed at the base in the fountain model. The life-
cycle thus grows upward to a pinnacle of software use, falling only in terms of
necessary maintenance [S]. The fountain model effectively emphasizes the early phases

Figure 6.4 The Fountain Model [8]

of the software development life-cycle.

The modification of a software system can be more easily made interactively
between requirements analysis and system design since designs are not based upon the
first decisions made. Contrasting to the top-down functional design, it means there is
no longer a need to freeze the overall systems requirement specification at an early
phase of the system life-cycle.

6.4 Object-Oriented Model

As mentioned above, traditional software development life-cycle consists of
three major activities: analysis, design and implementation. However, the Object-
Oriented software life-cycle blurs the boundary of these activities because the items of
interest in Object-Oriented design are objects and information hiding. Objects are
independent entities, which may readily be changed because all states and
representative information is held within the object itself. The information hiding is a
design strategy in which as much information as possible in hidden with design
components [9]. The following is a specification of a seven-step methodological
framework for Object-Oriented system development [6].

Step 1: Undertake system requirements specification. This step is a high-level
analysis of the system in terms of objects and their services, as opposed to the
system functions. An Object-Oriented requirements specification includes timing
details, hardware usage, cost estimates and other documentation.

Step 2: Identify the objects (entities) and the services each can provide (interface).
At both the analysis and the high-level design stage, it is necessary to identify the
objects or entities, their attributes and the services they provide. Objects can often
be identified in terms of the real-world objects, like abstract nouns, which provide
excellent objects. In this step, the functional features are defined, including defining
the visible interface, although no indication of implementation is required.

Step 3: Establish interactions between objects. For this step, the services required
and services rendered will be defined.

Step 4: Analysis stage merges into design stage to illustrate more internal details of
the objects. From this step onward, bottom-up concerns should be taken into
consideration. The identification of reusable design components, or classes, from
previous designs is an important part of the Object-Oriented strategy.

Step 5: Bottom-up concerns, using of library classes. The libraries contain object
classes created as one of the successful outcomes of a previous application of this
(or other) proposed development methodology. Initially, implementation (coding
plus testing) of low-level classes may begin at this step.

Step 6: Introduce hierarchical inheritance relationships as required. As more objects
are identified within the detailed design, reevaluation of the total set of classes will
require an iterative analysis of whether new super classes or new subclasses will be
useful. Thus, creating a need for inheritance diagrams.

Step 7: Aggregation and/or generalization of classes. As undertaken in the previous
step, it may require iteration back to consider the relationship between objects.

In conclusion, Object-Oriented model follows this sequence:

1). Identifies the classes;
2). Assigns attributes and behavior;
3). Finds relationships between the classes;
4). Arranges the classes into hierarchies.

While these steps are being performed in the order shown, remember that
Object-Oriented design is an iterative process. Each step in the process may alter the
assumptions used in a previous step, which requires to go back and repeat that step with
new information.

A Critical Evaluation of the Object-Oriented Model

Object-Oriented design differs dramatically from the tradition waterfall model.
In an Object-Oriented design, it is unnecessary to analyze a problem in terms of tasks
or processes. It is also unnecessary to describe the problem in terms of data. Instead of
asking "What data does the program act upon?", it is necessary to ask firstly "What are
the objects?" or "What are the active entities in this system?". The problem is analyzed
as a system of objects interacting.

Problems with traditional development using the classical life-cycle include no
iteration, no emphasis on reuse, and no unifying model to integrate the phases. Each
system is built from scratch and maintenance costs account for a notoriously large share
of total system costs [8]. The Object-Oriented paradigm addresses each of these issues.
Inheritance facilitates extendibility and reuse within a given system, but also supports
reuse across systems. Information-hiding guidelines dictate that all data within a class
be private [20]. It differs from the more familiar functional approach to design in that it
views a software as set of interacting objects, with their own private state, rather than
as a set of functions. That is to guarantee that the interface of the class is in fact an
abstraction.

The Object-Oriented model gives more attention to data specifications than the
procedural approach but still utilizes functional decomposition to develop the
architecture of a system [19]. Objects and their relationships between other objects are

identified in both the analysis and design phases. Analysts, designers and programmers
are working with a common set of items upon which to build [14].

Procedural decomposition is a top-down approach, starting with an abstract
view of the system and ending with a detailed view. However, the Object-Oriented
design is not a top-down technique. It does not require identifying large classes and
breaking them down into smaller ones. It is also not necessarily a bottom-up process,
where the system starts with small classes and builds up from them. Object-Oriented
design involves working at both high and low levels of abstraction at all stages.

An Object-Oriented view of system design, however, is not always the most
natural. At some levels of abstraction, a functional view is easier to derive from system
requirements than an Object-Oriented view. In particular, where the system retains only
minimal state information, a functional rather than an Object-Oriented design may be
used [14].

7. Comparison of Life-Cycle used in Export Shipping System
to Literature with Suggestions for Improvement

Normally for a large-scale information system, the waterfall model with
feedback is commonly used to build the system. This is the model employed in the
Export Shipping System described in this paper. The waterfall model provides a
framework for people to think about the problem and to control the progress of each
developmental phase. It is unusual for a software designer to arrive at a final design
graph immediately. The design process appears to be a process of adding formality as
the design progresses with constant backtracking to correct earlier and less formal
designs [9].

We first analyzed the functional requirements of the Export Shipping System to
get a rough idea of the system requirements. Then we used Luok & Feel screen design
tool to prototype the basic functions and screens for the user evaluation. After the user
approved the initial design, we worked out the details of the program.

Most initial considerations were regarding implementation of the functional
requirements, when the Export Shipping System was started. As these requirements
were implemented, however, we were often forced to rethink the reasonable response-
time and good program structure. Thus, the re-programming part of the source codes
was often required to improve these considerations. This iteration also provided a
significant impact on improving individual programming skills.

Response-time requirements are derived from the tasks required of the system
users or emerge simply from human factors considerations [17]. If the response-time is
too long, the user will neither like the system nor use it. During our second reviewing
of the source codes and enhancement of the system, much of the effects were to

improve the response-time, for example, creating a new index in the database tables or
changing the retrieve control structure.

We also found that in most of the modules in our system the internal control
structure can be represented as: Read data from database, process these data, then save
the data back to the database. In each of these three parts there exists much redundant
source code. It seems if we can consider reusing part of the source code through the
Object-Oriented methodology before the design is implemented, it will reduce much of
the repetitive work.

As the last feature of our system, we provided on-line help for when the user is
confused. In an in-house system, it may not be necessary that the help function be
available at every conceivable interaction. Because the system is required to respond to
a help request at any instant and to provide assistance with request to the immediate
context of the request, it takes up too much memory and slows down the executive.
Perhaps help needs to be available only at major turning points, for example, when the
user has the ability to switch from one screen to another [17]. This would save
significant memory space in the system.

The system design or database model design is not a straight top-down or
bottom-up approach. At the design level the designer can not foresee all of the technical
difficulties and can not take into account all detailed aspects of the project, this requires
repeating several cycle during the system development. For example, we combined the
creating crate function and editing crate function into one module in programming
implementation, but at the main menu choice stage we provided two separate function
choices. The reason is that the basic control structure of these two functions was almost
the same. However, it is reasonable to think of them as individual functions if the top-
down method is used. The bottom-up approach is much more drawn out and tends to
hide the overall picture behind a purely mechanical technique. Hence, perhaps the most
successful approach is to combine the these two techniques, and use both approaches
when most appropriate.

A significant learning curve is involved in writing a large-scale application
system. Programming skills are gained through the application development. From the
Export Shipping System, the following points could be made:

We were not concerned about reusing parts of the source codes when we first
started the system. Similar code was used several places in the system. It caused
considerable redundant work, since each sub-system had to be built from
scratch.

We did not use risk analysis at each step before moving to the next step.
Incorporating a spiral model would be a good practice to catch problems as the
development progressed. If any major problems had occurred, such as incurring

too much expense, this would not have been caught until the very end of the
project.

It is most realistic to recognize that no one life-cycle can necessarily solve all of
the problems. It is prudent to be aware of several alternatives and to have a
thorough understanding of perhaps two or more options which can be applied as
circumstances direct. Often, the experience gained through out the project
development will help to overcome the shortcomings of only applying one
software life-cycle to the system development.

8. Conclusion

This paper has discussed the development procedure of the Export Shipping
System. The main objective of this program is to develop a reliable, effective and easy
to use system. The waterfall with feedback loop methodology was employed. By
following the data flow through the system, we were able to systematically develop the
system from the initial receiving order function to the finally generating invoices and
accounting report functions.

The waterfall model with feedback loop is probably best suited to the
development of information systems, especially for individual systems built from
scratch. However, it does not have the risk assessment analysis, such as economic
considerations, and reusability of the source code. The spiral model does not provide
an adequate framework to systematically work out problems. Thus, a more feasible
approach would be to combine the spiral model concepts with the waterfall model. The
fountain model is a revised waterfall model and puts the requirement analysis at the
basis in order to emphasize the early stages of the software development life-cycle. The
Object-Oriented model builds the program on the objects of a system and places
emphasis on the reuse and object hierarchies. An Object-Oriented view of an
information system, however, is not always the most suitable because sometimes a
functional view point is more appropriate.

In summary, none of the four software development life-cycles discussed in this
paper are all inclusive and thus no one approach is used solely. In practical
circumstances, a hybrid or combination of life-cycles is used to enable the programmer
to design, develop and implement the information system most efficiently.

Acknowledgments

This paper benefited from comments and suggestions by Prof. Douglas Troy,
Dr. James Kiper and Dr. Alton Sanders. Special thanks to Mr. Dave Spencer, who is a
system analyst at Square D Co. and is my primary source for the project, for providing
me the opportunity to pursue the development of a large-scale project. Without his
help, this paper would not have been possible, so I dedicate this paper to his memory.

9. Bibliography

1. Alan M. Davis, So@are Requirements - Analysis & SpeciJication, Prentice-Hall
Inc., 1990.

2. Alan M. Davis, "A Taxonomy for the Early Stages of the Software Development
Life Cycle", Journary of System Software, Aug., 1988, pp. 297 - 31 1.

3. Alan M. Davis, "A Strategy for Comparing Alternative Software Development
Life Cycle Models", IEEE Transaction of Software Engineering, 14 (1988), pp.
1453 - 1460.

4. Andrew Harbert, "A Graphical Specification System for User-Interface Design",
IEEE Software, July 1990, pp. 12 - 20.

5 . Barry W. Boehm, "A Spiral Model of Software Development and Enhancement",
Computer, May 1988, pp. 61 - 72.

6. Bjarne Stroustrup, The C+ + Programming Language, Addison-Wesley Co.,
1987.

7. Bjarne Stroustrup, "What is Object-Oriented Programming?", IEEE Software,
May 1988, pp. 10 - 20.

8. Brian Henderson, "Objected-Oriented Systems Life Cycle", Communication of the
ACM, Vol. 33, No. 9, Sept. 1990, pp. 143 - 159.

9. Carlo Ghezzi, Fundamentals of Sofiware Engineering, Prentice-Hall Inc., 1991.

10. D.S.Bowers, From Data to Database, Van Nostrand Reinhold (UK), 1988.

1 1. Ed Lee, "User-Interface Development Tools", IEEE Software, May 1990, pp. 3 1
- 36.

12. Edward H. Bersoff, "Impacts of Life Cycle Models on Software", Communication
of ACM, Aug. 1991, pp. 104 - 118.

13. Gerhard Fischer, "Human-Computer Interaction Software: Lessons Learned,
Challenges Ahead", IEEE Software, Jan. 1989, pp. 44 - 52.

14. Ian Sommerville, Somare Engineering, Third Edition, Addison-Wesley
Publishing Co., 1989.

15. Jeannette M. Wing, "A Specifier's Introduction to Formal Methods", Computer,
Sept. 1990, pp. 8 - 24.

16. Nabaj yoti Barkakati, Microsoff C Bible, The Waite Group's, SAMS Publish,
1990.

17. Michael F, Rothstein and Burt Rosner, The Professional's Guide to Database
Systems Project Management, John Wiley & Sons, Inc., 1990.

18. Russell J. Abbott, Sqftware Development, John Wiley & Sons, Inc., 1986.

19. Stephen Fickas, "Critiquing Software Specifications", IEEE Software, Nov. 1988,
pp. 37 - 47.

20. Tim Korson, "Understanding Object-Oriented: A Unifying Paradigm",
Communication of the ACM, Vol. 33, No. 9, Sept. 1990, pp. 40 - 60

21. Steve Schustack, Variations in C, Microsoft Press, 1989

22. Victor R. Basili, "Viewing Maintenance as Reuse-Oriented Software
Development", IEEE Software, Jan. 1990, pp. 19 - 25.

23. C-scape Inteface Management System Manul, Oakland Group, Inc., 1989

24. Btrieve Programmer's Manul, Novel Incorporate, 1990

25. Xtrieve Plw, Novel Incorporate., 1990

10. Appendix

A. Btrieve Database Table Definitions

B. NMAKE & LINK.LRF of Export Shipping System

C. Picking List, Packing List, Invoice and Accounting Reports

Appendix A: Btrieve Database Table Definitions

Xtr i eve 4.10
F i l e : TO6 CustOrdr I t e m s

D ic t i ona ry P r i n t U t i l i t y
Page 1

'-- ~ a t i o n : TABLE006.BTR
i t e m F i l e : No

Pagt S i z e : 256G
Var i ab l e Records : No
To ta l Records : 1143
Unused Page= : 0

FIELD DEFINITIONS

P o s i t i o n Key Name -------- ---
1 * Sqd Order No
8 * Order I t e m Seq No

10 * I t e m No
2 7 Phys D e s c
3 9 Phys Desc w/Notes
5 1 o r d e r Q t y
55 * Qty Due
5 9 Qty i n Shppng
6 3 Qty Invoiced
6 7 Qty Shipped
7 1 D i s t r N e t Mult
75 * Shpmt C t r l No
77 * I t e m L e t t e r
8 1 J Las t Update - 85 Line Code
8 9 L i s t P r i c e
9 7 N e t Mult

101 Order S p l i t
103 * Prom Date
107 S t a t u s B i t s
108 I t e m Marks

INDEX DEFINITIONS

Type --------
S t r i n g
I n t e g e r
S t r i n g
S t r i n g
S t r i n g
I n t e g e r
I n t e g e r
I n t e g e r
I n t e g e r
I n t e g e r
F l o a t
I n t e g e r
S t r i n g
Date
S t r i n g
F l o a t
F l o a t
I n t e g e r
Date
S t r i n g
S t r i n g

S i z e Dec D e l i m i t e r Case ----- --- --------- ----
7 Y e s
2

17 Y e s
12 Y e s
12 Y e s

4
4
4
4
4
4
2
4
4
4
8
4
2
4
1

2 0

Y e s

Y e s

Y e s
Y e s

Key Name F i e l d ---
0 Sqd Order No

Order I t e m Seq No
1 Sqd Order No

I t e m No
2 Sqd Order No

I t e m L e t t e r
3 Sqd Order No

Q t y Due
4 Sqd Order No

Shpmt C t r l No
Q t y Due
Shpmt C t r l No

Type --------
S t r i n g
I n t e g e r
S t r i n g
S t r i n g
S t r i n g
S t r i n g
S t r i n g
I n t e g e r
S t r i n g
I n t e g e r
I n t e g e r
I n t e g e r

Dups Mod Case ASC T o t a l ---- --- ---- --- ------
No Y e s No Y e s 1143
No Y e s No Y e s

Y e s Y e s No Y e s 919
Y e s Y e s No Y e s

No Y e s No Y e s 1143
No Y e s No Y e s

Y e s Y e s No Y e s 255
Y e s Y e s No No
Y e s Y e s No Y e s 261
Y e s Y e s No Y e s
Y e s Y e s No No
Y e s Y e s No Y e s 104

trieve 4.10
i l e : TO6 C u s t O r d r I t e m s

I
D i c t i o n a r y P r i n t U t i l i t y

P a g e 2

'"QEX D E F I N I T I O N S (C o n t i n u e d)

.ey Name F i e l d T y p e D u p s Mod C a s e A s c T o t a l ~ - - ---a --------- ---=- - - - - -C ---OI--CI- ---- --- ---- --- ------
Sqd O r d e r N o S t r i n g Y e s Y e s N o Y e s
P r o m D a t e D a t e Y e s Y e s N o Y e s

?IELD ATTRIBUTES

' i e l d Name A t t r . T y p e A t t r i b u t e V a l u e ---------- ..

Xtr ieve 4.10
F i l e : T20 Cstmr Orders

D ic t i ona ry P r i n t U t i l i t y
Page 1

T- ? a t i o n : TABLE020,BTR
item F i l e r No

$age S i r - : 512
Var i ab l e Records : NO
T o t a l Records : 434
Unused Pages : 0

FIELD DEFINITIONS

P o s i t i o n Key N a m e Type S i z e Dec D e l i m i t e r Case
__P_____ __- -------- ----- --- ----0---- ----

1 * Sqd Order N o S t r i n g 7 Y e s

8 Cstmr Accnt No S t r i n g 5 Y e s

13 Cstmr Purch Order No S t r i n g 2 0 Y e s

3 3 D a t e Recvd Date 4

3 7 D e s t T e r r S t r i n g 3 Y e s

4 0 I n f l T e r r S t r i n g 3 Y e s

43 I n f o Needed S t r i n g 2 0 Y e s

63 Job Name S t r i n g 39 Y e s

102 MD509 NO S t r i n g 8 Y e s

110 Order T e r r S t r i n g 3 Y e s

113 Quoted B i l l g F l o a t 8
12 1 T r b l F i l e No S t r i n g 8 Y e s

12 9 Sh ip t o Cnt ry Code S t r i n g 3 Y e s

3 132 Sold t o Cnt ry Code S t r i n g 3 Y e s

135 S t a t u s I n t e g e r 2
137 Terms S t r i n g 30 Y e s

167 Complete/Close Date Date 4

171 Shppng Marks S t r i n g 3 0 Y e s

201 Cmnt s S t r i n g 4 0 Y e s

INDEX DEFINITIONS

Key N a m e F i e l d Type Dups Mod Case Asc T o t a l ___ -____-__---_----_---. -------- ---- --- ---- --- ------
0 Sqd Order No S t r i n g No Y e s No Y e s 434

FIELD ATTRIBUTES

F i e l d N a m e A t t r . Type A t t r i b u t e Value ---------- ..

Dic t iona ry P r i n t U t i l i t y
Page 1

Ktr ieve 4.10
F i l e : T21 Expr t B i l l g I t m

' - 7 a t i o n : TABLEO21,BTR
- i t e m F i l e : N o

Page S i z e B 2560
Var iab le Records : NO
T o t a l Records : 4635
Unused Pages : 0

FIELD DEFINITIONS

P o s i t i o n Key N a m e
sqd Order N o
Shpmt C t r l No
Invo ice Seg No
Back Order Q t y
C r a t e No
I t e m No
D i s t r N e t Mult
I t e m L e t t e r
L ine Code
L i s t P r i c e
N e t Mult
Norm L i s t P r i c e
Order Q t y
Phys Desc
Invo ice Qty
Unit Mat1 Cost
Unit Lab Cost
Unit Fixed Bur Cost
Unit V a r Bur Cost

Type --------
S t r i n g
I n t e g e r
I n t e g e r
I n t e g e r
I n t e g e r
S t r i n g
F l o a t
S t r i n g
S t r i n g
F l o a t
F l o a t
F l o a t
I n t e g e r
S t r i n g
I n t e g e r
F l o a t
F l o a t
F l o a t
F l o a t

S i z e D e c D e l i m i t e r Case ----- --------- ----
7 y e s
2
2
4
2

17
4
4
4
8
4
8
4

12
4
8
8
8
8

Y e s

Y e s
Y e s

I N D E X DEFINITIONS

Key N a m e F i e l d --- Type --------
S t r i n g
I n t e g e r
I n t e g e r
S t r i n g
I n t e g e r
S t r i n g
S t r i n g

Dups Mod Case A s c T o t a l

Sqd Order No
Shpmt C t r l No
Invo ice Seq No
Sqd Order No
C r a t e N o
Sqd Order No
I t e m L e t t e r

N o
N o
N o

Y e s
Y e s
Y e s
Y e s

Y e s
Y e s
Y e s
Y e s
Y e s
Y e s
Y e s

Y e s 4635
Y e s
Y e s
Y e s 2099
Y e s
Y e s 4220
Y e s

FIELD ATTRIBUTES

F i e l d Name A t t r . Type A t t r i b u t e Value ---------- ..
Mask Z . Z Z Z Z

X t r i e v e 4.10
F i l e : T 2 1 E x p r t B i l l g I t m

'"9LD ATTRIBUTES (C o n t i n u e d)

F i e l d Name
-------------------==

L i s t P r i c e
N e t M u l t
Norm L i s t P r i c e
U n i t Mat1 C o s t
U n i t L a b C o s t
U n i t F i x e d B u r C o s t
U n i t V a r B u r C o s t

A t t r . T y p e ----------
M a s k
M a s k
M a s k
M a s k
M a s k
M a s k
M a s k

D i c t i o n a r y P r i n t U t i l i t y
Page 2

A t t r i b u t e V a l u e
-_-------O------DY-----=~--

zzzzZZz.zz
z. ZZZZ
zZzzZzz.zz
zzZzZZ.zzzZ
ZZzzzz.ZzZz
Zzzzzz.zzzZ
zzZzzz.zzzz

Xtr i eve 4.10
F i l e : T26 Expr t ShpmtHdr

- r a t i o n : TABLE026.BTR
d t e m F i l e z No

Pega Size 1022
Var i ab l e Records : No
T o t a l Records : 684
Unused Pages 0

FIELD DEFINITIONS

P o s i t i o n Key N a m e -------- ---
1 * Sqd Order No
8 * Shpmt C t r l No

10 A i r F r t Charge
18 B/L /~ookng /Rcp t NO
3 8 Cntnr No
5 8 Cour ie r Charge
66 Cubic F t
7 0 D e s t T e r r
7 3 ~ s t m Time A r r i v a l
83 Export Invo ice No
8 8 F r t Foreward Charge
9 6 Gross K i l o s

100 Gross Lbs
104 I n f l T e r r
107 I n t l Accnt No
112 I n t l Purch Order No
132 * Invo ice Date
136 No of Bundles
138 No o f Car tons
140 No o f C r a t e s
142 N o o f P a l l e t s
144 Ocean F r t Charge
152 Order T e r r
155 o t h e r Charge-1
163 Other Charge-2
171 Other Charge-3
179 Other Charge Desc-1
199 Other Charge Desc-2
2 19 Other Charge Desc-3
239 Other T o t a l
247 Other T o t a l Desc
367 Pack Charge
375 Pack Date
379 P a r t i a l /Cmpl t
380 P repa id /Co l l ec t
381 Route Via
416 S a i l i n g Date
420 Shpmt Header Name

Sh ip From Loc

Type -------- -
S t r i n g
I n t e g e r
F l o a t
S t r i n g
S t r i n g
F l o a t
F l o a t
S t r i n g
S t r i n g
S t r i n g
F l o a t
I n t e g e r
I n t e g e r
S t r i n g
S t r i n g
S t r i n g
Date
I n t e g e r
I n t e g e r
I n t e g e r
I n t e g e r
F l o a t
S t r i n g
F l o a t
F l o a t
F l o a t
S t r i n g
S t r i n g
S t r i n g
F l o a t
S t r i n g
F l o a t
Date
S t r i n g
S t r i n g
S t r i n g
Date
S t r i n g
S t r i n g

Dic t iona ry P r i n t U t i l i t y
Page 1

S i z e Dec D e l i m i t e r Case

Y e s

Y e s
Y e s

NO

Y e s
Y e s

No
Y e s
Y e s

Y e s
Y e s
Y e s

Y e s
Y e s
Y e s

Y e s
Y e s

Strieve 4.10
Pile : T26 Exprt ShpmtHdr

-"FLD DEFINITIONS (Continued)

?oshtion Key --- , ,--- - =

428
453
473
474
5 14
539
559
759

Name
-----------------,

Shipped Via
shppng Cmnts
Shppng Method
Total Dese
USA Port
Vessel
Ship to Name/Addr
Shppng Marks

Type
--------,

String
String
String
String
String
String
String
String

Size Dec

Dictionary Print Utility
Page 2

Delimiter Case

Yes
Yes
No
No
Yes
Yes
No
Yes

INDEX DEFINITIONS

Key Name Field Type Dupe Mod Case Asc Total --- -------- ---- --- ---- --- ------
0 Sqd Order No String NO yes No Yes 684

Shpmt Ctrl No Integer No Yes No Yes
1 Invoice Date Date Yes Yes No Yes 684

Shpmt Ctrl No Integer Yes Yes No Yes
Sqd Order No String Yes Yes Yes Yes

FIELD ATTRIBUTES

3
r ~ e l d Name Attr. Type Attribute Value ---------- ..

: t r i e v e 4.10
' i le : T27 E x p r t CrateI tm

Dic t iona ry P r i n t U t i l i t y
Page 1

~ a t i o n : TABLE02 7. BTR
a t e m F i l e : No

'age S i z e a 358-s
I a r i a b l e Records : NO

ro ta1 Records : 4508
b u s e d Pages : 0

FIELD DEFINITIONS

Pos i t i on Key Name Type S i z e Dec D e l i m i t e r Case -----_-_ -_- -------- ----- --- --------- ----
1 * Sqd Order No S t r i n g 7 Y e s
8 * C r a t e No I n t e g e r 2

10 * Order I t e m Seq No I n t e g e r 2
12 C r a t e Q t y I n t e g e r 4
1 6 L a s t Update Date 4

I N D E X DEFINITIONS

Key Name F i e l d Type Dups Mod Case Asc T o t a l _ _ _ -------- ---- --- ---- --- ------
0 Sqd Order No S t r i n g No Y e s No Y e s 4508

C r a t e No I n t e g e r No Y e s No Y e s
*<
r Order I t e m Seq No I n t e g e r No Y e s No Y e s
C

FIELD ATTRIBUTES

F ie ld Name A t t r . Type A t t r i b u t e Value ---------- ..

t r i e v e 4.10
i l e : T28 Expr t C r a t e s

- a t i o n : TABLE028.BTR
~ t e m F i l e : No

age S i z e s 256C
' a r i a b l e Records : NO
' o t a l Records : 1715
lnused Pages : 0

PIELD DEFINITIONS

' o s i t i on Key Name Type S i z e Dec D e l i m i t e r Case _-__-_-_ _-_ -------- ----- --- --------o ----
1 * Sqd Order No S t r i n g 7 Y e s

8 * C r a t e No I n t e g e r 2

10 Contnr Type S t r i n g 3 Y e s

13 Date Recvd i n Shppng Date 4

17 Height I n t e g e r 2
19 Lgt h I n t e g e r 2

2 1 LOC S t r i n g 7

28 * S t a t u s S t r i n g 1

2 9 Wgt I n t e g e r 2

3 1 Width I n t e g e r 2
3 3 L a s t Update Date 4

37 * Shpmt C t r l No I n t e g e r 2

Y e s
Y e s

D ic t i ona ry P r i n t U t i l i t y
Page 1

4
@

aaDEX DEFINITIONS

Key Name F i e l d Type Dups Mod Case Asc T o t a l _ _ _ ______________-__-_- -------- ---- --- ---- --- ------
0 Sqd Order No S t r i n g No Y e s No Y e s 1715

C r a t e No I n t e g e r No Y e s No Y e s
1 Sqd Order No S t r i n g Y e s Y e s No Y e s 436

Shpmt C t r l No I n t e g e r Y e s Y e s No Y e s
2 S t a t u s S t r i n g Y e s Y e s No No 1715

Sqd Order No S t r i n g Y e s Y e s No Y e s

C r a t e No I n t e g e r Y e s Y e s No Y e s

3 S t a t u s S t r i n g Y e s Y e s No Y e s 436
Sqd Order No S t r i n g Y e s Y e s No Y e s
Shpmt C t r l No I n t e g e r Y e s Y e s No Y e s

FIELD ATTRIBUTES

F i e l d N a m e A t t r . Type A t t r i b u t e Value
.................... ---------- ..

Appendix B: NMAKE and LINK.LRF of the Export Shipping System

Date: 06/27/92 export Page: 1

f NMAKE Descriptor file for EXPORT.EXE
f Written 10/24/91

compiler-options = /Fo$@ -AL -c -DM5 -Zpl -W3 -0s -I..\BTRIEVE -1MISC
compiler-options2 = /Fo$@ -AL -c -DM5 -Zpl -W3 -I..\BTRIEVE -1MISC
link-opt ions = /se:512
DER = ,.\BTRIEVE~\
TABLES = $(DIR)TABLE006.H \

$(DIR)TABLE020.H \
$(DIR)TABLE021.H \
$(DIR)TABLE023.H \
$(DIR)TABLE026.H \
$(DIR)TABLE027.H \
$(DIR)TABLE028.H \
$(DIR)TABLE037.H \
$(DIR)TABLE038.H

Date: 06/27/92 export Page: 2

MISC\OBJ\MISC.OBJ \
MISC\OBJ\TABLE.OBJ \
MISC\OBJ\PRINT.OBS \
MISC\OBJ\MSCXBTRV.OBJ \
MISC\OBJ\GETORDNO.OBJ

LINK @EXPORT.LRF
echo donell

OBJ\EXPORT.OBJ: EXP0RT.C \
EXP0RT.H \
SYMBOL. C ;

CE /Fo$@ $(compiler-options) EXP0RT.C

Date: 06/27/92 export Page: 3

SHIPCRAT\OBJ\LOGSHPMT.OBJ: SHIPCRAT\LOGSHPMT.C \
SHIPCRAT\LOGSHPMT.H \
MISC\MISC.H \
MISC\TABLE.H \
$(TABLES);

CL /Fo$@ $(compiler - options) SHIPCRAT\LOGSHPMT.C

Date: 06/27/92 export Page: 4

INVOICE\OBJ\INVOICE.OBJ: INVOICE\INVOICE.C \
INVOICE\INVOICE.H \
MISC\MISC.H \
MISC\TABLE.H \
$(TABLES);

3 CL /Fo$@ $(compiler-options) INVOICE\INVOICE.C

INVOICE\OBJ\LOADORDR.OBJ: INVOICE\LOADORDR.C \
MISC\MISC.H \
MISC\TABLE.H \
$ (TABLES) ;

Date: 06/27/92 export Page: 5

Date: 06/27/92 export Page: 6

VEDIT037\OBJ\VEDIT037.OBJ: VEDIT037\VEDIT037.C \
VEDITO37\VEDITO37.K \
MISC\MISC.H \
$ (TABLES) ;

CL /Fo$@ $(compiler-options) VEDIT037\VEDIT037.C

Problems with the roundoff function require that we turn off -0s

Date: 06/27/92 export. l r f Page: 1

Appendix C: Picking List, Packing List, Invoice and Accounting Reports

LTE: 06/27/92 Form: K-500-63(02/21/92)

I-: 16:41:35 PAGE: 1
----__-_P____D___---------------------------------~--------------------------

EXPORT SHIPPING SYSTEM
SQUARE D COMPANY OXFORD, OHIO

Picking List

Factory Order No.: 3025387
Container No.: Customer Order No.: EX76040

Intl Purch Order No.: 2604067

rt# Pack H x W x L Weight Location IT Qty Description ...
3 C R T 3 1 x 4 6 ~ 62 353 Dl40 AU I CP504GLTI -9

AV 1 CP504G021TI -9
4 CRT 30 x 42 x 136 3123 F102125 AZ 20 CP504G10 -11
5 CRT 26 x 42 x 136 2276 F101146 AZ 1 CP504G10 -11

B A 1 CPSO4GlOFBA -11
BB 2 CPSO4GlOFBB -11
BC 2 CP504GlOFBC -11
BD 3 CP504GlOFBD -11
BE 1 CP504GlOFBE -11
BF 1 CP504GlOFBF -11
BG 1 CP504G49 -11
BH 4 CP504G6 -11

6 CRT 31 x 46 x 64 322 F106 B I 1 CP504G69LTIFB -11
7 CRT 42 x 42 x 42 213 F102174 R 1 CP504GLFO - 3
8 CRT 36 x 46 x 44 444 F102174 AE 3 CP506GLTI -6

AF 2 CP506GLTO -6
$ 9 CRT 36 x 42 x 136 3252 F102 AJ 8 CP504G10 -8

AX 1 CP504GlOFBA - 8
AL 2 CP504GlOFBB - 8
AM 1 CP504GlOFBC - 8
AN 4 CP504GlOFBD - 8
A0 1 CP504GlOFBF -8
AP 1 CP504G49 -8
AQ 5 CP504G6 -8

10 CRT 29 x 42 x 136 2514 F101150 DM 15 CP504GIO -23
DW 1 CP504G66 -24

11 CRT 32 x 42 x 136 3302 El12 CT 11 CP504G10 -20
CU 1 CP504GlOFBA -20
CV 2 CP504GlOFBB -20
CW 1 CP504GOFBC -20
CX 2 CP504GlOFBD -20
CY 1 CP504GlOFBE -20
C Z 1 CP504GlOFBF -20
DB 4 C~504G6 -20

..
694.9 CuFt 15799 lbs 107

7166 Kilos

RE D COMPANY
SHIPPED FROM: 5735 COLLEGE CC.. iR ROAD

PACKING LIST
OXFORD, OH18 45056 U.S.A.

Form K 500 61 402121182l

I

SHIPPING MARKS.

EX-761 36 (Ti 'AILAND]
3225786
ORDER NO. 27061 5
(IP6 1 5-EM)
SQUARE D THAILAND - BANGKOK
PUNTIP PARK PROJECT

SOLD TO.

SQUARE D COMPANY (THAILAND) LTD.
1 OTH FLOOR MBK TOWER
444 PHAYATHAI ROAD
BANGKOK 10330
THAILAND

ROUTE !//A: OCEAN - COLLECT

POUNDS I KILOS

2 CRT
3 CRT

SHIPPED TO:

SQUARE D COMPANY (THAILAND) LTD.
1 OTH FLOOR MBK TOWER
444 PHAYATHAI ROAD
BANGKOK 10330
THAILAND

DIM. IN INCHES

4 CRT

595 90 505
800 58 742

5 CRT

CASE#

308 40 268

6 CRT

270 41 229
363 26 337

1529 122 1407

7 CRT
8 PLT

I I I I

PACK

16 42 100 38.9
40 46 64 68.1

140 18 122

424 38 386

9 CRT

2064 Kilos / 99 Kilos i

CU. FT.
GROSS (LEGAL (NET GROSS 1 LEGAL I NET 1 HEIGHT I WIDTH I LENGTH

31 46 44 36.3

694 55 639

596 58 538
218 38 180

7 Crts
1 Plts

24 42 136 79.3

192 17 175

298 58 240

4550 Lbs
218 Lbs

- -

CATALOG NUMBER

28 42 42 28.6

270 26 244
99 17 82

8

T RUN NUMBER

58 42 64 90.2
15 42 42 15.3

135 26 109

AF2516G76
AF25 1 6G 1 OFEB
AF25 1 6G 1 OFES
AF2516GLEMll
AF2508G22FEB
AF2508G300F S l lO8Bl I
AF2508G37LE S11B26
AF2508G38DL Sl lC16B11
AF2508G 10
AF2508G23
AF2508G30
AF2508G34
AF2508G55
AF2508G59
PIF34080GN
PIK34 1 50GN
PIK34175GN
PlK34250GN
PBIL36300GN
AT2
HF88F
ACF43EC
AT2
HF43E
HFV
AF2508GLEM11
AF2508GLFM11

33 42 64 51.3

4768 Lbs

A
A
A
A
B
B
B
B
B
B
B
B
B
B
NIA
NIA
N IA
NIA
NIA
A
A
B
B
B
B
B
B

21 63 Kilos

PRINTED BY: GZHOU DATE: 06127192 CONTAINER NO: SHIP VIA: PAGE: 1 OF 1

SQUARE D COMPANY REMIT TO:
SQUARE D COMPANY

5735 COLLEGE CORNER ROAD

NEW YORK EXCHQJJGE

D COMPANY (UK) LTD. LECTRICAL CENTRE
MANOR TRADING ESTATE, SWINDON 0. BOX NO. 4037
RE, ENGLAND SN2 2QG

SHIPPING INFORMATION SHIPPING MARKS

HAW: 90088832
DATE SHIPPED: 06-26-92

SHIPPED VIA: BURLINGTON AIR EXPRESS
U.S.A. PORT: CINCINNATI, OH U.S.

EX-760601308 1586lXU-0242
MARKS:

ELECTRICAL CENTRE
P. 0. BOX 4037
ABU DHABI, U.A.E.

TOTAL EX FACTORY: 5326.79
EXPORT PACKING: 160.00

AIR FREIGHT: 5404.70

EST. TIME OF ARRIVAL:

SEE ATTACHED PACKING LIST

6 CRT
4864 LBS 2207 KGS 322.9 CU. FT.

PeIUTFO BI. dZWOU -. . --. Form: K-62 103101/921

THESE COMMODITIES LICENSED BY U.S. FOR ULTIMATE DESTINATION ABU UtiAbl DIVERSION CONTRAY TO U.S. LAW PROHIBITED -
COUNTRY OF ORIGIN - UNITED STATES OF AMERICA - CERTIFIED TRUE AND CORRECT.

ROUTE VIA
AIR - PREPAID

PARTIAL COMPLETE

•
COUNTRY CODE

155

1 9005- BS CF2510G45LF S34B11 1 0 1 160.60 160.60
2 9005- BT CF2510G73LF S41B32 1 0 1 227.79 227.79

3 9005 - BW CF25 1 OGLEM 1 1 1 0 1 105.33 105.33
4 9005- BK CF2508G45:.F S34B11 1 0 1 143.92 143.92
5 9005- BL CF2508G52LF S41Bl l 1 0 1 158.22 158.22
6 9005-BJ CF2508G106 1 0 1 215.54 21 5.54
7 9005- BM CF2508G6 1 0 1 146.41 146.41
8 9005-BN CF2508G80 1 0 1 162.65 162.65
9 9005-BO CF2508G88 1 0 1 178.99 178.99

10 9005- BP CF2510G107 7 0 257.08 257.08 1

11 9005- BR CF25 10G4 1 0 1 11 5.32 11 5.32

12 9005-BU CF2510G9 1 0 1 259.46 259.46

13 9005-BV CF25lOG93 1 0 1 223.48 223.48

14 9005- BB CF25 16G 100 1 0 1 388.74 388.74

15 9005- BG CF25 16G6 3 0 1 279.89 279.89

16 9005- BH CF25 16G8 1 0 1 373.19 373.19

17 9005- BI CF2516G94 1 0 1 365.47 365.47

18 9005- BG CF2516G6 3 0 2 279.89 559.78

19 9005- BC CF25 16G34LE 1 0 1 204.75 204.75
20 9005 - BD CF25 16G36FEB 7 0 I 212.59 21 2.59

21 9005- BE CF25 1 6G46LF 1 0 1 251.40 25 1.40
22 9005- BF CF2516G53LF 1 0 1 278.53 278.53

23 9005-BQ CF2510G2 1 0 1 57.66 57.66

QUANTITY
SHIPPED BACWORDEREO

QUANTITY
ORDERED

UNIT PRICE BUS-BAR TRUNKING CATALOG NUMBER ITEM
EXTENDED PRICE LINE CODE -

ITEM LETTER

SQUARE D COMPANY 5735 COLLEGE CORNER ROAD
OXFORD, OHIO 45056 U.S.A.

SQUARE D COMPANY (THAILAND) LTD.
1 OTH FLOOR MBK TOWER

!2
Q

CONTAINER NO:
444 PHAYATHAl ROAD br
BANGKOK 10330 IL

ROUTING: OCEAN
PREPAIDICOLLECT: COL THAILAND 0

0)

E 1 AT2 ODC-1 0.00 0.0000 9255

N 24 HFV ODC-3 0.00 0.0000 9255

PRINTED BY: GZHOU CONTAINER NO: PAGE: 1 OF 1

STATEMENT OF PASS-THRU INTERNATIONAL SHIPMENTS
FROM OXFORD TO UNITED KINGDOM

FOR THE MONTH OF APRIL

SOLD TO SHIP TO FACTORY FREIGHT
COUNTRY COUNTRY INVOICE BILLING &OTHER TOTAL
_______--__-----P--- ------- --------- --------- ---------
% <
UAV i +&Q KINGDOM EGYPT 40200 12936.43 6435.37 19371.80 --------- --------- ---------

12936.43 6435.37 19371.80

UNITED KINGDOM 40198
40199
40201
40202
40203
40204
40206
40207
40208
40209

