
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year

A Comprehensive Description and

Critical Analysis of Object-Oriented

Software Development

Charles III
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/60

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1991-003

A Comprehensive Description and Critical Analysis
of Object-Oriented Software Development

Charles K. Ames III

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

A Comprehensive Description

and Critical Analysis of

Object-Oriented Software Development

Charles K. Ames Ill
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #9 1 -003 August 1 99 1

A Comprehensive Description and Critical Analysis of
Object-Oriented Software Development

FINAL REPORT

Presented in Partial Fulfillment of the Requirements
for the Degree of

Master of Systems Analysis
in the

Graduate School of Miami University

Charles K. Arnes ILI

Miami University

1991

Reading Committee:

Dr. Jarnes D. Kiper, Advisor

Dr. Alton F. Sanders

Prof. Douglas A. Troy

A Comprehensive Description and Critical Analysis of
Object-Oriented Software Development

Charles K Ames 111
Systems Analysis, Miami University

August 21, 1991

Object-orientation and the object model underlie a sin~pie, intui t i~~e, and ttsef~il approach
to software der~elopment that has great potential for significantly irnpro~~ing the software
del~elopment process, Object-orientation ~tnifies acti~~ities, stick as analysis and design,
that ctirrently largely independent and soinewhat incompatible. Despite its simplicity, u
sl2roud of nlystery surro~inds this apl?roach. The difficulty often encountered when learning
and understanding object-oriented methods stems partly from the capricio~~s and in~proper
use of object-oriented jargon in con*ersation and in the literat~lre. This paper explores
the fo~~ndations of the object model, defines the associated ternlinology in concrete terms,
and gi*es an ~ \~er * iew of ~ ' a r i o ~ t s object-oriented inetkods as they relate to the software
lifecycle.

1 Introduction
Object-orientation is an increasingly popular paradigm which has great promise for improving soft-

ware development throughout its life cycle. There are many advantages and potential benefits lo be gained
from shifting to an object-oriented viewpoint. Unfortunately, the popularity of the adjective "object-ori-
ented" is not without a downside. The widespread and capricious use of this term has resulted in a some-
what ambiguous and jargonistic terminology. It is difficult to know what is meant when someone says "this
<thing> is object-oriented." In addition, discussions in the literature often describe the object model in
terms of itself, with the reader left to "catch-on" on his or her own.

This paper is intended t o provide a reasonably complete and understandable description of the
object model and its associated terminology, and to explore a variety ot object-oriented methods. Section
1 discusses the foundations of object-oriented modelling, and section 2 introduces and defines terms com-
monly used to describe the object model. Section 3 attempts to sharpen the reader's understanding of
several of the concepts introduced in section 2 by comparing and contrasting those that are often confused.
Section 4 discusses the potential benefits of adopting object-oriented methods, and section 5 discusses
the impact of object-oriented methods on the software lifecycle.

1.1 The Object-Oriented Mindset

Object-orientation is more than a software development method or a programming style. i t is
a way of looking at systems that is funda~nentally different from that which underlies more traditional (i.e.

structured) approaches to software development. Some traditional methods focus almost exclusively on
what the system is to do, with minimal consideration given to associated data until the system architecture
is mostly complete. Other methods focus on the data that is to be manipulated, subsequently deriving
functionality to transform this data into the data that is needed. The object-oriented mindset allows a
developer to see systems in terms of active components made up of data fused together with associated
functionality. These components often correspond closely to the entities actually found in the problem
domain.

Consider a student registration system. Functional decomposition would lead to a process driven
view of the system based on a set of procedures, such as add-student-to-course and drop-stu-
dent-from-Course, with data being considered later. A data driven approach would lead to a view of the
system based on important data elements, such as Student-rec and course-list, with the necessary function-
ality being of secondary importance. An object-oriented view of the system would contain active entities,
such as student and registrar. These entities would have state (data) and behavior (tunctionality) that
is similar to their real world counterparts.

Clearly, a student registration system built using any of these three approaches will accomplish the
same thing. The difference is in the way the system is modelled. The key to understanding and making
use of object-orientation is in seeing systems the same way we see the real world: in terms of active, interact-
ing entities. Process driven and data driven approaches each place heavier emphasis on either processes
or data. Object-oriented approaches facilitate a more baIanced view of systems. Every process or action
is explicitly associated with some entity and targeted at some entity. We say that "at the student's request,
the registrar enrolls students in courses" rather than "enrolln~ents happen," or "a student plus a course
makes an enrollment." This more natural notion (that entities have an active role rather than a passive
one) is directly reflected in the software and its design when systems are modeled and developed in an
object-oriented manner.

1.2 Natural Methods of Organization

According to Encyclopedia Britannica, people constantly undertake three activities in organizing
their thinking [12 J :

1. The differentiation of experience into particular objects and their attributes - e.g.,
when they distinguish between a tree and its size or spatial relations to other objects.

2. The distinction between whole objects and their component parts - e.g., when they
contrast a tree and its component branches.

3. The formation of and distinction between different classes of objects - e.g., when
they form the class of all trees and the class of all stones and distinguish between
them.

Object-oriented methods are based on applying these same principles in organizing software sys-
tems. Novices often express that they see nothing new about object-orientation. This perception seems
to follow given that the foundation of object-orientation rests on thought processes that are inherent in
all people. Perhaps all the h)pe about object-orientation has created the expectation that it is highly com-
plex, esoteric, and difficult to understand. This simply is not the case. Perhaps the reason lor the "nothing
new" feeling is that while object-orientation is relatively new to software development, it is anything but
new to people and their everyday thinking.

1.3 Programming Paradigms

One may wonder "What precisely is object-oriented, versus what is not object-oriented," A related
question is "What is object-oriented progran?ming, and what makes it different from other programming
paradigms?" To answer these questions, it is useful to explore a continuum of programming paradigms

and their characteristics in terms of encapsulation, abstract data typing, and inheritance 16.51. Each para-
digm in the following discussion adds one of these characteristics resulting in an improvement over the
previous paradigms.

Procedural programming is probably still the most commonly used approach to programming. The
fundamental idea is to decide which procedures are needed to solve the problem and use the best algorithms
you can find or create. The focus is on procedure design, with data design being driven by the requirements
of the procedures. The only language features necessary to support this style of programming the abilities
to pass arguments to and return values from functions.

Data hiding is a principal used to manage the complexity of programs b y grouping related data
and procedures together. The fundamental idea is to decide which modules are needed in order to partition
the program so that data is hidden in modules with related procedures. The focus is on module design.
A language must include some kind of module mechanism (e.g. the file in C, or the module in Modula
2) in order to support data hiding. A slightly stronger version of data hiding is encapsulation, in which
module boundaries are strictly enforced. Encapsulation is discussed in detail in section 2.3.

Data abstraction occurs when an appropriately defined module may be considered to be a new
data type in the language. Such types are called abstract data types, in contrast to the built-in primitive
types and simple data structures. The fundamental idea is to decide which new types are needed to solve
the problem, then provide a full set of operations for each new type. The focus is on the design of abstract
data types, which often model entities observed in the problem domain. A language must allow the defini-
tion of user-defined types along with operators for these types, that is, it must have an extendable type
system, in order to support data abstraction programming. ADA supports abstract data typing via its pack-
age mechanism.

Object-oriented programming is distinguished from data abstraction hv the addition of inheritance
to the formula. The fundamental idea is to decide what classes (abstract data types) are needed, provide
a full set of operations for each class, and make commonalty among classes explicit by using inheritance.
The focus is on designing a hierarchy of classes such that classes lower in the hierarchy are specializations
of more general classes that are higher in the hierarchy. For example, the class "boy" is a specialization
of the more general class "child". A language must provide syntax for expressing classes and a mechanism
for inheritance in order to support object-oriented programming.

One way, then, to answer the question "What is and is not object-oriented?" is to r e s l ~ ~ n d : "Any-
thing that allows the expression of, or is expressed in terms of, abstract data types using inheritance is
object-oriented; anything that fails to meet either of tllose criteria is not."

1.4 The Diagram Editor

Part of the research supporting this paper was devoted to the application of object-oriented meth-
ods to the development of a simple diagram editor. Portions of the design and implementation of this
system are used for illustration throughout the paper. Complete documentation of the development project
is included in the appendix. This description is intended only to introduce some of the objects and classes
that will be used in illustrations, therefore, some terms used here will not be defined until later sections.

The Diagram Editor is a graphical, mouse driven application intended to assist designers in con-
structing diagrams representing object-oriented designs. The notation supported by the editor is derived
from the notation used in Object-Oriented Analysis (OOA) and Object-Oriented Design (OOD) 1121, [13].
The user may create and manipulate symbols representing classes and objects by using a mouse to select
choices from floating pop-up menus. Lists of properties (i.e. attributes and services) may be added to
each class and object symbol. Connections linking symbols together can be created to represent various
kinds of relationships among classes and objects. Each symbol, property, and connection may be annotated
by typing text into a pop-up edit window.

Several key objects from implementation of the diagram editor are referenced frequently through-
out the paper. These include the diagram and dispatcher objects, and the classes list, selectable, class,
property, and connection. The diagram object maintains a list of all symbols and connections currently
in the diagram and controls the order in which symbols and connections display themselves to the screen
and save themselves to disk. The dispatcher object takes care of routing events (mouse clicks, keyboard
input) to the appropriate screen objects.

The list class defines a general purpose "container" for storing references (pointers) to other ob-
jects. The dispatcher and diagram objects use list objects to keep track of the screen objects they manipu-
late. Symbol objects (class and object objects) use list objects to store property objects that represent
the symbol's attributes and services. Figures 3 (page 10) and 4 (page 12) illustrate this information graphi-
cally.

2 Concepts and Terminology
Object-oriented methods are based on the object model (rather than the Object Model: there

is no formally defined model with this title.) The object model underlies how one views the world (problem
domain, solution space, etc.. .) when developing software. Many terms have become quite popular in refer-
ring to elements of the object model, some being more important and meaningcul than others. Some terms
refer to essential ideas of object-orientation; others refer to by-products. Some refer to useful mechanisms;
others to intellectually pleasing intricacies that are otherwise of little value. The following paragraphs at-
tempt to make these distinctions clear.

2.1 Objects

Terms: object, attribute, sert~ice, message, method, operation, client

The notion of an object in object-oriented analysis and design is the same as it is in everyday
life. An object is a "thing." All things, such as the Empire State building or the Queen Mary, have certain
qualities. Things have boundaries. There is a distinction between what is part of and what is not part
of a particular thing. Things have traits, or attribtites. such as color, size, and maximum capacity. Things
can perform actions, or senlices, e.g. the Queen Mary can carry travelers across the ocean. Actions can
be performed on things, e.g. the Empire State I?uilding can he painted. Objects can be very large and
complex, made up of many parts, like the Queen Mary, or much smaller in scope, like the spark plug
in cylinder #I of a motorcycle's engine.

In the domain of software development, an object is something that has identity, state, behavior,
and a boundary. The identity of objects in software systems comes in many forms [3 1 I . Objects are often
identified by location (i.e. their address in memory), by the value of one or more of their attributes, or
by a unique identifier, sometimes referred to as a handle. To illustrate the appropriateness of each of
these methods, consider three analogous identifiers tor the Queen Mary:

Methods of Object Identification

Location: "Berth 17, Port of Long Beach, Long Beach, California."

Value: "Large luxury cruise ship with a black and red hull that is now used
as a hotel, restaurant, and tourist attraction. "

* Id: "001 253791 08" (Arbitrary, but unique, integer identifier)

An object's state is represented b y the values o f its attributes. The Queen Mary's state at some
point in time could be status="underway", capacity="2500" and that of my spark plug could be spark-
ing="trueW or sparking="false." These values may change over time, but only in a controlled manner.
The set of values these attributes may assume, and thus the set of states the object may assume, is part
of the definition of the object. For example, upon arrival at her destination, the Queen Mary's state could
change to status="at port", or status="under repair", but not to status="Mary had a little lamb."

The behavior of an object is defined by the services, also referred to as operations, it can perform.
For example, the Queen Mary can carry travelers across the ocean and my spark plug can spark. Objects

follow some method to carry out these operations. The term method denotes the implementation of an
operation, and its use is intended to create the sense that the object somehow "knows" what it is doing.
In software systems, operations are named. For example, the Queen Mary's "carry travelers across the
ocean" operation might be named "go", and a spark plug's "spark" operation might be cleverly named
"spark". In any case, every object has a set of operations with associated methods that define its behavior.

The assertion that objects have a boundary is meant to convey the idea that objects are finite and
well defined. At least in software systems, there is no ambiguity in deciding what is and is not part of
a particular object, and what a particular object can do. It is in this sense that objects are bounded.

Objects offer their services for use by other objects. An object which uses a service of another
object is referred to as a client of that object. A client requests the services of another object by sending
it a message, which consists of the requested service's name and any necessary parameters. A message
denotes a service which corresponds to a method. The reasons for this separation of concepts is explained
further in section 2.5.

One might notice the similarity between an object and a record in a database system. Each has
a set of values which contribute to its state. Unlike records, however, functionality is part of an object.
Semantics (meaning, behavior) are external to records, but internal to objects.

2.2 Classes

Terms: class, abstract data type, instance, instantiate

Earlier we established that the Queen Mary is an object, as are the Titanic and the S.S. Minnow.
Although lhese objects share similar behavior, similar state spaces, and similar boundaries, they do not
share identity, nor do they share state. For example, the Queen Mary is much larger than the S.S. Minnow,
and the Titanic is neither "under~vay" nor "at port". Although different in specifics, each of these objects
can still be described as a "ship". An object's class embodies all that the object has in common with
all similar objects. The class definition describes the form and behavior of all objects of that class. All
objects have a class, even if they are unique. Objects bear an "is-a" relationship to their classes, for exam-
ple, as shown in figure 1, the Titanic has an "is-a" relationship to the class ship.

Class Definition for "Ship"

All ships have these attributes *
and provide these services F

Ship
Status
Capacity

Go

Several Objects of Class "Ship"

(Ibjects have values for each
attribute,
but share the services defined
for the class. ,

Figure 1: Class, Ir~stance, and the "is-a" Relationship

A class may be thought of as a template, or pattern, for lorming an object, or as an object factory
(i.e. an object that creates other objects.) I11 any case, a class defines the structure and function of a
potentially infinite set of individual objects. An object is an instance of its class, e.g. the Titanic is an
instance of class ship. The act of creating a new object of a certain class is referred to as instantiating
that class.

A class definition may also be thought of as a type definition. Data abstrac/ion is the process
of creating abstract data types, also referred to as user-defined types. This involves grouping data together
with the operations that operate on, or otherwise involve that data.

One kind of object that occurs repeatedly in many applications is the list. Consider the following
class definition for list:

Listing 1 / / C++ C l a s s d e f i n i t i o n f o r a l i n k e d l i s t a b s t r a c t d a t a t y p e
c l a s s l i s t {

p u b l i c :
i n t i n s e r t (o b j e c t * o b j) ; / / add o b j t o beg inn ing o f l i s t
i n t remove(object *obj) ; / / d e l e t e o b j from t h e l i s t
o b j e c t * f i r s t () ; / / r e t u r n f i r s t o b j e c t i n l is t
o b j e c t * n e x t () ; / / r e t u r n s u c c e s s i v e o b j e c t s

p r i v a t e :
node-t head , * c u r s o r ;

1.

By virtue of this class definition, list is now a type that can be used in the same way more familiar
types are used, such as integer and real. Variables (instances) of type (class) list can be declared and
used just as variables of type integer can be. Abstract data types, such as list, can be distinguished from
other data structures by the presence of a well defined set of operations to manipulate the state of objects
of that type. Without these operations, abstract data types would be nothing more than records or other
passive data structures. Classes are the vehicle of data abstraction in object-oriented analysis, design, and
programming.

2.3 Encapsulation

Terms: ptiblic, pri~~ate, interface, imple~nenfation

Restricting access to certain items of data via scoping mechanisms is called data hiding. This is
useful in preventing unwanted dependencies from arising on data that is semantically internal to some unit
(e.g. a module, object, or class.) Encapsulation supports data abstraction by helping to enforce rules asso-
ciated with a particular abstract data type, and by establishing the "boundary" of the abstract data type.
Encapsulation gives a sense of closure to a program unit, and can be thought of as "protection from outside
manipulation. "

To illustrate the importance and potential value of encapsulation, the following discussion relates
some experiences from the development of the diagram editor system. The class list was written as part
of the diagram editor. Many of the objects in the diagram editor have an object of type list as one of
their components: the dispatcher maintains a list of all selectable objects that currently appear on the
screen. The diagram object contains a list of all the class and object symbols and various connections
that make up the diagram, and each class and object symbol has a list of attributes and a list of services.
Many parts of the system depend on the list class.

The job of the dispatcher is to take the (x,y) position of a mouse click and search its list of objects
in order, from first to last, for one whose representation on-screen contains this point. The list class delini-
tion guarantees that the list is ordered with the most recently inserted object being first in the list. If two
objects overlap the most recently created one will be visually on top, and will appear in the dispatcher's
list before the overlapped object . Thus, the dispatcher will always check the top object first and the correct
object will be selected.

Later in the development it became apparent that a change would be necessary. One of the diagram
object's jobs is to maintain the display. Occasionally it is necessary to re-display the entire diagram, one
object at a time. List objects of the class defined above may only be traversed one way: from most recent
to oldest, but displaying the objects in this order would cause stacks of overlapping objects to appear in
reverse order. Despite all the dependencies on the list class, the solution was actually quite easy to imple-
ment. The list class was redefined (internally) to be a doubly linked list and two new operations, 1ist::last

and 1ist::prev were added. This allowed the list to be traversed in reverse order so that screen objects
could be displayed correctly. N o other changes to the system were required! The following code fragment
shows the revised class definition.

Listing 2 / / C++ Class d e f i n i t i o n f o r a doubly l i n k e d l i s t a b s t r a c t d a t a t y p e
c l a s s list-t {

p u b l i c :
i n t i n s e r t (o b j e c t * o b j) ; / / add o b j t o beg inn ing o f l i s t
i n t remove(objec t * o b j) ; / / d e l e t e o b j from t h e l i s t
i n t append(objec t * o b j) ; / / add o b j t o end of l i s t
o b j e c t * f i r s t () ; / / r e t u r n f i r s t o b j e c t i n l i s t
o b j e c t *next () ; / / r e t u r n s u c c e s s i v e o b j e c t s
o b j e c t * l a s t () ; / / r e t u r n l a s t o b j e c t i n l is t
o b j e c t * p r e v () ; / / r e t u r n p r e v i o u s o b j e c t

p r i v a t e :
node-t head , t a i l , * c u r s o r ;

1

Notice the addition of the append operation. Still later in the development it became necessary
to be able to add objects to the end of the list to maintain proper ordering. None of these revisions to
the list class required any changes to be made to any other existing code. This is because other objects
rely only on the interface to the list class, and are independent of its implementation. The interface to
a class consists of its public attributes and operations, that is, those that are visible to other objects. Data
and operations used to implement the services of the class are pril'ate, or invisible to other objects. Since
the old parts of the list interface remained constant, no other object was affected by the changes, even
though the internal representation of the list changed significantly.

2.4 Inheritance

Terms: base class, derived class, super-class, abstract class, ancestor, descendant

Earlier we said that an object has an "is-a" relationship to its class. Classes can also have "is-a"
relationsl~ips to other classes. In Zoology, animals are grouped into species. An object is to its class as
a particular animal is to its species. Species are then grouped into genus, genus into families, families
into orders, and so on, up to kingdoms (see figure 2). Classes are often generalized to form super-classes,
and these classes can be further generalized to form still higher level classes. The terms ancestor and
descendant are often used in the obvious way to refer to classes in multilevel inheritance hierarchies, such
as that shown in figure 2. Classes that are lower in the hierarchy are more detailed, more specialized,
and have more strict criteria for object membership.

In the previous discussion, we pointed out that the Queen Mary, the Titanic, and the S.S. Minnow
were all ships. The U.S .S. Vincines and the U . S. S. New Jersey are also ships, but in addition to the similari-
ties that these vessels bear to the others, there are some rather drastic differences. The Queen Mary,
the Titanic, and the S.S. Minnow are all pleasure ships, whereas the Vincines and the New Jersey are
war ships. In object-oriented terminology we say that pleasure-ship and war-ship are specializations of
the more general class ship. Conversely, ship is a generalization of both pleasure-ship and war-ship.
We can make use of this commonalty by defining the general class ship to have attributes and services
common to all ships, then defining the classes war-ship and pleasure-ship in terms of what detail they
add to the general class ship. For example, a war ship is a ship that has guns; a pleasure ship is a ship
that does not allow guns. Pleasure-ship and war-ship inherit all the attributes and methods of ship: they
appear to belong to pleasure-ship and war-ship, even though they were not directly defined for these
classes. We say that pleasure-ship and war-ship are deri*ed from, or are deri13ed classes of, class ship,
and ship is the base class of pleasure-ship and war-ship.

The diagram editor system allows a user to create various kinds of symbols on the screen, add
various kinds of properties to these symbols, and link these symbols together using various kinds of connec-
tions. Each symbol, property, and connection is represented internally as an individual object. All of
these objects share certain behaviors: they all may be displayed, they all may be selected (focused on)

Figure 2: An Example of Generalization

Zoological The lnherilarzce Hterarchy of the Anintalia Kingdom Object-Oriented
Terminology Terminology

with a mouse click, and they a11 may be acted upon (display a menu of operations that may be performed
on that object, such as "move" or "delete"). They also share certain elements of state: they each have
an (x,y) position on screen, and they each have a name. These are the essential characteristics of a "select-
able" screen item in this system and are represented in the abstract class selectable. An abstract class
is one that may not be instantiated directly, but serves only as a base class for one or more derived classes.
The inheritance structure from the diagram editor system is shown in figure 3.

Modeling in this way is advantageous for several reasons. First it provides for a certain level of
cognitive economy: once you have understood the base class, you then need only understand how each
derived class differs from the more general base class. In essence, you say to yourself "OK. I already
know what a ship is. A pleasure ship is just a ship that ..." - already you know a lot about pleasure-ship
- " ..,that is configured for entertaining travelers while at sea."

Super-class Base Class

t 4
Super-class Derived Class

t t
Super-Class Derived Class

t 4
Sup r-Class Deri ed Class f r
Super-class Derived Class

t t
Su r-Class Deri ed Class 7
G k m

r
.T

Oblect Object

"'7-
Phylum

?
Class

.T
O r d r

Family

t

Second, using inheritance also provides for a certain level of code and design reuse. Inherited
methods usually need only slight changes or may need no change at all. Thus the programmer writes fewer
lines of code. Also, once a class is designed, derived classes are described only in terrns of how they differ
from (i.e what they add to or modify of) the base class; thus, the design of the base class is reused.

Animalia
/

Cordata Arthropoda ------ \
Mammalia Amphibia

f
lnsecta

f t t , Primat\ saliT"tia Orth ptera

Hominidae Ranidae

9
PonTdae Tettigoniidae

t t t
"9"" ""f"" Rv scU4"""

HomoSaaiens !&xML&& . . a Furc;dfih

t
A Human

t
A Gorilla

""r"""
A Frog

t
A Katydid

2.5 Message Passing

Terms: message, method, binding, static binding, dynamic binding

Earlier we said that an object requests the services of another object by sending (passing) a message
to it. The message denotes a service offered by the receiving object, which corresponds to a method that
is internal to the object.

Although passing a message is equated with calling a function or invoking a procedure in most
languages, there are some differences in semantics. First, the term nlessage passing implies some level
of concurrency. One ends a message, then one goes about one's business, which may or may not include
waiting idle for a reply. While this is not the case in most languages, the name message does allow for
that possibility and further fosters the notion that objects are independent, active entities, which is central
to object-orientation.

Second, message passing relies the possibility of dynamic binding: without dynamic binding, sending
a message is no different than calling a function. When a module calls a function, control is passed to

I Border-Width I

Title Bar

Canvas
n

Set-Title v
Save-Diagram Show Clear
Retrieve-Diagram
Start-New-Diagram

Figure 3: Inheritance Hierarchy for the Diagram Editor System

Property

a statically defined point somewhere else in the program. Such functions are said to be statically bound
because calls to them may be resolved at link time. When an object sends a message to another object,
control may or may not be passed directly to a function. A message is a request for action, not a function
call. It may be the case that any one of several different responses are possible, and furthermore, the
appropriate response may not be determinable at compilerllink time, The process of determining which
of the possible responses is appropriate then finally invoking the appropriate function is called dynamic
binding.

In the diagram editor system, diagrams consist of one or more classlobject symbols and zero or
more connections of various types. Each symbol and each link in a diagram is represented internally as
an object. The inheritance hierarchy of figure 3 shows that symbol objects (class, object) and connection
objects (message, gen-spec, whole-part) are all descendants of class selectable, and thus, are type com-
patible with selectable. That is, they may be used in any context in which a selectable may be used in,
and may receive and respond to any message that a selectable may receive.

Each of these classes provides the service show0 which draws objects of that class on the screen.
However, because objects of each class appear differently on the screen, each class has a different method
which corresponds to the Show0 service. The list that the diagram object uses to store symbols and connec-
tions only contains objects of type selectable. Since the symbol and connection types are type compatible
with selectable, the list will store them, but it interprets them as having type selectable. One of the func-
tions of the diagram object is to refresh the screen image, which it does by first clearing the screen by
sending the message clear0 to the canvas object, then sending the message Show0 to each object in its

Is-Connected-To
Move-To Save

Object Symbol

Class Symbol

Attribute-Ltst
Service- List
Connect Points

Connection

From-Object
To-Object

list. Since the diagram object knows these objects in the list only as selectables, it cannot know which
method to invoke for a particular object. Luckily, it does not need to. It need only send the message
show0 LO each object in the list and let the object itself decide how to respond, which will always be by
invoking its internal method that corresponds lo the message show(). The call to show0 is dynamically
bound.

Note that dynamic binding and inheritance are closely related: in otherwise statically bound lan-
guages, dynamic binding is only required in the presence of inheritance. Also note that without inheritance,
or more precisely, without type compatibility, there is no need for dynamic binding. All function calls
could be statically bound, hence the notion of message passing would be unnecessary.

2.6 Polymorphism
Terms: parametric polymorphism, inclusion polymorphism, o\ferloading, coercion

Polymorphism is the "capability of assuming different forms" (471. In the software domain, poly-
morphism is related to the notion of type. Typed languages, such as Pascal, are based on the idea that
every value and every expression has a unique type, and hence, a single interpretation, Such languages
are said to be monomorphic. In contrast, languages such as C++ and Smalltalk are polymorphic, meaning
that some values and expressions may have more than one type.

There are at least four distinct forms of polymorphism: parametric, inclusion, overloading, and
coercion [l o] . Paran~etric poIymorpl?isnz is exhibited by procedures that work uniformly for a range of
types. The function 1ist::insertO from the diagram editor system exhibits parametric polymorphism since
it will produce the same result given an object of any class derived from class selectable. Incl~~sion poly-
n~orphism is exhibited by derived classes in that they may be interpreted as belonging to any of their super-
classes. Thus an object of class service may also be interpreted as being of class property or of class select-
able. Type compatibility is an example of inclusion polymorphism. Parametric and inclusion polymorphism
are examples of t~ni\fersal polyntorpkisrn .

Overloading is a form of polymorphism exhibited when a single operator or function name may
be applied to multiple types. For example, 1ist::find is overloaded. It may be called with either a pair
of integers (x,y screen coordinates) or with a character string as Its argument, but performs the same func-
tion in both cases: locates an object and returns a pointer to it. One can think of an overloaded function
as a function whose name includes the types of its parameters. The expressions '1 + 1' and '1.0 + 1.0'
suggest that the + operator is overloaded to perform both integer and real addition. This gives the appear-
ance of a polymorphic function or operator, but in fact, there are two functions called find and two +
operators. The type of the argument is used to decide which function or operator to actually apply.

Coercion is used when values of different types are used in the same expression. In the expression
' 1 + 1 .O' neither of the two overloaded + operators is applicable, so one or the other operands is converted,
or coerced, into the type of the other. Coercion is an operation used to convert the type of an argument
to the type expected by an operator or function.

Overloading and coercion are forms of ad hoc polymorphism. Ad hoc polymorphism is a weaker
form than universal polymorphism. Ad hoc polymorphism could also be called "apparent" polymorphism.
Overloading requires multiple bodies of code that are applied according to the type of the operand, whereas
parametrically polymorphic functions execute the same body of code for all valid argument types. Coercion
causes the representation of some object lo change, whereas types that are inclusion polymorphic are simply
considered "compatible" -- no change of representation takes place.

Dynamic binding and type compatibility are what allow objects to exhibit polymorphism in object
oriented systems. Polymorphism is not a defining quality of object-oriented systems, rather it is a by-prod-
uct of it. Overloading and coercion do contribute, bul not to the point that one is justified in saying "X
is object-oriented because it is polymorphic." Polymorphism is not as central an issue as it would seem
from the literature.

2.7 Composition
Terms: component, aggregafion, nestcd ob.ject, decomposition, delegation

Objects are composed of attributes and associated methods. An attribute may be a simple value,
such as status="Underway", or it may be some complex struclure, such as another object. Such contained

objects are referred to as component objects. If we were to build an object-oriented model of the Queen
Mary, we would probably have one object called Queen-Mary that is composed of several smaller compo-
nent objects, such as Engine, Cargo Bay, and Helm. These objects are also occasionally referred to as
nested objects. Care must be taken here: while the object Engine is nested within the Queen-Mary object,
Engine's class may or may not be nested within Queen-Mary's class. Many other objects of many other
classes may also contain engines. A truly nested object is one whose class is visible only to the containing
object. This rarely occurs.

There are two classes in the diagram editor system whose objects serve as components to several
classes: list and menu. The diagram and dispatcher objects both contain lists, and all the symbol objects
contain two lists (one for attributes, one for services.) Every object 01 class selectable contains a menu
object, Figure 4 illustrates this graphically. Arrows in this diagram denote instance connections, which

I Selectable 1

Select

Show

Items

Pick
Hide

Property H

Class Symbol

Attribute-List
Service-List
Connect Points

Move-To
Connect
Add-Attribute
Add-Service
Rename

Menu is a component of selectable and list is a component of
class-symbol, dispatcher, and diagram.

Class-symbols contain zero or more properties, and diagram
contains zero or more class-symbols and connections.

Save

Dispatcher

Current-Object
Object-List

Insert
Remove
Promote
Dispatch
Find
Clear

Tail
Cursor
Num-Entries

Insert
Append
Remove
Length
First

Prev

Diagram

Element-List
Name

Add
Remove
Refresh
Save
Find-By-Name

Connection

From-Object
To-Object

Is-Connected-To

Figure 4: Composition and Containment in the Diagram Editor

mean that objects of the origin (of the arrow) class contains some number of objects of the destination
class. For example, dispatcher contains exactly one list and class-symbol contains O..n properties.

Notice that the class definitions for selectable, class-symbol, dispatcher, and diagram in figure
4 all contain attributes naming the menu and list objects they contain, e.g. class-symbo1.attribute-list names
a list object that is a component of objects of type class-symbol. However, there are no attributes in
class-symbol or diagram which correspond to the property and connection objects they may contain.
That is because no object of type property or connection is actually a component of any class-symbol
or diagram object. Class-symbol objects act only as containers for property objects. The definition of

class class-symbol is independent of the definition of class property. A class-symbol object may exist
whether or not any property object exists, however it cannot exist without at least two list objects. This
is analogous to the fact that a lid is part of a cookie jar, but a cookie is not.

Composition and inheritance are often confused, partially because the term sub-class is used to
refer to both the class of a component object and to a derived class. Component objects, along with
other data items, are combined with methods to form aggregate objects. Complex objects are decomposed
into smaller objects. However, each object - the aggregate and each component - maintains its identity
and has existence. When an object of class B, which is a derived from class A, is created, no object of
class A necessarily exists. Only an object of class B must exist, although the B object may be interpreted
as having type A. B is a special case of A; A is a generalized form of B; B is a transformation of A;
B is not a component of A.

Inheritance may be simulated using a method called delegation 1641, which is based on composi-
tion. One way of looking at inheritance is that the derived class is an instance of the base class with some
behavior modification and possibly some additional elements of state. In this way, one can form a special-
ization class without inheritance by defining a new class to have an object of the base class as one of its
components. The data and methods of the base class are now available to the new class as if they were
inherited. Additional data, and modified or new methods, are supplied by the aggregate class. When
a message is received requesting an "inherited" method, lhe request is simply delegated to the component
"base" object. The result of delegation is similar to the result if true inheritance were used, althougll type
compatibility is lost.

Note that although we often refer to components as component classes or sub-classes, components
are always objects. One might say "one component of class A is an object of class B" but never "class
B is a component of class A".

2.8 Generic Typing

Terms: generic type, genericity, template, parameterized type, type parameter

Genericity is a trait exhibited by generic types, also referred to as parameterized types. A parame-
terized type is one whose methods contain code that operates on objects of a type that remains unknown
until an object of the generic type is declared with a type parameter. A type parameter is a argument
which denotes a type, as opposed to denoting a value. Genericity is most useful with respect to container
objects 1151, such as arrays and lists. To illustrate the usefulness of generic typing, consider the following
definition of a linked list to store floating point numbers:

Listing 3 / / C++ class definition for a linked list of floats
class list-of-float {

public:
int insert (float obj) ; / / insert obj at the head of the list
int remove (float obj) ; / / remove obj from the list
float first (void) ; / / return the first object in the list
float next (void) ; / / return the next object in the list

private:
struct node-t { / / node-t is a struct for list nodes

float obj; / / the object to be stored
struct node-t *next; / / pointer to the next node in the list
} ;

struct node-t head, *cursor; / / list head, and a pointer for iterating
1 ;

The operational characteristics of a linked list are identical no matter what type of object the list
is intended to contain. One could create a new list class to contain integers, or strings, or any other type
of object simply by changing every occurrence of float in the class definition above to the desired type
name, such as int or char * . An easier way is to design a parameterized list type. The type of the object

to be contained is then an argument in the declaration of each list object. The following is a parameterized
list class in C++ syntax1:

Listing 4 / / C++ class definition for a general purpose linked list type
template <class T> class list { / / T is the type arg, list is the class name

public :
int insert (T obj) ; / / insert obj at the head of the list
int remove(T obj) ; / / remove obj from the list
T first (void) ; / / return the first object in the list
T next (void) ; / / return the next object in the list

private:
struct node-t { / / node-t is a struct for list nodes

T obj; / / the object to be stored
struct node-t *next; / / pointer to the next node in the list
1 ;

struct node-t head, *cursor; / / list head, and a pointer for iterating
1 :

This parameterized list class, or tenlplate in C++ terminology, is generic in the sense that it may
be instantiated to form list objects that can store objects of any single type. The following code fragment
shows how one would create several lists to contain different types of objects.

Listing 5 / / Instantiate lists to contain integers, symbols, and boats
/ / -- note that symbol-t and boat-t are defined elsewhere

list<int> integer-list;
list<symbol-t> symbol-list;
list<boat-t> boat-list;

A parameterized list class is useful when the actual list object is to contain objects of any single
type. However, if the list must contain objects of varying type, some other scheme must be used, such
as using inheritance to create compatible types.

Functions and procedures may also he type parameterized, as in ADA. Such mechanisms make
it easy to create overloaded operators and functions. Consider the following ADA subprogram dec1aration:z

Listing 6 -- a generic ADA subprogram to swap two objects of type T
generic

type T is private;
procedure swap (x, y: in out T) is

temp: T
begin

temp : = x; x : = y; y := t;
end swap

procedure ink-swap is new swap(1NTEGER):
procedure sym-swap is new swap(SYMB0L);
procedure boat-swap is new swap(B0AT);

I . Parameterized types in C++ are experinzental and not yet slipported by r?~ost C++ compiler-s.
The syntax shown here is a slightly modified version of that described in [I 91 which is to serve as
the base docun~ent for an ANSI standard C++.

2 . The syntax of this example is not correcl ADA: the header and body are combined here for ease
of presentation.

The procedure definition here is similar to a class definition in the sense that it defines a pattern
for a class of procedures that swap things. It is like a type, 1x11 a procedure type rather than a data type.
The last three lines show how special purpose swap procedures could be declared.

3 Comparative Analysis of the Elements of the Object Model

People often find object-oriented thinking and methods difficult to learn. Part of the problem
is that several elements of the object model seem very similar to each other. Despite the apparent similari-
ties, each of the elements described section 2 is distinct, and each is essential in supporting some facet
of the object model. The following sections attempt to bring out some of the more subtle aspects of the
object model and resolve some common confusions.

3.1 Inheritance versus Generic Typing

Generic typing and inheritance are two mechanisms often found in object-oriented languages.
Both support the production of highly extendible and reusable software components. Some of the effects
of each may be simulated using the other, but both features must be supported by a language in order
to gain full advantage [43].

One major effect of the use of inheritance is polymorphism - the ability to send the same message
to a range of types with different outcomes. This effect is easily simulated with overloading, which is sup-
ported by generic typing. The problem with overloading is that there must be a separate procedure defined
for each type to be operated on, and a new procedure must be created in order to add a new type to
the set of possibilities. With inheritance, however, one need only create the new compatible type and
the existing procedures will work unchanged. Any number of new types may be derived from some existing
class to extend the range of possible valid types.

In creating the list class in the diagram editor system, several options were explored. Either generic
typing or inheritance can be used to create a generic list class. In either case, only one list class need
be written. The approach that should be taken depends on how the list objects will be employed.

Using inheritance, one can define a list class that is to store objects of class selectable. This list
can then contain not only selectable objects, but objects of any class derived from class selectable, and
do so simultaneously. The drawback is that the implementation of the list class only has access to the
features offered by the lowest common denominator, class selectable. The added features that an object
of some class derived from selectable might have are invisible to the list object. If generic typing is used
to create a parameterized list class instead, a list object can be created to contain objects of a particular
class. This list would then have access to all the public attributes and services offered by objects of that
class. The drawback is that the list may contain objects of that class only. Actually, it may contain objects
of any class derived from that of the type argument, but as far as the list is concerned, they are objects
of the class of the type parameter.

Inheritance is the mechanism of choice when a heterogeneous container is needed. This is the
more flexible solution and provides for easier extensibility. Generic typing is more appropriate when a
homogeneous container is needed. This allows for stronger type checking (fewer compatibility rules apply)
and results in a more highly reusable software component.

3.2 Inheritance versus Composition

These two mechanisms form distinct, but easily, confused hierarchies that often appear together
in object-oriented systems. The confusion arises partly because the ambiguous usage of the term sub-class
to refer to both a derived class and a component class. For example, consider a class called vehicle,
Engine and automobile might both be called sub-classes of vehicle. The difference is that engine is part
of a decomposition of vehicle, whereas automobile is a specialization of vehicle. Forsaking the use of

the term sub-class in favor of the less ambiguous and more accurate terms con?ponent class and derived
class would do much to eliminate this confusion.

3.3 Inheritance and Encapsulation

A subtle point of interest is the fact that the use of inheritance may compromise the level of encapsu-
lation that a particular class exhibits [63]. Languages support encapsulation by allowing access to an object
only through its external interface, i.e. other objects may only access those attributes and services that
are defined in the public section of the object's class definition. This interface also serves as a contract
between the class with any potential client (class which uses the resources of the first class). By declaring
certain attributes and services to be public, the class is in effect guaranteeing that these attributes and ser-
vices will remain constant.

The use of inheritance introduces a new category of client which can breach the shell of encapsula-
tion. In most languages, derived classes have access to parts of their base class that other clients do not.
This introduces the possibility that the implementation of a derived class may be affected if some otherwise
encapsulated part of the base class is changed, which defeats the purpose of encapsulation in the first place.

One solution is to use delegation instead of inheritance to specialize classes. Derived classes become
nothing more than regular clients of base classes and, thus, no longer have access to non-public attributes
and services of the base class. One disadvantage is that delegation does not encompass type compatibility,
so much flexibility is lost. Another disadvantage is that derived classes formed using delegation do not
automatically inherit the attributes and services of the base class, but must provide their own method (even
if all it does is call the base class's method) for every method it wishes to inherit.

Occasionally it is appropriate for a derived class to have access to more of the base class than
a normal client would. A better solution is to create a another level of access control between public and
private. Attributes and services at this level would be accessible to derived classes but not to other clients,
while private members of a class are not accessible at all outside the class. C++ implements this solution
by offering three sections in class definitions: private (visible only to the class itself), protected (visible
to the class and all descendants of the class), and public (visible to all classes).

One could also be of the opinion that because of the "is-a" relationship between a derived class
and its base class, it is appropriate for the derived class to make use of all facilities of the base class and
to change with the base class. This is a rather extreme position and any added conceptual integrity is
surely offset by the compromise of proven principles of software engineering.

3.4 Classification of Services

Several object-oriented design methods include a step in which relationships between objects and
services are identified and cross-referenced to determine the completeness of the model. Types of relation-
ships for this purpose include "provides", "suffers", and "uses". An object may either provide, suffer,
or use a service, or have no relationship to it at all. For every service that an object uses, some other
object must provide that service. Enforcing the converse may reduce the complexity of the system by
limiting the total number of services to precisely those that are needed, but this could hamper the production
of general purpose, reusable software components.

The "suffers" relationship from object to service, which was introduced in [73, is difficult to under-
stand. It could be interpreted as denoting that the service is performed on the object, that is to say, the
object is a passive operand of some service provided by another object. The intended meaning of this
term is not known to this author, nor was it discernable from the cited text.

3.5 Static versus Dynamic Binding

Dynamic binding is used in the presence of inheritance to ensure that the correct response to a
given message (the correct method, function call) is given. Dynamic binding adds a great deal of flexibility
to a programming language but also introduces a great deal of overhead. When a message is sent to a

particular object, a table look-up is required to determine which of the possible functions to invoke in
response. If performance is a factor, this overhead can be intolerable when it is not necessary. Not all
function calls require dynamic binding. Those that can be resolved at compile time should be in order
to minimize overhead. Some mechanism is needed to identify those functions which will be dynamically
bound and those which will not.

Every message in Smalltalk is dynamically bound [2 11, which is one reason for its notoriously slow
performance. In contrast, languages such as Pascal and C define all functions calls to be statically bound,
that is, resolved at compile/link time. C++ provides a keyword, virtual, for explicitly identifying those
functions that will require dynamic binding. Other languages accomplish this automatically by syntax analy-
sis.

To summarize, dynamic binding adds much flexibility to a language and supports the development
of highly extendable software components, but there is a definite trade-off with efficiency. If efficiency
is a factor, static binding is preferable.

4 Advantages of the Object-Orientation
This section discusses some of the potential benefits of applying object-oriented thinking and meth-

ods to system modeling and software production. Each of these advantages is achievable with conventional
languages and methods if discipline is exercised. Object-oriented languages, methods, and thinking support
these advantages and make them easier to achieve.

4.1 Reusability

The class is the unit of modularity in object-oriented software, just as the integrated circuit (IC)
is the unit of modularity in electronic devices. ICs are generally encased in resin, so hardware designers
have no choice but to utilize and trust the external interface provided by the IC and ignore the details
of its internal workings.

Encapsulation lends a similar sense of closure to software modules. Encapsulated modules, or
software ICs 1151, may be reused, added to a system other than the one they were developed For, with
confidence in the fact that they will perform as expected. If multiple applications are developed in a single
problem domain, a greater number of more highly specialized software 1Cs are likely to be developed.
Over time, the degree of reuse increases, and the focus shifts from development of new software ICs to
refinement of existing ones. This will be discussed further in the context of frameworks.

Inheritance also supports reusability in that an existing software IC can be used as a base class
for a specialized, tweaked and tuned, version of the class to fill a special need. Very little new code may
need to be written.

The bottom line is that the greater degree of reuse you can achieve, the fewer lines of code you
will write to perform a given task. If this higher level of reuse results in less time and effort being spent
on a task, then productivity is increased for that task. Object-orientation supports a high degree of reuse.

4.2 Managing Co~nplexity

An object-oriented approach helps control complexity in all aspects of software development.
Initial modeling phases benefit from the fact that object-oriented methods tend to produce models that
draw directly on the vocabulary of the problem domain. Such models are inherently easier for users to
understand and promote a higher level of communication between developers and users. Design phases
benefit in several ways. First, earlier models are often directly reusable. Second, using classes as the
basic unit of modularity, combined with a high degree of encapsulation, promotes well organized systems
that are structured around many modules of relatively small scope. In addition, this structure is likely
to have a high degree of correspondence to the real world. As a result, systems may be apprehended
in the same way we apprehend the real world: in terms of entities that do things.

4.3 Stability

Object-orientation can give conceptual integrity to a software development effort from beginning
to the always elusive end. Classes identified as part of the problem domain during domain analysis are
likely to end up as part of the implemented system. Models developed in the initial phases of a project
can be built upon and expanded to accomplish the goals of later stages. Because the initial objects are
taken directly from the problem domain, the overall structure of a given system remains largely intact
throughout the entire life of the system.

Another characteristic of object-oriented systems is that perceived complexity tends to increase
less dramatically as development progresses. Objects provide a solid foundation on which to build. Each
stage of development tends to result in a relatively solid platform for the next stage to begin, even though
stages may not be well defined. This idea can be illustrated by imagining the difference between climbing
a ladder and bouncing progressively higher on a trampoline to reach the top a tall building.

Due to encapsulation and typically small granularity, it is more feasible to test classes exhaustively
in isolation, and to have confidence that the results will hold when the class is placed into new contexts.
Systems built from stable components are likely to be easier to test and more stable than systems built
from scratch.

4.4 Maintenance

Maintenance activities can be divided into three major categories: debugging, modifying, and ex-
tending. The key to debugging, i.e. correcting an error, is locating the source of the error. The design
of an object-oriented system is reflected in the code itself, in the class definitions, which can act as a system
road map in searching for the source of errors. This is more effective than using conventional design docu-
ments for several reasons. First, these documents are rarely current, especially after a system has been
released. Using the code itself as the design reference guarantees that all changes will be apparent.

Because of encapsulation, refinements and other modifications can be made without having to
worry about side-effects, i.e. unexpected effects to unrelated parts of the system. In addition, extensions
to the system are made easier via inheritance.

5 Impact of the Object Model on Software Lifecycle
The object model can serve as a foundation, a mindset, or an orientation, that underlies one's

approach to software development. Activities throughout the lifecycle may be undertaken in terms of ob-
jects. Object-oriented development relies heavily on flexible shifting back and forth among various activi-
ties, and especially on prototyping to gain insight to feed back into higher level analysis and design activities.

Object-orientation is compatible with existing life cycle models. Life cycle models, such as the
waterfall model [59] and the spiral model [5] , prescribe how development activities are to be organized.
Object-orientation states only how these activities are to be conducted, not necessarily how they are or-
dered. RegardIess of the life cycle model used, certain kinds of activities will take place at some point
during a development effort. These activities include analysis, design, implementation (coding), testing,
and maintenance. The object model serves as a consistent underlying theme that smooths the interaction
between types of activities and fosters a higher level cohesiveness and conceptual integrity throughout the
entire development process. A single "orientation" or mindset is employed throughout the life of a system.
The following paragraphs describe the impact of object-orientation on each of these activities.

Analysis Objects and operations from the problem domain comprise the initial model. These
high-level objects can be used to organize the exploration for requirements. The domain model itself
is directly reusable as a starting point for design.

Design Design activity is greatly aided by the fact that the one does not have to start with a clean
slate. Design efforts build directly on the results of problem domain analysis b y expanding the model to
to encompass such design concerns as user interface and data management. More emphasis is placed

on designing highly reusable software components. The overall system structure is largely established by
the domain model.

Implementation Encapsulation, generic typing, and inheritance promote a high degree of reuse
in the construction of object-oriented systems which results in fewer lines of code being written, and thus
higher productivity if reusable classes are readily available. There is a high start-up cost, however. These
reusable components must be developed initially, which may actually require more effort than developing
specialized components for the system at hand. The real payoff comes with a long term commitment to
object-orientation.

Testing Encapsulation and a high degree of modularity ease the organization and implementation
of testing efforts. The unit of test is the class. Object-oriented systems are typically composed of a few
high level objects that are themselves composed of objects of successively smaller scope. The structure
of the system itself suggests an plan of attack for testing.

Maintenance Encapsulation and the typically small granularity due to the use of classes as the
unit of modularity limit both the extent of errors and the scope of their effect. The fact that the design
of a system is explicit in its code means that maintenance personnel will always have a current reference
to guide them in their search for errors. Encapsulation also limits the effect that modifications and exten-
sions to the system may have, Inheritance greatly aids in extending a system. New functionality may be
added to a range of types with little effort using inheritance. New types may be added without requiring
changes to existing code via inheritance (type compatibility) and dynamic binding.

The effect of adopting an object-oriented view of software development is the potential unification
of the entire development process. Many methods have been published prescribing how to conduct most
of the activities discussed above in an object-oriented manner, particularly design [6] , 113) and, more re-
cently, analysis [12] 1621. Several methods attempt to merge object-oriented and structures techniques
1681,1691, possibly to provide an avenue for steadfast structure-oriented developers to wean themselves
away from their atiquated ways. In any case, there is much interest to in the object-oriented paradigm
both in industry and in the literature, and with good cause, as this paper has tried to show.

6 Summary

Object-orientation is a mindset for software development based in part on the natural methods
of organization that all people employ in organizing their thinking. It involves viewing systems as collections
of active entities, having both behavior and state, and organizing these entities and entity types into hierar-
chies to explicitly represent and take advantage of their commonalty. This paper has attempted to provide
a basis for truly understanding and appreciating the potential value of this paradigm.

6.1 Lessons Learned

One major lesson learned from the reading and reflecting which underlies this paper was the need
to distinguish between the intellectually pleasing and the truly important. There are many concepts asso-
ciated with object-orientation that are fascinating to puzzle over, such as the subtle differences among
forms of polymorphism, or the meaning of multiple-inheritance in real world terms. However, these con-
cepts are not of central importance to making use of, and benefitting from, object-orientation.

The development of the diagram editor gave rise to several insights. First, object-oriented program-
ming is more an act of arrangement than of synthesis. One tends to spend a little time initially specifying
classes, then a lot of time shifting functionality around until a satisfying solution is obtained. A related
observation is that no amount of foresight can replace prototyping. Some aspects of a system simply do
not become apparent until their absence begins to inflict pain, which is invariably well into implementation.

Enhanced reusability and extensibility due to the use of object methods is a recurring theme in
the literature. Unfortunately, these statements are rather difficult to identify with simply from reading
and talking. One almost cannot understand the full impact of these words without first-hand experience.

To relate one more short example from the diagram editor system, the systems requirements called for
the ability to add descriptive text to any or all symbols, connections, attributes, and services in a diagram.
Implementation of this was left until the end, although the system was designed with this requirement in
mind from the beginning. A simple text editor object was developed and tested independently. Integration
of the text editor object into the diagram editor required about 15 minutes and 10 lines of code. This
incredibly easy integration was made possible by the presence of encapsulation and inheritance. Encapsula-
tion guaranteed that the introducing the editor object into the system would have no unseen effects, and
inheritance allowed the code that called on the editor to be grafted in at the top of the inheritance hierarchy
and simply inherited by every other object that needed text editing capability.

There is real value in assuming an object-oriented point of view in software development, Develop-
ers need only be willing to change their ways and move ahead.

6.2 Future Work

The next logical step is to expand this paper to include a detailed discussion of several popular
object-oriented analysis and design methods, and and overview of object-oriented languages. With these
addition, this paper could serve as a complete introduction to object-orientation.

Many of the assertions about the relative importance and potential advantage of various aspects
of object-orientation are derived from the limited experiences of the author. A study conducted to collect
more extensive experimental evidence to support these claims would be valuable.

Several enhancements could be made to the diagram editor to make it a more useful tool. Some
of the more interesting enhancements are listed here:

Add scroll bars to allow the creation of diagrams that are bigger than the screen.
Allow different views of diagrams, such as overview (with attributes and services
toggled off), and inheritance (with all other types of connections toggled off,) and so
on.

Implement four objects: screen, printer, keyboard, and mouse, in such a way that the
diagram editor can rely exclusively on these objects for console and hardcopy 110.
The diagram editor could then be easily ported to other systems by simply re-imple-
menting these four objects. If the screen and printer objects offered similar inter-
faces, WYSIWYG hardcopy output would also be easy to obtain.

Provide for the specification of type information for attributes, and argument and re-
turn types for services. Given this type information, it would be relatively easy to ex-
tend the diagram editor to generate compilable class definitions and method stubs
in, say, C + + or possibly ADA syntax.

Generalize the system to support user-defined notations. This would include the de-
velopment of a language for the specification of notations.

Ultimately, the diagram editor could be expanded into the realm of CASE for object-oriented
development. This would be a fascinating, although time consuming project.

References

I , Bailin, S. C., "An Object-Oriented Requirements Specification Method", Comn?unications of the
ACM, 32(5), May 1989, Page 608

2. Barnes, J. G. P., "An Overview of ADA," Software - Practice and Experience, Vol. 10, 1980, Page
85 1

3. Beck, K; Cunningham, W., "A Laboratory for Teaching Object-Oriented Thinking", ACM SIGPLAN
Notices, 24(10), 1989, p. 1-6

4. Bobrow, D. G; et. al., "CommonLoops: Merging Lisp and Object-Oriented Programming," ACM SIG-
PLAN Notices, 21 (1 I) , November 1986, Page 17

5. Boehm, B. W., "A Spiral Model of Software Development and Enhancement", ACM SIGSOFT Soft-
ware Engineering Notes, 11(4), August 1986, p. 14-24

6. Booch, G., Object Oriented Design with Applications, Benjamin/Cummings, 1991

7. Booch, G., "Object-Oriented Developement", IEEE Transactions on Software Engineering, 12(2),
February 1986, Page 211

8. Borgida, A; Greenspan, S; Mylopoulos, J., "Knowledge Representation as the Basis for Requirements
Specifications", IEEE Comp~lter, April 1985, Page 82

9. Bulman, D. M., "An Object-Based Development Model", Computer Language, 6(8), August 1989, p.
49-59

10, Cardelli, L; Wegner, P., "On Understanding Types, Data Abstraction, and Polymorphism", ACM
Computing Sur~~eys , 17(4), December 1985, Page 47 1

Explores the interactions among the notions of type, data abstraction, and polymorphism using
a lambda calculus-based model. Distinguishes static and strong typing, and describes four forms of
polymorphism that are often exhibited in modern programming languages.

11. Canning, P. S; Cook, W. R; Hill, W. L; Olthoff, W. G., "Interfaces for Strongly-Typed Object-Ori-
ented Programming", ACM SZGPLAN Notices, 24(10), 1989, p. 457-467

12. Coad, P; Yourdon E., Object-Oriented Analysis - Second Edition, Prentice-Hall, 1991

Describes a method and associated notation for domain analysis and problem space modelling
in terms of classes/objects and inheritance, composition, message, and association relationships. A

very practical book. The authors relate numorous experiences with the method and give many heuris-
tics and bits of wisdom.

Coad, P; Yourdon E., Object-Oriented Design, Prentice-Hall, 1991

Describes a design method that is an extension of their analysis method, OOA. In addition to
the five layers of the model introduced in OOA, OOD adds another dimension to the model in he form
of four components: problem domain, user interface, task management, and data management.

Coad, P., "Object-Oriented Analysis", American Programmer, special issue on object-orientation,
2(7,8), Summer 1989

Introduces OOA, the method and notation later described in their 1991 book, noted above.

Cox, B. J., Object Oriented Programming - An Evolutionary Approach, Addison-Wesley, 1986

One of the first widely read books on object programming. Introduces Objective-C, an exten-
sion of C which includes object definition and message expression facilities similar to those found in
Smalltalk-80. Represents reusability as the most important benefit of object oriented programming
and discusses the notion of the "software IC" and how it promotes reuse.

Cunningham, W; Beck, K. , "A Diagram for Object-Oriented Programs", ACM SIGPLAN Notices,
21(11), November 1986, Page 361

Introduces a notation for representing message sending dialogs between objects in object-ori-
ented systems. Describes a mechanism for automatically generating these diagrams from Smalltalk-80
code.

Dahl, 0. J; Nygaard, K., "SIMULA - An ALGOL-Based Simulation Language, " Corn~n~tnications of
the ACM, 9(9), September 19 66, Page 671

Danforth, S; Tomlinson, C., "Type Theories and Object-Oriented Programming",

Ellis, M; Stroustrup, B., TIze Annotated C t t Reference Man~tal, Addison-Wesley, 1990

Comprehensive description and definition of C+t . Includes descriptions of some yet to be
released features, including parameterized types (true genericity,) and exception handling mecha-
nisms.

Gibbs, S; et. a]., "Class Management for Software Communities", Cornrnttnications of the ACM,
33(9), September 1990, Page 90

Goldberg, A; Robinson, D., Smalltalk-80 - The Lang~iage and its Inzplementation, Addison-Wesley,
1983

Halbert, D. C; O'Brien, P. D., "Using Types and Inheritance in Object-Oriented Programming",
IEEE Software, September 19 87, Page 71

Describes how to identify types (classes) and organize them into a tyoe hierarchy wilh the
cominality factored out into the higher levels. Gives a clear description of inheritance and multiple

inheritance and gives some insight as to when to apply them. Explores the criteria to consider when
adding functionality and how decide among various options, such as creating a new type, modifing an
existing type, and so on.

Henderson-Sellers, B. ; Edwards, J.M., "The Object Oriented Systems Life Cycle", Cornnlunications
of the ACM, 33(9), September 1990, Page 142

Hewitt, C. E; Atkinson, R., "Synchronization in Actor Systems", Proceedings of the Conference on
Principals of Programming Languages, January 1977, p. 267-280

Hickman, C. P; Roberts, L. S; Hickman, F., Integrated Principles of Zoology, 7th Edition, Times
MirrorlMosby College Publishing, 1984

Jalote, P., "Functional Refinement and Nested Objects for OOD", IEEE Transactions on Software
Engineering, 15(3), March 1989, Page 264

Presents an object-oriented design method extended to include functional and object refine-
ment. The method stresses the development of a "transformation function" (the main program) and
the decomposition of objects into nested, and hidden, sub-objecls.

This method is a compromise between traditional and pure object-oriented methods in which
the development of the main driver, which combines the system objects and controls overall program
flow, is explicitly included in the design. It is not clear to me that the idea of nested objects is very
important. While useful, it seems to me that it would inhibit reusability.

Jordan, D., "Implementation Benefits of C t t Language Mechanisms", Con~munications of the ACM,
33(9), September 1990, Page 61

Gives a cursory description of the many features of C+t that make it an enhancement of C and
support object-oriented programming. Features described include function name overloading, inline
functions, reference parameters, constants, the class construct, operator overloading, constructors and
destructors, scoping, inheritance, virtual functions, and member access control.

Kaehler, T; Patterson, D., A Taste of Smalltalk, W . W. Norton & Company, 1986

A hands-on introduction to the Smalltalk environment. Illustrates many features of the envi-
ronment, as well as some Smalltalk-80 sytnax, through the development of and a series of refinements
of to a program to solve the Towers of Hanoi problem. Starts by showing equivalent solutions in C,
Pascal, and Smalltalk for comparison. A good introduction to Smalltalk, but needs to be complim-
ented with stronger material on object-oriented design and programming.

Keene, S., Object-Oriented Programnling in Common Lisp - A Programmer's G~iide to CLOS, Addi-
son-Wesley, 1989

Kilian, M., "Trellis: Turning Designs into Programs," Cornn?~~nications of the ACM, 33(9), September
1990, Page 65

A brief introduction to the major features of the Trellis programming environment and the
Trellis/Owl language.

3 1. Khoshafian, S. N; Copeland, G. P., "Object Identity", ACM SIGPLAN Notices, 2 l (1 I) , November
1986, Page 406

Describes how identity is often equated with addressability (variable names) in programming
languages, and with value (e.g. a key) in database languages. Proposes an object structure that includes
surrogates, globally unique identifiers that provide strong support for value, structure, and location
independent identity of objects.

32. Kornson, T. ; McGregor, J.D., "Understanding Object-Oriented: A Unifying Paradigm7', Comnz~lnica-
tions of the ACM, 33(9), September 1990, Page 40

33. Lang, K. J; Pearlmutter, B. A., "Oaklisp: an Object-Oriented Scheme with First Class Types," ACM
SIGPLAN Notices, 21(11), November 86, Page 30

34. Laranjeira, L. A., "Software Size Estimation of Object-Oriented Systems", IEEE Transactions on
Software Engineering, 16(5), May 1990, Page 510

35. Lieberherr, K. J; Riel, A. J., "Contributions to Teaching Object-Oriented Design and Programming",
ACIM SIGPLAN Notices, 24(10), 1989, p. 11-22

36. Liskov, B., et al, Clu Reference Man~tal , Massechusetts Institute of Technology, Technical Report no.
225, 1979

37. Liskov, Snyder, Atkinson, Schaffert, "Abstraction Mechanisms in CLU," Conznz~inications of the
ACM, 20(8), August 1977, Page 564

38. Loomis, M. E. S; Shah, A. V; Rumbaugh, J. E., "An Object Modeling Technique for Conceptual
Design", Proceedings of the European Conference on Object-Oriented Programming, 1987

39. Madsen, 0. L; Moller-Pedersen, B., "Virtual Classes: A Powerful Mechanism in Object-Oriented
Programming", ACM SIGPLAN Notices, 24(10), 1989, p. 397-406

40. Meyer, B., Object-Oriented Software Constr~6ciion, Prentice-Hall, 1988

41. Meyer, B., "Eiffel: A Language and Environment lor Software Engineering," T3e Journal of Sy~ienls
and Software, VoI. 8, 1988, Page 199

42. Meyer, B. "Reusability: The Case for Object-Oriented Design", IEEE Software, March 1987, Page 50

Describes the motivation for and problems associated with achieving reusability in software
production. Shows how inheritance and, to a lesser degree, genericity are vital to achieving reusal3ility.
An illustration is given using "simpIe", procedural, and object-oriented design approaches. Includes a
good discussion of waht factors inhibit the reusability of software.

43, Meyer, B., "Genericity versus Inheritance", ACM SIGPLAN Notices, 2 l (1 I) , November 1986, Page
39 1

Describes the notions of genericity and inheritance and their relationship to each other in
detail. Shows that a limited form of genericity may be simulated using inheritance, but that inheritance
cannot be simulated using genericity. Also discusses the bearing that genericity and inheritance have
on various classes of problems. Concludes that a complete object-oriented language should support
both.

44. Moon, D. A., " Object-Oriented Programming with Flavors," ACM SIGPLAN Notices, 2 1(1 I) , No-
vember 1986, Page I

45. Mullin, M., Object Oriented Program Design with Examples in C++, Addison-Wesley, 1989

46. Nexpert Reference Manual, Neuron Data Corporation, 1989

47. Neilson, W. A., ed., Webster's New International Dictionary, G. & C. Merriam Company, 1950

48. O'Brien, P; Halbert, D; Kilian, M,, "The Trellis Programming Environment", ACM SIGPLAN No-
tices, 22(12), December 1987, p. 91-102

49. Ohori, A; Buneman, P., "Static Type Inference for Parametric Classes", AClM SIGPLAN Notices,
24(10), 1989, p. 445-456

50. Parnas, D. L., "On the Criteria to be Used in Decomposing Systems into Modules", Cornm~inicafions
of the ACM, 15(12), December 1972, p. 1053-1058

5 1. Page-Jones, M; Constantine, L; Weiss, S., "Modeling Object-Oriented Systems: The Uniform Object
Notation", Con?p~iter Language, 7(10), October 1990, p. 69-80

Introduces the Uniform Object Notation (UON) for modeling the structure of large object
oriented systems. The notation supports four types of diagrams: inheritance, object interface, method
structure, and object communication.

52. Pascoe, G. A. "Elements of Object-Oriented Programming", Byte, August 1986, Page 139

A basic overview of some principals and techniques normally associated with object-oriented
development. Attempts to provide a sort of decision procedure for identifying an object-oriented
language: a language must support data abstraction, information hiding, dynamic binding, and inheri-
tance in order to be considered an object-oriented language. Gives definitions for some basic terminol-
ogy and discusses some advantages and disadvantages of object-oriented programming.

53. Pedersen, C. H., "Extending Ordinary Inheritance Schemes to Include Generalization", ACM SIG-
PLAN Notices, 24(10), 1989, p. 407-417

54. Peterson, G. E. , ed. T~~tor ia l : Object-Oriented Comptkting, Volunle 1 : Concepts, Washington, D.C.,
Computer Society Press of the IEEE, 1987

5 5 . Peterson, G. E., ed. Tutorial: Object-Oriented Computing, Volume 2: Implementations, Washington,
D.C., Computer Society Press of the IEEE, 1987

Pun, W; Winder, R., "A Design Method for Object-Oriented Programming", Proceedings of the Third
European Conference on Object-Oriented Programming, Cambridge: Cambridge University Press,
1989

Raj, R. K; et al., "Emerald: A General-Purpose Programming Language," Softtvare - Practice and
Experience, 21(1), January 1991, Page 91

Describes Emerald as a strongly typed, general purpose programming language. Emerald sup-
ports abstract data typing, concurrency via monitors, and the development of distributed systems via
self contained objects. Although Emerald does not directly support inheritance, it does provide "object
constructors" which may be used to simulate inheritance.

Rosson, M. B; Gold, E., "Problem-Solution Mapping in Object-Oriented Design", ACM SIGPLAN
Notices, 24(10), 1989, p. 7-10

Royce, W. W., "Managing the Development of Large Software Systems: Concepts and Techniques",
Proceedings of WESCON, August 1970

Sandberg, D., "An Alternative to Subclassing", ACM SIGPLAN Notices, 2 1(1 I) , November 1986,
Page 242

Presents a mechanism for separating the type hierarchy from the class hierarchy in object-ori-
ented systems via "descriptive" (abstract, parent-only) and parameterized classes. The point is that
the design of systems using these these mechanisms, as opposed to exclusively using subclassing, is more
descriptive.

Abstract and parameterized classes are certainly important constructs. However, it seems to
me that the problems they solve, according to the paper, could only occur if subclassing (inheritance)
was being misused.

Schaffert, C; et. al., "An Introduction to TrellisIOwl," ACM SIGPLAN Notices, 2 1(1 1), November
1986, Page 9

Shlaer, S; Mellor, S., Object-Oriented Systems Analysis: Modeling the World in Data, Prentice-Hall,
1988

Snyder, A., "Encapsulation and Inheritance in Object-Oriented Languages", ACM SIGPLAN Notices,
21(11), November 1986, Page 38

A critical analysis of the relationship between encapsulation and inheritance. Points out that
the use of inheritance compromises the encapsulation of a class from the viewpoint of its children if
child classes are given acces to the instance variables of the parent. The paper makes the assertion that
inherited instance variable should only be accesible via operations so that the use of inheritance is
invisible to child classes.

While it is true that the visibility of inheritance may lead to dependancies in child classes on the
implementation of the parent class, I'm not convinced that this is bad (which seems to be presupposed
in the paper.) As child classes are supposed to be specializations or refinements of their parent classes,
their behavior should change if that of their parent changes.

Stein, L. A., "Delegation is Inheritance", ACM SIGPLAN Notices, 22(12), December 1987, p.
138-146

Stroustrup, B., "What is Object-Oriented Programming?", IEEE Software, 5 (3), May 19 88, Page
10-20

Describes a continuum of programming paradigms from procedural to data hiding to data ab-
straction to object-oriented and what distinguishes each. Enumerates characteristics of object orienta-
tion and describes language features which support each of these characteristics.

Stroustrup, B., Tlze C++ Programnling Language, Addison-Wesley, 1986

Ungar, D; Smith, R. B., "Self: The Power of Simplicity", ACM SIGPLAN Notices, 22 (12), December
1987, p. 227-242

Ward, P. T., "How to Integrate Object Orientation with Structures Analysis and Design", IEEE Soft-
ware, 6(2), March 1989, p. 74-82

Wasserman, A; Pircher, P; Muller, R., "The Object-Oriented Structured Design Notation for Software
Design Representation", IEEE Coinp~iter, March 1990, Page 51

Weiskamp, K; Heiny, L; Flamig, B., Objecf-Oriented Programming wit/? Ttlrbo C t t , Wiley & Sons,
199 1

Describes the development of a user interface toolkit in Ct+. The book is structured around
the layers of the toolkit: the code for a layer of the toolkit is listed, explained, and critiqued in each
chapter. Contains many examples and illustrates many principals of object-oriented programming.

Wiener, R; Pinson, L., Ail Introd~iction to Object-Oriented Progranming and Ct+, Addison-Wesley,
1988

A "get up to speed quickly" book on C++. Systematically describes C++ language mechanisms
and how each supports object-oriented programming. Includes extensive examples.

Wegner, P., "Dimensions of Object-Based Language Design7', ACM SIGPLAN Notices. 22 (12), De-
cember 1987, p. 168-182

Wilson, D. A , , "Class Diagrams: A Tool for Design, Documentation, and Teaching", Jo~irnal of Ob-
ject-Oriented Programming, 2(5), JanuaryIFebruary 1990, p. 38-44

Winblad, A; Edwards, S; King, D, , Object-Oriented So ftwnre, Addison-Wesley, 1990

This three part book gives a more or less comprehensive overview of object-oriented software
development. It begins with an introduction to object-orientations in terms of motivation, basic mech-

anisms and concepts, and benefits. Part two is a survey of object-oriented languages, language mecha-
nisms, and applications. Part three describes object-oriented analysis and design, maintenance of
object-oriented software, and future directions.

75. Wirfs-Brock, R; Johnson, R., "Surveying Current Research in Object-Oriented Design", Comm~inica-
tions of the ACAd, 33(9), September 1990, Page 104

76. Wirfs-Brock, R; Wilkerson, B; Wiener, L., Designing Object-Oriented Software, Prentice Hall, 1990

77. Wirth, N. "Type Extensions", ACM Transactions on Progranzrning Langt6age.s and Systems, 10(2),
April 1988, Page 204

Wirth introduces the notion of a type extension being a mechanism, in a type system similar to
that of Pascal, which may be used to create a new record type as the aggregation of one or more existing
record types and one or more new fields. The type equivalence of this mechanism is defined and type
tests and type guards are introduced to make up for lost type information when lower level types are
referenced by pointers of higher types.

Appendix A

Request Document

Diagram Editor for Object-Oriented Design

Charles K Ames I11
Miami University

June 25, 1991

This document describes a tool to support the creation of diagrams representing object-orienled
designs. The notation forming the diagrams includes the following elements:

Class: a rectangle with rounded corners, partitioned into three sections. The top sec-
tion will contain the class name, the middle section will contain the list of attributes
of that class, and the bottom section will contain a list of services offered by objects
of that class.

Object: similar to a class. Represents an instance od a class. The exact symbol
is not yet determined. Could possibly the class symbol with a different line weight,
or surround a class symbol with another line to indicate an object.

Inheritance connection: An arrow from one class to another is used to indicate that
the first class inherits from the second class.

Composition connection: Link to indicate the one object is a part of another. (precise
form is not yet determined.)

Message connection: Link to indicate that one object sends a message to another
object, i.e. the first object invokes a service of the second.

Association connection: Link to indicate that instances of two classes that are other-
wise independent may need to be associated, or grouped together. Indicates a se-
mantic connection.

Requirements: Classes must be easily distinguished from objects. Each type of connection must
be easily distinguished from the others.

The tool should have the ability to allow "apropos" text, or notes, to be specified for any or all
elements of a diagram (i.e. classes, objects, connections, attributes, and services) This text should not
appear on the diagram, but should be easily created and readily accessible for inspection and editing.
Elements that have apropos text associated with them should be marked in some (subtle) way so that they
are easily identifiable.

Diagrams must be printable. Postscript output is preferred, but not required. The tool should
also be able to create a report containing each element name followed by its apropos text, if any.

The tool must be able to save diagrams for later retrievel, editing, and printing.

Creating diagrams with this tool must be easier than creating the diagrams using some more general
purpose graphics editor. If it is more trouble than its worth, it is worthless.

The tools must be extensible to include new notation and reflect changes to existing notation.
The tool need not be user extensible, but it must be such that a reasonably competant programmer could
make any needed modifications.

Appendix B

System Requirements

Diagram Editor for Object-Oriented Design

Charles K Ames I11
Miami University

July 9, 1991

The requirements for the diagram editor system are organized around the user interface, since
most system functions are directly linked to some user action.

1 Menus

All menus will be pop-up floating menus. They will pop up at the location of the mouse cur-
sor when the ACT mouse button (the rightmost button) is pressed. The most recently se-
lected action (the first by default) will be highlighted when the menu appears. The menu's
location will be determined so that the mouse cursor will be centered on the selected item.
The mouse cursor will be moved only if not moving it would cause part of the menu to appear
off-screen, in which case it will be moved precisely enough to allow the entire menu to ap-
pear on-screen.

Menu selections will be listed on consecutive lines, aligned on the left. The menu will remain
displayed as long as the ACT button is depressed.

1 .3 Menu selections (actions) are chosen by positioning the mouse cursor over the desirder selec-
tion, causing it to be highlighted (in inverse video), then releasing the mouse button. Then
menu then disappears and the action is carried.

1.4 Menu operations may be cancelled by moving the mouse cursor off the menu, so that no
menu option is highlighted, and releasing the mouse button. The menu then disappears and
the messge "Operation cancelled." is displayed on the message line.

2 User Interface - System

2.1 The diagram editor will provide a system menu which offers the following selections:

new start a new diagram

open retrieve a previously saved diagram for editing

save save the current diagram to disk

close save the current diagram and start a new diagram

exit terminate the diagram editor and return to the system prompt

2.2 The word "File" will appear in the upper left corner of the screen. Clicking the ACT mouse
button while the mouse cursor is positioned over this word will cause the system menu to ap-
pear.

2.3 The diagram editor will display the title of the current diagram centered on the first line of
the display. If there is no current diagram, then name "<untitled>" will be displayed in place
of the title.

2.4 Both the system menu icon ("File") and the title will appear on the first line of the screen on
what is to be called the "title bar."

2.5 The second line (in text lines) will be reserved for system messages and prompts to be used
for user interaction, This is the message line.

2.6 The remainder of the screen will be surrounded by a narrow (<= 5 pixels) border. The area
inside this border will serve as the canas for creating and editing diagrams.

2.7 * * Optional * * The right side and bottom borders will contain icons for scrolling windows
whch are bigger than the available display area. These elevators will functin as exhibited in
such packages as Microsoft Windows 3.0 and OSF Motif.

3 User Interface - Diagram

3.1 The Ieftmost mouse button will be the SELECT button and the rightmost button the ACT but-
ton.

3.2 Clicking the SELECT buton while the mouse cursor is positioned over a screen object causes
that object to be selected, i.e. made the current object, or become the object of focus.

3.3 Selecting a non-selectable object (e.g. the message line) will cause the messge "Object not
selectable." to be displayed on the message line, unless that object has a menu associated with
it, in which case the message "Use the menu button." will be displayed.

3.4 Selecting a selectable object will cause the message "<object name> selected." to be displayed.
The next action will be applied to that object, unless another object is selected before another
action is taken.

3.5 Pressing the ACT button while the mouse cursor is over the system menu icon ("File") will
cause the system menu to appear. Either an action is selected by the user and carried out by
the system, or the action is cancelled by moving the cursor off the menu and releasing the
mouse button.

3.6 Pressing the ACT button while in the diagram area after a screen object has been selected will
cause the menu associated with that object to appear. SelectlPerform or Cancel as above.

3.7 The menu for screen objects in the diagram area will offer the following choices:

dup duplicate the current object. The new object becomes the current object and
will be in move mode.

move allow the current object to be repositioned in the diagram area. The move
operation is completed by clicking the SELECT button to indicate the new
position of the object

del delete the current object from the diagram and erase it from the screen.

note allow text describing the object to be entered into a pop-up text edit window.

attr add an attribute to the current object. User is prompted for the attribute
name, then the attribute is displayed.

sew add a service to the current object. User is prompted for the sewice name.
then the service is displayed.

name allow the name of the current diagram to be changed.

3.8 Pressing the ACT button while the mouse cursor is in the diagram area but no object has
been selected will cause the diagram menu to appear, offering the following options:

class create and display a new class symbol

object crete and display a new object symbol

message create a new message connection between two object symbols.
The message "Click on sending ClassIObject" will be displayed on
the message line until the user selects a classlobject symbol with
the mouse. Then the message "Click on receiveing object." will be
displayed until the user selects another (different from the first)
class/object symbol. A message onnection will then be displayed
between the two symbols.

gen-spec create a new inheritance (generalization-speciaiization) connec
tion between two classlobject symbols. Dialog proceeds as
above, except the message "Click on the derived class." will be dis
played first, followed by the message "Click on the base class." A
gen-spec connection is added to the diagram and displayed on the
screen.

whole-part create a new composition (whole-part) connection between two
classlobject symbols. Dialog proceeds as above, except the mes
sage "Click on the component classlobject." will be displayed first,
followed by the message "Click on the aggregate classlobject." A
whole-part connection is added to the diagram and displayed on
the screen.

association create a new association connection between two classlobject
symbols. Dialog proceeds as above, except the message ''Click on the first class/
object." will be displayed first, followed by the message "Click on the second class1
object." An association connection is added to the diagram and displayed on the
screen.

3.9 Gen-spec, whole-part, and message connections are directional, and the orientation of their
symbols will be determined by the order the classes were selected in the creation dialog. As-
sociation connections are non-directional.

Appendix C

Object-Oriented Ana,lysis (OOA) Model

Diagram Editor for Object-Oriented Design

Charles K Ames 111
Miami University
July 9, 1991

Classes and Objects

Diagram: A composite object that represents an entire diagram. Consists of a
name and zero or more elements. Can be saved, retrieved, and printed.

Attributes:
name
element-list

Services:
show
add-element
delete-element
save
retrieve
set -name

Mouse: System pointer object. Acts as an interface to the physical mouse
device. Creates a stream of events (x,y,button).

Attributes:
cursor-location
button-status

Services :
show
hide
get-event / / wait for a click, then return (x,y,button)
get-position
set-position

Title-bar:
Attributes:

title

Services :
show
invoke-diagram-action

Message-Line: display messages and get user input

Attributes:
last-message

Services :
post
get-string
get-object

Element: A part of a diagram. Each element knows how to draw itself, how and to
what it can connect itself, and how other elements may be connected to it.
Has an "apropos" text description (may be empty)

Attributes:
location / / (x,y) screen coordinates
name / / object identifier
typename / / class identifier
apropos

Services :
show
edit-apropos
edit-name

Class-Object: [Element] A diagram element representing an entity or entity
type.

Attributes:
attribute-list
service-list
connection-list

Services :
add-attribute
edit-attribute
delete-attribute
add-service
edit-service
delete-service
move

Link: [Element] A general link between two class/objects representing some type
of relationship.

Attributes:
endpoint-1
endpoint-2

Services :
connect

Association: [Link] A diagram element connecting two class-objects representing
some arbitrary relationship (may be named -- name attribute inherited from
element) .

Attributes:

Services :

whole-Part: [Link] A diagram element connecting two class-objects representing
a whole-part relationship where the destination object is a component of
the origin object.

Attributes:
f rom-obj ect
to-object

Services :

Gen-Spec: [Link] A diagram element connecting two class-objects representing a
generalization-specialization relationship where the destination object in-
herits from the origin object.

Attributes:
f rom-ob j ec t
to-object

Services :

Message: [Link] A diagram element connecting two class-objects with an arrow
from the sender to the receiver.

Attributes:
f rom-ob j ec t
to-obj ect

Services:

2 Structures

G e n e r a l i z a t i o n - S p e c i a l i z a t i o n S t r u c t u r e s :

Whole-Part S t r u c t u r e s

Diagram

3 Subjects
There are two subjects in this system: one is composed of the element class and its derived classes.

This subject defines the notation supported by the diagram editor. The remainder of the classes form the
other (unnamed) subject.

Appendix D

Inheritance Dicrgram

Diagram Editor for Object-Oriented Design

All classes whose objects appear on screen and may be
selected and acted upon using the mouse are considered
"selectable" and are derived from class selectable.

Standalone Objects - There is exactly one of each of these objects in the system Frequently Reused Components

Dispatcher

Current-Object
Object-List

Insert
Remove
Promote
Dispatch
Find
Clear

Mouse

Setup
Hide

Move
Get-Event
SetGrCursor

Append
Get-String
Get-Object
Clear

Diagram

Element-List

Remove
Refresh
Save
Find-By-Name

Note: There is also only one Titlebar object and one Canvas object. They are shown above
since they are derived from selectable.

Tail
Cursor
Num-Entries

Insert
Append
Remove
Length
First

Prev

Menu

Items

Show
Pick
Hide

Appendix E

Aggrega, tion Diagram

Diagram Editor for Object-Oriented Design

Selectable

Select

Show

Items

Pick
Hide

Insert
Append
Remove
Length
First
Next
Last
Prev

Figure 5: OOAIOOD Notation Summary

Whole-Pert Structure

Subject or Design Component

//---[DE Source*index ,--- - //end of file

/ /
/ / Road map to the source code for the diagram editor system.
/ /

All class definitions appear in header (.h) files and all member
functions appear in .cpp files of the same name.

canvas.h, canvas.cpp: the canvas object. The canvas appears as the
drawing area, and takes care of creating new symbols and connections.

connect-h, connect.cpp: Contains the class hierarchy for the connection
objects (message, genspec, whole-part, association)

de.cpp: the main program for the diagram editor system.

diagram.h, diagram.cpp: the diagram object. Stores a pointer to each
class and object symbol and each connection in the picture. Takes
care of redisplaying and saving the entire diagram.

dispatch.h, dispatch.cpp: the dispatcher object. maintains a list of all
"selectable" objects on the screen and distributes events to the
appropriate objects.

editor.h, editor.cpp: a simple text editor to create and edit the char *text
attribute of each symbol, property, and connection. Used in the
annotate () function.

effect-h, effect.cpp: a collection of graphics special effect objects, such
as shadow and bevel.

list.h, 1ist.cpp: a general purpose list class. maintains a list of
objects of type selectable. objects may be inserted at either end
and the list may be traversed in either direction.

menu-h, menu.cpp: defines a popup floating menu.

msgline.h, msgline.cpp: the message line. allows messages to be posted
(displayed) and can get user input in the form of text of clicks.

msmouse.h, msmouse.cpp, mcursor.cpp: the mouse object. Provides a
relatively nice set of functions for accessing and manipulating
the Microsoft Mouse driver. The file mcursor.cpp contains bit
maps for alternate mouse cursor icons.

property.h, property.cpp: contains the definition of attribute and service
objects.

select.h, select.cpp: defines the abstract class selectable for deriving
mouse selectable screen objects from.

symbol.h, symbol.cpp: contains the class and object symbol objects.

titlebar.h, tit1ebar.c~~: the titlebar object is like the "system" in this
system. It offers the file level services, such as save, open, close,
name, exit.

util-h, util-cpp: micellaneous functions that didn't really belong anywhere
else.

'rt ̂
2 s 2
$. l z z
a- r - .. 0

//---I connect.cpp]--- 1 tolerance = 3;

/ /
// member functions for the connection class and its subclasses
/ /

#include "connect .h"
#include Rdispatch.h"
#include mdiagram.hR
$include "msmouse.hR
#include "msg1ine.h"
#include "uti1.h"

void arrowhead(int xl, int yl, int x2, int y2) ;

connection-t::connection-t(c1ass-t *objl, class-t *obj2) {

strcpy (name, "Connection") ;
strcpy(labe1, "Association ") ;
from = objl;
to = obj2;

tolerance = 3;

menu = Lconnection-menu;
text = NULL;

return;
1

connection~t::connection~t(FILE *fp) {
char buf [40];

strcpy (label, "Association ") ;

getqs (fp, buff ;
if (buf [O] ;-- ' \OC)

strcpy (name, nConnectionA) ;
else

strcpy (name, buf) ;

if (fscanf (fp, a %s ', buf) == 0 1 I strcmp(buf, "fromm) != 0) t
current-diagram-zerror = 0;
return;
1

getqs (fp,buf) ;
from = (class-t *)current-diagram->find-by-namefbuf);

if (fscanf (fp, " %s ", buf) == 0 I I strcmp(buf, 'to") != 0) (
current-diagram->error - 0;
return;
1

getqs (fp,buf) ;
to = (class-t *) current-diagram->find-by-name (buf) ;

menu = &connection-menu:
text = NULL;

dispatcher.insert (this) ;

1 return;

1 int connection-t: :isa (char *a) I

return (strcmp(s,connection-t::typeof()) = 0) I I selectable::isa(s);
1

void connection-t : :show (void) (
int midx, midy; / / wait until after connect to calculate

from->connect (to, xl, yl, x2, y2) :

midx = (xl+x2) /2:
midy = (yl+y2) /2;

setcolor (BLACK) ;
moveto(x1,yl) ;
lineto(x2, y2) ;

if (strcmp (typeof (), nconnection-tw) == 0 &&
strcmp (name, "Connection") != 0)

setf illstyle (SOLID-FILL, WHITE) ;
bar(midx - textwidth(name) /2 - 1, midy - textheight (name) - 1,

midx t textwidth(namel/2 t 1, midy + textheight (name) + 1);

settext justify (CENTER-TEXT, CENTER-TEXT) ;
outtextxy (midx, midy, name) ;
t

return;

selectable *connection-t::select(void) I

return this;
i

int connection-t::ison (int x, int yi [
double A = double(y2 - yl),

B = double(x1 - x2) ;
double C = double(-A * xl - B * yl);

double D = sqrt (A*A + B*B) ;
double d = x*A/D + y*B/D + C/D;

i f (((x 2 > x l & & x > = x l & & x < = x 2) [I //betweenxlandx2
(x2 <= xl && x <= xl & & x >= x2)) & & / / and

((y2 > yl & & y >= yl && y <= y2) I / / / between yl and y2
(yz <= y1 & & y <= yl & & y >= y2))) [

return abs(int(d)) <= tolerance ? 1 : 0;
I

else
return 0:

int connection-t : :act (int x, int y) {
int selection;

selection = selectable::act(x,yf;

switch (selection) f

case 0: / / label
strcpy(name, msgline.gets("Enter label: "));
if (name[O] == '\Or)

strcpy(name, RConnectionR);
else

msgline.post("Labe1 added.");
current-diagram->refresh();
break;

case 1: / / note
annote () ;
break;

case 2: / / delete
dispatcher. remove (this) ;
current-diagram->remove(this);
current-diagram->refresh () ;
msgline.post (name) ;
msgline.append(" deleted.*);
delete this;
break;

default :
break;

1

return selection;
1

if (strcmp(name, "ConnectionR) = 0)
fprintf (fp, "%s \"\"\nn, label) ;

else
fprintf (fp, "%s \"%s*\nn, label, name) ;

I

1 return;

message-t::message-t(c1ass-t *objl, class-t *obj2) :
connection-t (objl, obj2) (

I strcpy (label, "Message ") ;

1 return;

I message-t: :message-t (FILE *fp) : connection-t (fp) (

1 StrcPy (label. "Mssage =) ;

1 return;

message-t : : -message-t (void) (

return; I /

int message-t :: isa (char *sf (

return (strcmp(s, typeof ()) - 0) I I connection-t: :isa(s) ;
I

void message-t::show(void) [

connection-t : :show () ;
arrowhead (xl, yl,x2, y2) ;

return;
1

qen-spec-t::gen-spec-t(c1ass-t *objl, class-t *obj2) :
connection-t (ob jl, ob j2) {

(strcpy (label, "Inheritance ") ;

int connection~t::is~connected~to(selectable *obj) { I Yu";
return (obj == from) (1 (obj --; to); 1
1

void connection-t: :save (FILE *fp) 1

gen-spec-t: :gen-spec-t (FILE *fp) : connection-t (fp) {

strcpy (label, "Inheritance ") ;

Mouse-Setup (Graphics) ;

//
/ / Main program for diagram editor system
/ /

(include nmsmouse.hn
#include "tit1ebar.h"
#include "msgline.hR
#include "canvas.hn
#include "dispatch.hR
#include "menu.hR
#include "diagram.hm
#include "editor.hm
#include "uti1.h"

int exit-flag = 0;

while (exit-flag - 0) t
e = get-event (ch, x, y) ;

switch (e) (
case SELECT:

dispatcher.dispatch (x, y,SELECT) ;
break;

case ACT:
dispatcher.dispatch (x,y,ACT) ;
break;

case KEY:
switch (ch) t

case 27: // <esc>
exit-flag - 1;
break;

default :
msgline.post("Use mouse, or press <ESC>");
break;

/ / the main players I 1

screen-t screen;
titlebar-t titlebar;
messageline-t msgline;
canvas-t canvas;
dispatcher-t dispatcher;
editor-t editor;
diagram-t *current-dlagram;

/ / menus for the screen objects

menu-t class-menu("Classn "DupR, "Move", "Delete", "NoteR,
"Attr", "ServA, "Rename", NULL),

object-menu("Objectm, "Dupe, *Movem, "Delete", "Noten,
"Attr", "ServR, "Rename", NULL),

connection~menu("Connect", "Label", "Note", *Deleten, NULL),
attribute-menu("Attribute", "Rename", "Note", "Define", "Deleten, NULL),
service-menu("Servicen, "RenameR, RNote", "Define", "Delete", NULL);

main0 t
int x, y;
char ch = 0;
unsigned e;
char msgbuf[80];

titlebar.show0 ;
msgline.show~);
canvas. clear () ;

currentdiagram = new diagram-t;

break;
)

/ delete current-diagram;

msgline.post("Press any key to exit...");
getch 0 ;

int get-event (char hch, int hx, int hy) t
int e, event = 0;

1 while (event - 0) (

if (kbhitf)) t
ch = getch () ;
event - KEY;
1

else {
e = Mouse .Event (x, y) ;

if (e ==; LMouseDown) t
event = SELECT; '

else if (e - ~ouseDown) (
event = ACT;
1 '

)

m~gline.post("Ready.~); / return event;
1)

#ifndef DIAGRAM-H
#define DIAGRAM-H

/ /
/ / class definition for the diagram class
//

class diagr-t (

public:
diagram-t {void) ;
diagram-t (FILE *fp) ;
-diagram-t (void) ;

void add (selectable *ob j) ;
void remove (selectable *obj) ;
void promote(selectab1e *ob j) ;
void refresh (void) ;
void save (FILE *f p) ;
selectable *find-by-namefchar *s);
selectable *first-connection(selectable *obj);
selectable *next-connection(selectab1e *obj);

char name [801;
int error;

private:
list-t *elist;

I ;

extern diagram-t *current-diagram;

#endi f

/ / end of file

//---[diagram.cpp ,-- I return;

/ /
/ / member functions for the diagram class
/ /

#include "diagram.hR
#include "canvas.hs
#include "connect .hm
#include "util.hR

diagram-t : :diagram-t (void) i

elist = new list-t;
name[O] = '\Of;

return;
1

diagrqt : :diagram-t (FILE *fp) I
char buf [801 ;

error = 0;

if (fscanf (fp, " %s ", buf) == 0 / I strcmp(buf, Rdiagram") != Of {
error = 1;
return;
1

getqs (fp, buf) ;
strcpy (name, buf) ;
elist = new list-t;

return;

diagrqt : : -diagram-t (void) (

/ / need to make sure contests are deleted also (?)

delete elist;

return;
}

void diagram-t::add(selectable *obj) I

return;
I

void diagram-t : :remove (selectable *obj) (

elist->remove (obj) ;

void diagram-t::promote(selectable *obj) [

return;

void diagram-t: :refresh (void) {
selectable *obj = elist->last();

while (obj != (selectable *)NULL) (
obj->show () ;
obj = elist->prev 0 ;
)

return;

void diagram-t::save(FILE *fp) (
selectable *obj;

fprintf (fp, "diagram \"%s\"\n\nW, name);

obj = elist->first () ; // first save class & objects
while (obj !=; (selectable *)NULL) (

if (ob j->isa ("class-tn))
obj->save (fp) ;

obj = elist->next 1) ;
1

obj = elist->first 0 ; // then save connections
while (obj != (selectable *)NULL) I

if (obj->isa (mconnection-tm))
ob j->save (f p) ;

obj = elist->next () ;

fprintf (fp, diagram \R%s\a\nA, name) ;

return;
1

selectable *diagram_t::find-by-name(char *s) 1
selectable *obj = elist->first();

while (obj != (selectable *)NULL) 1
if (strcmp(obj->name, s) -=; 0)

return obj;
else

obj = elist->next 0 ;
1

return (selectable *) NULL;

selectable *diagram-t::first-connection(selectable *obj) (

connection-t *con - (connection-t *) elist->f irst () ;

while (con != NULL) (
if (con->isa ("connection-t") & & con->is-connected-to (ob ji)

return con;
else

con = (connection-t *) elist->next 0 ;
)

return NULL;
1

selectable *diagram_t::next-connection(se1ectable *obj) {
connection-t *con - (connection-t *)elist->next();
while (con != NULL) (

if (con->isa("connection-t") & & con->is-connected-to(obj))
return con;

else
con = (connection-t *)ellst->next();

return NULL;
1

/ / end of file

//---[dispatch.h ,--
/ /
// Class definition for the the dispatcher object
/ /
/ / class for object that directs mouse clicks to the appropriate
// screen objects.
/ /
//---

gifndef DISPATCH-H
#define DISPATCH-H

class dispatcher-t (
public:

dispatcher-t (void) ;
-dispatcher-t (void) ;

int insert (selectable *ob j) : // add an object
int remove (selectable *ob j) ; / / remove an object
int promote(selectab1e *obj); / / move obj to top of its priority

// category (handle overlaps)
selectable *find(int x, int y);
void clear (void) :
void dispatch (int x, int y, int button) ;

private:
list-t *obj-list;
selectable *current-obj;

extern dispatcher-t dispatcher;

/ / end of file I

/ /
/ / Member functions for the dispatcher object.
/ /
/ / The dispatcher takes mouse clicks (x,y,button) and directs them to
/ / the appropriate screen object.
/ /
//--

obj-list = new list-t;
current-obj = (selectable *)NULL;

return;
I

dispatcher-t: :-dispatcher-t (void) (

delete obj-list;

return;
l

int dispatcher-t::insert(selectable *obj) {

obj-list->insert (ob j) ;

return 1;
1

1 return;

selectable *dispatcher-t::find(int x, int y) (

selectable *obj;

1 obj = obj-list->f irst () ;

while (obj != (entry-t *)NULL & & !ow->ison(x,Y))

ob j = obj-list->n@xt () ;
1 / / end while

return obj;

void dispatcher-t: :dispatch (int x, int y, int button) (
selectable *obj:

if (button ==; ACT) (
if (current-ob-J != (selectable *)NULL)

current-obj->act (x, y) ;
else

msgline.post("No selected object to act on. Use SELECT button first.");
I

else (
obj = find(& yf ;

if (obj == (selectable *)NULL) (
msgline.p~st(~Not a selectable object. No object currently selected.');
current-obj - (selectable *)NULL;
I

else (
current-obj = obj;
current-ob j->select () ;
I

I) / / end else

int dispatcher-t: :remove (selectable *obj) (I :"urn;
obj-list->remove(obj);
current-obj = (selectable *)NULL;

return 1;
1

int dispatcher-t::promote(selectable *obj) (

return 1:
I

void dispatcher-t::clear(void) (I
delete ob j-list ;
obj-list = new list-t;

/ / end of file

I l

/ / Class definition for an text edit window class
//

#ifndef EDITOR-H
#define EDITOR-H

#define MAXLINE 100
#define MAXCOL 81
#define ENDBUF -1
#define ENDLINE 0

/ /
/ / redefine getch() to handle extended keys with a single call
/ /

int getkey (void) ;

/ /
/ / keycodes returned by getkey0
/ /

#define BACKSPACE 8
#define NEWLINE 13
#define UP 200
#define DN 208
#define LEFT 2 03
Cdef ine RIGHT 2 05
#define PGUP 201
#define PGDN 209
#define HOME 199
#define END 207
#define INSERT 210
#define DELETE 211
#define CTRL-Y 2 5
#define CTRL-Z 2 6
#define ESC 27
#define TAB 9
#define BACKTAB 143

class editor-t (
public:

editor-t (void) ;
editor-tfint left, int top, int right, int bottom);
-editor-t (void) ;

char *edit(char *buf, char *buffer-title);

private :
void clearbuf (void) ;
void refresh (void) :
void cls (void) ;
void show (char *buffer-title) ;
void hide 0 ;

void insertline (int line) ;
void deleteline (int line) ;

void insertchar(int line, int col, char ch);
void deletechar (int line, int col) ;

void scrollup (int nlines) ;
void scrolldn (int nlines) ;
int editbuf (void) ;

char *image; / / buffer for getimage()
char ebuf[MAXLINE][MAXCOL]; / / the edit buffer
char *bufname; / / name of the text being edited
int xl, yl, xZ, y2; / / edit window size in pixels
int length, width; / / edit window size in characters
int txht, txwd; / / height and width of a character

l int top-line, end-line, current-line, current-col;

gifndef TESTEDIT
extern editor-t editor;
#endif

/ / end of file

/I---[editor.cpp 1--
editor-t: :-editor-t (void) {

/ /
/ / member functions for the editor class
/ /

#include <stdio.h>
#include <stdlib.h>
#include <graphics.h>
#include <conio.h>
(include <string.h>

/ /
/ / special form of getch() to handle extended codes with a single call.
/ /

int getkey (void) {
int t = getch () ;

xl = getmaxx() / 6; / / edit window is 2/3 the width and 1/2 height
x2 = getmaxxf) - xl; / / of the screen
yl = getmaxy 0 / 4;
y2 = getmaxy0 - yl;
txht = textheight ("Hn) * 4/3;
length = (y2 - yl) / txht;
txwd = textwidth ("H") ;
width - (x2 - xl) / txwd;
clearbuf f) ;

return;

editor-t::editor-t(int left, int top, int right, int bottom) {

xl = left;
x2 - right;
yl = top;
y2 = bottom;

txht = textheight ("Hn) * 4/3;
length = (y2 - yl) / txht;
txwd = textwidth ("Ha) ;
width = (x2 - XI.) / txwd;
clearbuf () ;

return: I l
void editor-t : : clearbuf (void) {

int i;

for (i = 0; i < MAXLINE; ebuf [it+] [O] = ENDBUF);

top-line = 0;
end-line = 0:
current-line = 0;
current-col = 0;

1 return;

void editor-t::refresh(void) {
char *lp = &ebuf[top-line] to];
int i = 0;

while (*lp != ENDBUF & & i < length) (
outtextxy(x1, yl + i * txht, lp); / / print the line
lp = &ebuf[top-line + ++I] f01:
1

if (*lp == ENDBUF & & i < length)
outtextxy(xl, yl + i * txht, n[eoblm):

return; I
(void editor-t: :cls (void) {

1 return:

,id editor-t : :show (char *buffer-title) (

int msgtop = yl-txht-5,
titletop = msgtop-txht-4,
wintop = titletop-2,
winleft = XI-3,
winriaht = x2+3,

I winbottom = y2+3;

setfillstyle(SOL1D-FILL, WHITE); / / blot out whatever is there now
bar (winleft, wintop, winright, winbottom) ;

setlinestyle(SOL1D-LINE, I, 1); / / draw the edit window
setcolor (BLACK) ;
rectangle (winleft, wintop, winright, winbottom) ;

return;
l setfillstyle (SOLID-FILL, BLACK) :

bar(winl&t+2, titletop, winright-2, titletopttxhttf);
bar(winleftf2, msgtop, winright-2, msgtop+txht+2);

/ / moveto (winleft, msgtop) ;
/ / linetofwinright, msgtop);
/ / moveto(winleft, texttop) ;
/ / lineto(winright, texttop);

shadow sh(winleft, wintop, winright, winbottom);
sh .display 0 ;

settextjustify (CENTER-TEXT, TOP-TEXT) ;
setcolor(WX1TE) ;
outtextxy((winlefttwinright)/2, titletop+%, buffer-title);
settext justify (LZFT-TEXT, TOP-TEXT) ;
outtextxy(xl+l, msgtop+2, 'Enter text. Use Ctrl-Z to end edit, Esc to cancel.");

return;
I ;

void editor-t : :hide (void) {

return;
i

void editor-t: :insertline (int lineno) (

int i -. 0, j;

while (i < W I N E & & ebuf [i] [O] !a ENDBUF) it+;

if (i =- MAXLINE) return;

while (i > lineno) {
strcpy (&ebuf [i] [O] , &ebuf (1-11 [O]) ;
i-- .

)

for (j = 0; J < MAXCOL; ebuf[i][j++] - ENDLINE);
end-line++;

return;
1

void editor-t : :deleteline (int lineno) {

int i - lineno;
while (ebuf (i] [O] != ENDBUF) I

strcpy(&ebuf [i] [O], &ebuf [itl] [O]);
i++;
i

if (end line > 0) end-line--; -

return;
1

void editor-t: :insertchar(int line, int col, char ch) 1
int i = col;

while (ebuf[line] [i] !=; ENDLINE) it+; / / find end of line

while (i > col) j
ebuf [line] [3.1 = ebuf [line] [i-11 ; // move text after cursor on
i--; / / same line to the right 1 space
)

ebuf [line] [i] = ch; / / insert the new character

return; I)

void editor-t : :deletechar (int line, int col)
int i = col;

while (ebuf[linel[i] != ENDLINE) {
ebuf [line] [il = ebuf [line] [i+l] ;
it+;

return; I
/ void editor-t : :ncrollup lint nlines) (

if (top-line > nlines)
top-line -= nlines;

else
top-line = 0;

return; I
void editor-t : :scrolldn (int nlines) (

if (top-line < end-line - length)
top-line t= nlines;

else
top-line = end-line;

1 return;

int editor-t: :editbuf (void) (
char ch [21 ;

(int key, x = xl, y = yl, retcode = 0, done = 0;

settextjustify(LEFT-TEXT, TOP-TEXT);
setcolor (BLACK) ;

1 refresh () ;
I (while (!done) i

/ / recalculate (x, y) text position
x - xl + current col*tXWd;
y = yl + (current-line - top-line) * tat;

/ / show cursor
setcolor (BLACK) ; moveto (x-1, y) ; lineto (x-1, yttxht) ;

key - getkey () ;

/ / hide cursor
setcolor (WHITE) ; moveto(x-1, y) ; lineto (x-1, yttxht) ; setcolor (BLACK) ;

switch (key) (

case NEWLINE:
insertline (current-line + 1) ;
strcpy(&ebuf[current-linetl] [O], &ebuf[current-line] [current-coll);
ebuf[current-line] [current-col] = ENDLINE;
current-line++;
current-col = 0;
refresh () ;
break;

case BACKSPACE:
if (current-col > 0) {

current-col--;
deletechar(current-line, current-col);
setfillstyle(SOL1D-FILL, WHITE);
bar(x1, y, x2, yftxht-1);
outtextxy (xl, y, &ebuf [current-line] [O]) ;
I

else if (current-line > 0) (
current-col = strlen(&ebuf[current-line-11 [O]);
strcat(&ebuf[current-line-l][O], &ebuf[current~linel[Ol);
deleteline4current-line);
current-line--;
I

break; 1

I
break;

case LEFT :
if (X > XI)

current-col--;
break;

case RIGHT:
if (X < x2 & & ebuflcurrent-line] [current-col] != ENDLINE)

current-colt+;
break;

case ESC:
retcode = 1;
done = 1;
break;

default :
ch[O] = (char)key;
if (ebuf[current~linel[current~coll == ENDLINE) (

ebuf [current-line] [current-col] = ch [01 ;
ebuf[current-line] [current-coltl] = ENDLINE;
outtextxy(x, y, ch) ;
I

else { / / insert the character
insertchar(current-line, current-col, ch[O]);
setfillstyle(SOL1D-FILL, WHITE);
bar (xl, y, x2, yttxht-1);
outtextxy(x1, y, &ebuf[current-line][O]);
I

current-col++;
break;

case DELETE:
if (ebuftcurrent-line] [current-coll != ENDLINE) .L

deletechar(current-line, current-col);
setfillstyle(SOL1D-FILL, WHITE);
bar(x1, y, x2, y+txht-1);
outtextxy (xl, y, &ebuf [current-line] [Ol) ;
I

break;

case CTRL-Y:
deleteline(current-line);
refresh () ;
break;

case CTm-Z: /I' end edit
done = 1;
break;

case UP:
if (y > yl) current-line--;
break;

case DN:
if (y < y2 && ebuf [current linetl] [0] != ENDBUF) (- - -

current-line++;
while (current-col > 0 & &

ebuf[current-line] [current-col-11 == ENDLINE)
current-col--;

return retcode;
1

char *editor-t::edit(char *buf, char *buffer-title) (

char *p = buf, *p2;
int i = 0, j = 0;

clearbuf () ;
insertline(0) ;

while (*p != NULL) {

if (*p == ' \n') (
ebuf [it+] [jl = ENDLINE;
if (* (ptl) != NULL) insertline(i) ;
j = 0;
I

else (
ebuf [i] [j++l = *p;
I

if (editbuf 0 != 0) {
return NULL;
1

else (
p2 = Lebuf [Ol 101 ;
while (*p2 != ENDLINE) p2++;
*p2++ = ' \n' ;
i = 1;

p = &ebuf[i++] 101;
while (*p != ENDBUF) I

while (*p != ENDLINE) *p2++ = *p++;
*p2++ = ' \nl ;
p - Lebuf [i f +] 101;
1

return &ebuf [O] [O] ;
1

/ / end of f i le

.... m .. v v m

\
& 2 g . w r t r t
I- m
n n - .. rt B 4 4 . W E

0 ",2 a
I- a a g
E F e z !%

N U I - -@
m m v 3
2 zt;? rt 8 .zzI- $

4 p
I- 0
3 I- z rtag Q - -,, !?

Cinclude <graphics.h>
#include "effect.hw

char fine-texture-pattern[] =

(0x55, Oxaa, 0x55, Oxaa, 0x55, Oxaa, 0x55, Oxaa);

effect::@ffect(.int 1, int t, int r, int b) i
left = 1;
top = t;
right = r;
bottom = b;
return;
)

void effect::display(void) (
return;
t

void effect: :sizetint 1, int t, int r, int b) {
left = 1;
top = t;
right = r;
bottom = b;
return;
1

bevel::bevel(int 1, int t, int r, int b, int brt, int drk) : effect (l,t,r,b) {

bright = brt;
dark = drk;
return;
)

void bevel: :display 0 (

setcolor(bright);
line(1eft-2, top-2, right+2, top-2) ; / / top outer
line(1eft-2, top-1, right+2, top-1); / / top inner

line(1eft-2, top-2, left-2, bottomf2); // left outer
line(1eft-l, top-2, left-1, bottomt2); / / left inner

setcolor(dark) ;
line(rightt2, top-1, rightt2, bottomt2); // right outer
line(right+l, top , rightfi, bottom+2); / / right inner

line(1eft-1, bottom+2, rightf2, bottomt2); // effect outer
linefleft , bottom+l, rightt2, bottom+l); // bottom inner

return;
I

inner-beve1::inner-bevelfint 1, int t, int r, int b, int brt, int drkf :
bevel(l,t,r,b,drk,brt) (

return:
1

outer-beve1::outer-bevel(int 1, int t, int r, int b, int brt, int drk) :
bevel(l,t,r,b,brt,drk) {

lshadow::shadow(int 1. int t, int r, int b) : effect(1trb) {

I return;

/void shadow: :display(void) (

setfillpattern(fine-texturegattern, WHITE) ;
setfillstyle(USER_FILL, WHITE) ;
bar (leftf5, bottomtl, rightf6, bottomt6) ;
bar(right+l, top+5, right+6, bottom);

return;
1

return;

/ /
/ / Class definition for a list "selectable" objects.
/ /
/ / this is a generic list class -- change the type names and reuse.
/ /

#ifndef LIST-H
#define LIST-H

struct entry-t {
selectable *obj;
struct entry-t *prev, *next;
1;

/ / doubly linked list entry

class list-t {

public:
list-t (void) ;
-list-t (void) ;

void insert(selectab1e *obj);
void append (selectable *obj) ;
void remove (selectable *obj) ;
int length (void1 :

selectable *first (void) ;
selectable *next(void);
selectable *last (void) ;
selectable *prev(void) ;

private :
entry-t head, tail, *Cursor;
int n-entries;

/ / end of file

/ /
/ / Member functions for the list class. This list class has the
/ / property that elements are always added at the head. This list
/ / only contains objects of class "selectable".
//

#include "1ist.h"

list-t : :list-t (void) (

head.ob j = (selectable *)NULL;
head-next = &tail;
head.prev = (entry-t *) NULL;

tai1,ob j = (selectable *1 NULL;
tail.prev = &head;
tail-next = (entry-t *) NULL;

cursor = &head;
n-entries = 0;

return;
1

list-t::-list-t (void) (
entry-t *temp;

cursor = head.next; I
while (cursor != &tail) [

temp = cursor;
cursor = cursor->next;
delete temp;
1

tail.prev->prev = cursor;
tail.prev->next = &tail;
cursor->next = tail-prev;

return;
I

void list-t::remove(selectable *obj) (
int deleted = 0;

/ cursor = head.next;

while (cursor != &tail & & !deleted) {
if (cursor-xtbj == obj) (

cursor->prev->next = cursor->next;
cursor->next->prev = cursor->preV;
cursor->obj = (selectable *)NULL;
delete cursor;
deleted = 1;
n-entries--;
I

else (
cursor = cursor->next;
I

return;
I

selectable *list-t::first(void) (

cursor = head.next;

return cursor->ob j;
1

return;
i

I
I 1 selectable *list-t: :next (void) [

void list-t::insert(selectable *obj) 1 I if (cursor != &tail) cursor - cursor->next;
cursor = head-next;
head-next = new entry-t;
head.next->obj = obj;
head-next->next = cursor;
head.next->prev = &head;
cursor->prev - head.next;
return;
1

void list-t : :append (selectable *obj) i

cursor = tail.prev;
tail.prev = new entry-t:
tail.prev->obj = obj;

return cursor->obj;
1

1 selectable *list-t: :last (void) (

1 cursor - tail.prev;
return cursor->ob j;
)

selectable *list-t::prev(void) [

I if (cursor != &head) cursor = cursor->prev;

return cursor->obj;
1

/ /
/ / Class de f in i t i on f o r a popup f loa t ing menu c lass .
//

typedef i n t (*int-fn) () ;

c l a s s menu-t (
pr iva t e :

i n t top , l e f t ;
i n t len, wid;
i n t the ight , nitems;
i n t last-selected-item;
char *items 1121 ;

/ / int-fn ac t ions [l2] ;
char *image;

public:
menu-t (char *, . . .) ;
-menu-t (void) ;
void showtint x, i n t y);
void hide (void) ;
i n t pick (void) ;

i n t not-imp1 (void) ;
i n t null-action(void);

/ / end of f i l e I

menu-t::menu-t(char *title, ...) (

va-list ap;
char *sarg;
int-fn farg;
int i = 1, temp;

va-start (ap, title) ;

wid = textwidth(tit1e);
items[O] = title;
/ / actions[O] = null-action;

while ((sarg = va-arg(ap, char *)) != (char *)NULL)
items [il = sarg;
if ((temp = textwidth(items[i])) > wid)

wid = temp:
/ / farg = va-arg (ap, int-fn) ;
// actions[i] = farg;

items [itl] = (char *)NULL;
it+;
f

nitems = i-1;
theight = textheight (" (") ;
wid += (4 + textwidth ("->")) ;
len = theight * (nitems + 1) t 2 * nitems + 6;
image (char *)malloc(imagesize(left,top,lefttwidt5,top+len+5)) ;
last-selected-item = 0;

return;
) / / end menu-t : : : :menu ()

menu-t : : -menu-t () [
free (image) ;
1

void menu-t: :show (int x, int y) [

int temp;
left = x;
top = y;

if (lefttwidt5 > getmaxxo)
left = getmaxx0 - wid - 5;

if ttoptlent5 > getmaxy ())
top = getmaxy () - len - 5;

Mouse.Hide0 ;
getimagefleft, top, lefttwidt5, topclent5, image);

setfillstyle(SOL1D-FILL,WHITE);
bar(left, top, left + wid - 1, top + len - 1) ;

setcolor (BLACK) ;
rectangle(left, top, lefttwid-1, toptlen-1) ; / / border around menu
line(left, top + 3 + theight, lefttwid-1, top + 3 + theight);

settext justify (CENTER-TEXT, TOP-TEXT) ;
outtextxy (left + (wid/2), top + 3, items[Ol) ;

settext justify (LEFT-TEXT, TOP-TEXT) ;
temp = top + theight + 6;
for (int i = 1; i <= nitems; it+) (

outtextxy (leftt3, temp, itemstil :
temp += theightf2;
I

/ / display shadow

shadow shf left, top, lefttwid-1, top+len-1) ;
sh.display0;

Mouse .Show () ;
return;
} / / end menu-t::display

void menu-t : :hide (void) (

return;
1

int menu-t : :pick () i
int x, y, current = -1, newpos = last-selected-item;
int oldx, oldy;

int 1 = lefttl;
int r = lefttwid-2;
int t - top + theight + 5;
int b = top + (2 * theight) + 6;
int h = theightt2; // height of the highlight bar

1 Mouse.Status (oldx,oldy) ; / / x, y are reference parameters

/ Mouse.Move(left+wid/Z, (last-selected-itemtl) * h + t - 2) ;

/ /
/ / current and newpos range from O..n-1
/ /

while (Mouse.Event (x,y) != RMouseUp) [

I / / update hilite position

if (x > l & & x < r & & y > t & & y < t t n i t e m s * h)
newpos = (y - t) / h;

else

newpos = -1:

if (current !- newpos) i
Mouse.Hide 0 ;

if (current >= 0) f / / unhighlight current
setfillstyle(SOL1D-FILL, WHITE);
bar(1, t + current * h, r, b + current * h);
setcolor (BLACK) ;
outtextxy(l+2, t+l+current*h, items[currentfl 1) ;

)

current = newpos;

if (current >= 0) (
setfillstyle(SOL1D-FILL, BLACK);
bar (1, t + current * h, r , b + current * h) ;
setcolor (WHITE) ;
outtextxy(1+2, t + 1 + current * h, items[current+l 1);

)

) / / end while

if (current >= 0) last-selected-item = current;

return current; / / -1 -= cancel, O..n-1 == chose item i I
1 / / end menu-t : :pick ()

int not-imp1 () {
char *image = new char[imagesize(200,200,440,280)];
getimage(200, 200, 440, 280, image);
setcolor (WHITE) ;
bar(200,200,440,280);
settext justify (CENTER-TEXT, CENTER-TEXT) ;
outtextxy (320, 240, "This don't work! ") ;
getch.0 ;
putimage (200, 200, image, COPY-PUT) ;
delete image:
return 0;
1

int null-action() i return 0;) I

/ /
// class definition for a message-line object that allows messages
/ / to be displayed and allows certain kinds of input to be entered.
//

class messageline-t i
public:

messageline-t (void) ;

void show (void) ;
void clear(void) :
void post (char *msg) ;
void append (char *msg) ;
char *getsfchar *prompt);
class-t *getobj (char *prompt) ;

private :
int ntiny, may; / / used by ison0
int start-x; / / used for posting messages:
char inbuf[80];

);

extern messageline-t msgline;

/ / end of file

/ /
/ / member functions for the message line object
/ /

messageline-t : :messageline-t (void) {

miny = textheight("HR) * 4/3 + 6;
maxy - (textheight("Hm) * 4/3 + 4) * 2 + 2;
start-x = 4;
inbuf [O] = '\Or;

return;
;

void messageline-t::show(void) {

setfillstyle(SOL1D-FILL, BLACK);
bar (1, miny, getmaxx () , maxy) ;
setcolor (WHITE) ;
moveto(1, maxy) ;
lineto(1, miny);
lineto(getmaxx(), miny) ;
lineto (getmaxx0 , maxy) ;

~ouse.Show () ;
return;
)

void messageline-t::clear(void) (

setfillstyle(S0LID-FILL, BLACK):
bar(2, minytl, getmaxxo -1, maxy) ;
start-x = 4;

Mouse.Show() ;
return;
)

void messageline-t::post(char *msg) (

int color = getcolor0 ;

Mouse .Hide () ;

clear 0 ;

setcolor (WHITE) ;
settext justify (LEFT-TEXT, TOP-TEXT) ;
outtextxy (4, minyf3, msg) ;
start-x += textwidth(msg) ;
setcolor (color) ;

1 Mouse. Show () ;
return;

void messageline-t::append(char *msg) (
int color = getcolor0;

Mouse .Hide () ;

setcolor (WHITE) ;
settext justify (LEFT-TEXT, TOP-TEXT) ;
outtextxy (start-x, minyt3, msg) ;
start-x += textwidth (msg) ;
setcolor (color) ;

Mouse .Show () ;

1 return;

char *messageline-t::gets(char *prompt) (
char ch, *p = &inbuf[O];

clear (f ;
post (prompt) ;

while ((ch = getcho) != 27 & & (ch != 13)) {

if (ch -= 8) (/ / backspace
*(--p) - "0';
clear 0 ;
post (prompt) ;
append (inbuf) :
f

else (
*p = ch;
*(ptl) = ' \ o r ;
append (PI ;
p++;
f

1

if (inbuf [O] == ' \Of I I ch == 27) (/ / empty string - null string
post("0peration Cancelled.");
return (char *)MULL;
)

else {
clear 0 ;
return &inbuf [Ol ;
f

1 / / end messageline-t::gets()

class-t *messageline-t::getobj(char *prompt) (

selectable *ob j = (se lec table *) WLL;
char ch;
i n t x, y, e;

post (prompt) ; I
while (obj == (se lec table *)NULL) (I

while ((e = get-event (ch, X, Y)) != SELECT)

i f (e == KEY & & c h = = 27) (
post (moperat ion cancelled. ") :
return (class-t *)NULL;
1

1

i f (~trcrnp (obj->typeof () ,nclass-t") != 0 & &
strcrnp (ob j->typeof 0 , aobject-t") != 0) (

obj = (se lec table *)NULL;

re turn (class-t *) ob j ;

1

/ / end of f i l e

//---[msmouse.h]---

/ / Class definiton for an object handle the mouse device.
/ /
/ / Copied from "Object Oriented Programming in Turbo C++', Wiley, 1990
//

#ifndef MSMOUSE-H
#define MSMOUSE-H

/ / Defines graphics mouse cursor styles

struct HotSpotStruct (int X, Y; j;

struct MouseCursor (
HotSpotStruct HotSpot;
unsigned ScreenMask 1161 ;
unsigned CursorMask [l61;

extern const MouseCursor ArrowCursor;
extern const MouseCursor Handcursor;
extern const MouseCursor LeftRightCursor;
extern const MouseCursor UpDownCursor;
extern const MouseCursor Cornercursor;

/ / Mouse event codes

const unsigned Idle = 0x0000;
const unsigned MouseDown - Oxff01;
const unsigned LMouseDown = Oxff01;
const unsigned RMouseDown = OxffOZ;
const unsigned MouseStillDown = Oxff04;
const unsigned LMouseStillDown = OxffO4;
const unsigned RMouseStillDown = OxffO8;
const unsigned MouseUp = Oxff10;
const unsigned LMouseUp = Oxff10;
const unsigned RMouseUp = Oxff20;
const unsigned MouseEnter = Oxff4O;
const unsigned MouseLeave = Oxff 80;
const unsigned Mousewithin = OxffcO;

/ / Mouse Button Masks

const unsigned LeftButton = 0x0001;
const unsigned RightButton - 0x0002;
/ / The video modes that the mouse is running under

enum VideoModeType (TextScrn, LowResGr, HerculesGr, Graphics I ;

/ / The Mouse Class

class MouseObject (

protected:
int OldX, OldY; / / Used solely by Moved to keep position
char OK; / / True if mouse initialized
char Mouseoff; / / True if mouse ig disabled (Default)
char LowRes; / / True if in 320 X 200 graphics mode
char TextMode; / / True if in text mode

public:
int X, Y, Dx, Dy; / / Keeps track of mouse's movement

i MouseOb ject (void) ;

void Setup(VideoModeType VideoMode) ;
int ~riverExists (void) ;
int SetupOK (void) ;
void Hide (void) ;
void Show (void) ;
unsigned Status (int &Mx, int &My) ;
unsigned Buttonstatus (void) ;
int PressCntfunsigned ButtonMask);
int ReleaseCnt(unsigned ButtonMask);
unsigned Event(int &Mx, int &My);
unsigned WaitForAnyEvent(int hMx, int &My);
void WaitForEvent (unsigned E, int &Mx, int &My) ;
int Moved (void) ;
void Move (int M x , int My) ;
void TurnOn (void) ;
void Turnoff (void) ;
int Operating (void) ;
void SetGrCursor(const MouseCursor hNewCursor);

); / / end class MouseObject

extern MouseObject Mouse;

/ / end of file

w r n I-

-%8 m
,rnU -

- 0 n m . - * <
B$P?C Z h ""X S @

3PE.1, e
t;&'o 2 $
ID -. n -- 11 m

H 2 * N -
"2 5 8
- P, 'm, 2

w C I-'
0 ID

- .. 0 n
P - O

I-

.-
rt C
,*U

rt
I-

ID88
OIDET
C n u

'2 - 2 E . 8 - 8 n,:
rt e ..

n 3 ul

% mrirt
rtrtw

n !%F2
G 7 U
u -

E O I J E
m e *

e q
4 @ @. w rt
II

0
a e 5 - rt
0 I-'

2 8 E
I-%%
7 I-

r t 3 - ,
R

% e e ID

9
$ $
F
ID I-

/ / / over the mouse button

unsigned E;

Mx = regs.x.cx; My = regs.x.dx; 1 if (!Operating()] return (U = H y = O) ;

if (TextMode) {
Mx >w 3; / / Adjust for text coordinates
My >w 3:
I

if (LowRes) (
Mx >>= 1; // Adjust for 320 X 200 coordinates
1

return regs.x.bx;

unsigned MouseObject::ButtonStatus(void) 1
/ / Returns the status of the mouse buttons

int Mx. My;

if (!Operating ()) return 0;

return Status (Mx, MY) ;
l

int MouseObject::PressCnt(unsigned ButtonMask) 1
/ / Returns number of times the button has been pressed since
/ / last time called.

REGS regs;

if (!Operating 0) return 0;

regs.x.ax - 5;
regs.x.bx = ButtonMask >> 1; / / Button selector
int86 (MsCall, ®s, ®s) ;

return regs.x.bx;
l

int MouseObject::ReleaseCnt(unsiyned ButtonMask) (

/ / Returns number of times the button has been released since
/ / last time called.

REGS regs;

if (!Operating ()) return 0;

regs.x.ax = 6;
regs.x.bx = ButtonMask >> 1; / / Button selector
int86 (MsCall, ®s, ®s) ;

return regs.x.bx;
1

unsigned MouseObject::Event(int &Mx, int &My) 1
/ / Gets the last mouse event. The left mouse button has priority

if ((E = Status (Mx, My)) == 0) {
/ / No mouse button down, but maybe there was a button press that
/ / was missed. If not, check to see whether a button release was
/ / missed. Favor the left mouse button.

if (PressCnt (LeftButton) > 0)
E = LMouseDown;

else if (PressCnt (RightButton) > 0)
E = RMouseDown;

else if (ReleaseCnt (LeftButton) > 0)
E = LMouseUp;

else if (ReleaseCnt(RightButt0n) > 0)
E = RMOuseUp;

1

else {
/ / A mouse button is down

if (E & LeftButton) (
if (PressCnt (LeftButtonf > 0)

E = LMouseDown; / / Must have just been pressed
else

E = LMouseStillDown; / / already down
1

else if (PressCnt (RightButton) > 0)
E = RMouseDown;

else
E = RMouseStillDown;

1

return E;
I

unsigned MouseObject::WaitForAnyEvent(int &Mx, int &My) {
/ / Waits for a mouse event to occur and returns its code

unsigned E;

if (!Operating ()) return (Mx = My = 0) ;

while ((E = Event(Mx, My)) == Idle); / / Loop until an event occurs

return E;
I

void MouseObject::WaitForEvent(unsigned E, int &Mx, int &My) 1
/ / Waits for the event E to occur and returns its coordinates

if (!Operating()) (Mx = My = 0; return; 1

while (EventtMx, My) != E); / / Loop until event E occurs 1

return: return;
)

int MouseObject::Operating(void) (
/ / Returns a boolean falg that is true only if the mouse object has
/ / ben enabled. This is the default state.

int MouseOb ject: :Moved (void) (
// Test to see if the mouse has moved since the last time this
/ / function was called.

if (!Operating ()) return False;

Status (X, Y) ;
Dx = X - OldX; Dy = Y - OldY; void MouseObject::SetGrCursor(const Mousecursor CNewCursor) i

/ / Sets the graphics mouse cursor to the type specified
return (Dx != 0) I I (Dy != 0) ;

REGS regs;
SREGS sregs;

void MouseObject::Move(int Mx, int My) (
/ / Moves the mouse cursor

if (!Operating()) return;

REGS regs:

if (!Operating ()) return;

regs.x.ax = 4;
regs.x.cx = Mx;
regs.x.dx - My; return;

1
if (TextMode) (/ / Adjust for text coordinates

regs.x.cx <<= 3;
regs.x.dx <<= 3;
1

void MouseOb ject: :Turnon (void) {
/ / Enables the mouse code

return;

if (OK & & Mauseoff) {

MouseOff = False;
Show () ;
!

1

return;
)

void Mouseobject: :Turnoff (void) (

/ / Disables the mouse code. This is useful when you don't want to
/ / use the mouse bu the code already has mouse calls in it.

if (OK & & !Mouseoff) (

Hidef) ;
MouseOff 4. True;

n
n n n

S 5
E 2 - - r t - - - - r t - r t - - - - r t - - +.rt - -

0 0 0 0 0 0 0 0 m z 0 0 0 0 0 0 0 0 P z 0 0 0 0 0 0 0 0 .og 0 0 0 0 0 0 0 0 -0
o o m z

% C E % R % O R ' 2 X,X,E%%%O R ‘ 2 % % % % X , G X , % E: $: : f f ; f f$E ib - + : a o ~ o
~ 0 ~ 0 x 8 8 2 "I 8EE5 i888E " 2 8 8 8 Z R 2 2 8 " 2 ~ m o o ~ w m m

o m m e ~ e e ? ? . ~ ? ;- g .o -o e ? ,m ? ,m ;- ?~"??PC".~.!! T g r ? r ? e e r ? T B n 2 m 7 B
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 ,$ 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 2 % X , X , z R g % E : trR :R X,kWX,RS ?4 R 28 X,OEE%!$O E :R S % % % ? f X , S X , \ w
0 0 0 4 4 0 m 0 0 m ~ ~ N N O O O I - ' 8 8 8 8 2 2 2 2 m n o m n o m o r m

O I D I D O ~ O O ~ m r O O P O O O O ~ m x 0 0 0 0 - l m h m
o m m a ep.Oeth?,mm $ 8 e e e e - m ? ? ? P R %
-l? $'=: ?PPP,mw.w .? % g ry~??e:rn % !3 rt n

rt
0 0 7s: 0 0 0 0 0 0 0 0 7%' O O O o O O O O 7 t 4 O O O o O O O O P o g g g g g a s g ~i
RR $71 X,KZX,E,Xw%R $G' 2 % b K C X , i $ O B R % % $ 5 ch&;gzggg * g
m m E: 0 0 N N 0 0 0 r P o o o o m m m m
~ i w toe g R Z E 2 b ' 2 & tog o o ~ o o o o ~ i , coo
,mm a m o , m . ~ . ~ ? ; l r m v n -N -r p -0 * r -0 -0 a w '2 -: -Z -'2 -2 -2 -2 -2 4 o 2 o -Z .'2 -8 -8 -; -2 -2 -2 4 g

0 0 0 G rt I1 rt w % n
rt li

0 0 0 0 0 0 0 0 @ 2 0 0 0 0 0 0 0 0

C 5 K b R % O E 6 - &'ggg;G{g ~ I I
g g ; g ? i " E <:

58 2: BSX,BE,K,X,R o n o n m o o u 2;
R"o%:z'2K rt

o o o o m m m m -
w r

g g 2 8 2 g 2 ; rt

z -$ *$ 2 .& *g *& b. n ,'" P -0 " -0 -0 T" '2 *'2 -8 -'2 2 -2 -2 -2 Z ~ ~ o p - o m p m p 6
?.? : - - .o" - - - - a - - - Et: 0

0 0
r m m

\
m

\ \ \
\ \ \

\ \ \ \ a --. \ w \ \ w
\ 0 \ \ 0

m m m m m m ; g m w
m rn $; n o
0 w n w n

m
m

s:
1 " 1 1 3 1 1 g.
8 3 3 b P 3 b la 3

F f ; F F 65: f E f ! X X Q X X X X
x X X

n

a

3
n m r n
w r t ,= %
rt

*
0 w LL

3 .

//---[prope~y~cpp]-- I msgline .append (" selected.") ;

/ /
// member functions for the property class (attributes and services)
/ /

#include "property.hR
#include "msgline .hf'
#include "diagram.hn
#include "canvas.hn

property-t: :property-t (int x, int y, char *s, class-t *object) {

strcpy (name, s) ;

xl = x:
Yl = y;
x2 = xl + textwidth (name) ;
y2 = yl + textheight(name) * 4/3:

text = NUU;

obj = object;

return;
t

return;
1

void property-t : :show (void) [

settext justify (LEFT-TEXT, TOP-TEXT) ;
outtextxy (xl, y1,name) ;

return:
1

void property-t : :move (int dx, int dy) (

xl += dx;
yl += dy:
x2 += dx;
y2 += dy;

return;
1

selectable *property-t::select(void) {

msgline,post (label) ;
msgline.append(name);

/ return this;

int property-t: :act (int X, int Y) {

int selection;
char *s;

selection = selectable::act(x,y):

switch (sel@ction) (

case 0: / / rename
if ((s = msgline.gets("Enter new name: ")) != NULL) (

strcpy (name, s) ;
obj->fit (s) ;
obj->show () ;
current-diagram->refresh();
)

msgline.post (label) ;
msgline.append("name changed.");
break;

case 1: / / note
annote() ;
break;

case 2: // type or proto
msgline .post ("Add type information. ") ;
break:

case 3: / / delete
if (strcmp(labe1,"Attribute ") -= 0)

ob j->remove-attr(this) ;
else

ob j->remove-serv (this) ;

canvas. clear () ;
obj->show 0 ;
current-diagram->refresh():

msgline.post (label) ;
msgline . append (name) ;
msgline.appendfR deleted from ");
msgline .append (ob j->label) ;
msgline.append(obj->name);
msgline.append(". ") ;
/ / delete this;
break;

default :
break;

/ return selection;

attribute-t::attribute-t(int x, int y, char *s, class-t *object) :
property-t (x, y, s, object) (

//
/ / v i r t u a l c l a s s from which mouse se l ec t ab l e objec ts a r e derived
/ /
/ / abs t r ac t c l a s s t o serve a s base c l a s s f o r a l l mouse se l ec t ab l e
/ / screen objec ts . pointers t o t h i s c l a s s a r e used by t h e dispatcher
/ / object .
/ /

Uifndef SELECT-H
#define SELECT-H

c l a s s s e l ec t ab l e (
publ ic :

v i r t u a l char *typeof (void) (re turn "se lec tablen;)
v i r t u a l void show (void) (return;)
v i r t u a l i n t i s o n (i n t x, i n t y) ;
v i r t u a l i n t i s a (char *s) ;
v i r t u a l s e l ec t ab l e * se l ec t (vo id) ;
v i r t u a l i n t a c t (i n t x, i n t y) ;
v i r t u a l void annote (void) ;
v i r t u a l void save (FILE *fp) ;

char name f 801 ; / / object name
char l abe l [2 0] ; / / c l a s s label

protected:
i n t x l , y l , x 2 , y2;
menu-t *menu:
char *text;

1 ;

/ / end of f i l e

- n r

3 m

3 - g f
Q r

If: LE
I;; 2 :
",?i
r 0

S .. -
i 1

, d ~ r
0

1 - * r
S
0

6
2
I-

I;; a
i -

r a
la E
rt

f
I"

E -
0
7

n
* la -
-

0
r
a

If:
r
n
rt

&
r

la

I ,..
"1 H
I? m
* m

a,
-

r a
III E
rt

z
E
r

8 ...
5 *
X

r
rt

5.
-

-

b
If:
V1
7

S - - ..

\ \ \ \ \
\ \ \ \ \

w o e
C -7
r t g m

8 1 a P
$ I f : ?
1I;;E.
P $ l t

",&I
cI;;g
m r n
c.2 la m

P ; 6 &
@ @ : :
a w r m la 0

2 . $ 2
I 8 m a * $
m n
2;K
B g r
r .. la
rt c . r w

rt 0 I-

E e
Y la

3 la

8 R
" l a

w m m r
r n :
rt w
w r a ?
K
rt

a

m -
- 5 1 ~ s w l a * r -51

$ $ $ $: g h - X G
t=L::L.$";; ::ll
D D D 3 " C U $
? ? ? ? r t D r t g g s s s - a a . . P 6
b b 8 r t v s z 2 ? a a a a z W d b
3 1 - 1 0 11E V I -

w w r t l a - m r t
a s w m rt 1 ;; ,%Ela z i ? rb8 "q ... 8 5 8~

% z m o w + * W C
m r m 3 m n 3 :: --? E g

S
If:
E
P - - ..

I ob ject-t (FILE * ;
-ob ject-t (void) ;

//
// Class definitions for the Class and Object symbols
/ /

#ifndef SYMBOL-H
#define SYMBOL-H

I char *typeof(void) (return "object-t"; I

private:

struct point-struct (
int x,y;
1 ;

typedef struct point-struct point-t;
typedef point-t cpoints [4 1 ;

class class-t : public selectable 1
public:

class-t (void) (return; 1
class-t(int x, int y, char *s);
class-t (FILE *) ;
-class-t (void) ;

virtual void show (void) ;
void move-to(int x, int y) ;
void connect(c1ass-t *to, int &xl, int &yl, int &x2, int &y2);
void add-attr (char *s) ;
void add-serv (char *s) ;
void remove-attr(selectab1e *obj) ;
void remove-servfselectable *obj);
void rename (char *s) ;
void save (FILE *) ;
void fit (char *s) ;

char *typeof(void) (return "class-t";)
int isa(char *s) :
selectable *select(void);
int act (int x, int y f ;

protected:
void determine-cpoints(void);

int attr-y, serv-y: / / top of attr and serv sections
int txht; / / text height
int bdwd; / / width of border
cpoints cpts; / / connect points
list-t *alist, *slist; / / attributes and services;

class object-t : public class-t [
public:

object-t (int x, int y, char *a) ;

int isaichar *s) ;
void show (void) :

extern menu-t class-menu;
extern menu-t object-menu;

/ / end of file

#include "symbol .hn
#include "property .ha
#include "dispatch.hn
#include umsmouse.hR
#include "msg1ine.h"
%include Rcanvas.hs
#include "effect.hn
#include *diagram.hn
#include 'uti1.h"

/ /
/ / member functions for the Wclass" symbol
/ /

class-t::class-t(int x, int y, char *s) {

txht = textheight ("HA) * 4/3;
bdWd = 0;

strcpy (name, s) ;
strcpyflabel, "Class ") ;

xl = x;
x2 = x1 t textwidth (name) + 8;

Yl = Y;
attr-y = yl + txht + 4;
sen-y = attrj t txht t 4;
y2 = s e n j + txht t 4;
menu = &class-menu;
text = NULL;

alist = new list-t;
slist = new list-t;

return;
I

class-t : :class-t (FILE *fp) (/ / must scan itself
char buf(401;
int x, y, end-of-class = 0;

txht = textheight('Hn) * 4/3;
bdWd = 0:

getqs (fp, buf) ;
strcpy (name, buf) ;
strcpy (label, "Class ") ;

yl - y;
attrj = yl + txht + 4;
servj = attrj + txht t 4;
y2 = s e w + txht + 4;
menu &class-menu:
text = NULL;

alist = new list-t;
slist = new list-t:

dispatcher. insert (this) ;

// now read in attributes and services

while (!end-of-class) {

fscanf (fp, " %s ", buff;

if (strcmp(buf, "~ttribute") == 0) {

getqs (fp, buf) ;
add-attr (buf) ;
I

else if (strcmp(buf ,"Servicen) == 0) [

getqs (fp, buf) ;
add-serv(buf) ;
1

else if (strcmp(buf, "I") == 0) [
end-of-class = 1;
I

else {
current-diagram->error = 1;
return;
1

1

1 return;

class-t : : -class-t (void) (

/ return;

1 void class-t: :fit (char *s) (

return;
1

fscanf (fp, " (%d,%d) (", &xt &Y): / int class-t: :isa(char *s) (

return (strcmp(s,class-t: :typeof 0) == 0) 1 I selectab1e::isats) :

;!
r

o o m II
w w U U I w
u:g::

m u .
Kg.-:
r * u v .^ m
rt-....I-
t...n
v mu
3 r r t m I D - 3 n -

rt ..
=: g
" t;;

4
r

v r a -
$ F + Z
v w
mrt.

X ";
5 ,
2 3 g
rt -. I
r t w
n rt .. rt

H

servqr -= txht;
y2 -= txht;
)

prop = (property-t *I alist->next ;
while (prop != NULL) (

prop->move(O,-txhtl;
prop = (property-t *) alist->next ;
1

alist->remove (ob j) ;

prop = (property-t *) slist->first 0 ;
while (prop != NULL) (

prop->move (0,-txht) :
prop = (property-t *) slist->next 0 ;
1

dispatcher. remove (ob j) ;

return;
1

void class-t::remove-serv(selectab1e *obj) (
property-t *prop;

prop = (property-t *) slist->first 0 ;

while(prop != NULL & & prop != obj)

prop = (property-t *) slist->next 0 ;

if (prop != MILL) (

if (slist->length() > 1)
y2 -= txht;

prop = (property-t *) slist->next (1 ;
while (prop != NULL) {

prop-aove(0,-txhtl ;
prop = (property-t *) slist->next () ;

I

return;

void class-t::rename(char *s) {

strcpy (name, s) ;

if (textwidth(s) > (x2 - x1 - 8)) (
x2 = xl + textwidth(s) t 8;
1

else if (alist->length() = 0 6& slist->length() - 0) (

x2 = xl + textwidth(s) + 8 + 2*bdwd;
1

return;

selectable *class-t : :select (void) (
selectable *obj;

selectable: :select 0 :
current-diagram->promote(this);

/ / promote all attributes of this class/object

obj = alist->first () ;
while (obj != (selectable *)NULL) (

dispatcher. promote (obj) ;
obj = alist->next () ;
1

/ / promote all services of this class/object

obj = slist->first 0 ;
while (obj != (selectable *)NULL) (

dispatcher.promote fob j) ;
obj = slist->next 0 :
1

/ / promote all connections connected to this object

obj = current-diagram->first-connection(this);
while (obj != NULL) {

dispatcher.promote(obj);
ob j->show 0 ;
obj = current-diagram->next-connection(this);
I

return this; I I
int class-t: :act (int x, int y) (

int selection, new-x, newj;
char *s, ch;

1 selection = selectable: :act (x, yl ;

1 switch (selection)

case 0: // dup
msgline.post("Duplicate the current Clas~/Object.~);
break;

case 1: / / move
Mouse.Move(xl,yl) ;
Mouse.SetGrCursor (CornerCursor) ;
current-diagram->remove (this) ;
current-diagram->refresh();
msgline.post("Position upper left corner, then click to place Class/Object.")

while (get-event (ch, new-x, new-y) != SELECT 1 ;
Mouse.SetGrCursor(ArrowCursor);
move-to(new-x,new_y);
current-diagram->add(this);
current-diagram->refresh (1 ;
msgline.post("Move completed.");
break;

case 2 : / / delete
if (current-diagram->f irst-connection (this) = NULL) (

dispatcher.remove(this) ;
current-diagram->remove(this);
current-diagram->ref resh () ;
msgline.post (name) ;
msgline.append(" deleted.");
delete this;
1

else (
m~gline.post(~Connot delete class/object with connections.");
1

break;

case 3: / / note
annote () ;
break;

case 4: / / attr
s = msgline .gets ("Enter attribute name: ") ;
if (s != (char *)NULL) (

add-attr(s) ;
msgline.postfRAttribute ") ;
msgline.append(s) ;
msgline.append(" added.=);
}

show() ;
current-diagram->refresh();
break;

case 5: / / serv
s = msgline.gets("Enter service name: ");
if (s != (char *)NULL) (

add-serv (s) ;
msgline.post ("Service ") :
msgline . append (s) ;
msgline.append(" added.");
1

show() ;
current-diagram->refresh();
break;

case 6: / / rename
rename (msgline.gets ("Enter new name: ")) ;
show() ;
current-diagram->ref resh () ;
msgline.post ("Name changed.") ;
break:

default :
msgline.post("Operation Cancelled.");
break;

1

return selection:
1

void class-t::determine-cpoints(void) (

cptsl01 .x = xl;
cpts(01 .y = cpts[21 .y = (y1 + y2) / 2;

cpts[l] .y - yl;
cptsI1l.x - cpts[3].x = (xl + x2) / 2;
cpts[3] .y = y2;

return;
I

1 void class-t: :connect (class-t *to, int ixl, int iyl, int ix2, int iy2) {

int i = 0, j = 0, k, 1;
long d, sd = 640000;
long Xl,Yl,X2,Y2;

/ /
/ / find the two points, one from each vector, that are closest to each
/ / other. We use a modified distance formula:
/ /
/ / d = abs(x2 - xl) + abs(y2 - yl)
/ /
/ / which results in the same ordering relation as the real distance
/ / formula:
/ /
/ / d = sqrt((x2 - xl)"2 t (y2 - y1)"2)

/ /
/ / but is easier (and faster) to compute.
/ /

determine-cpoints () ;
to->determine-cpoints 0 ;

for (k = 0: k < 4; k++) {
for (1 = 0; 1 < 4; I++) (

Xl = cpts[k] .x; Y1 = cpts[k] .y;
X2 = to->cpts Ill .x; Y2 = to->cpts [l] .y;

return;
)

void class-t::save(FILE *fp) (
property-t *obj;

1 fprintf (fp. "%a \"%s\" (%d,%d) (\nnr label, name, xl, yl);

obj = (property-t *) alist->first 0 ;
while (obj != (property-t *)NULL) (

fprintf (fp, "\t%s \"%s\"\nR, obj->label, obj->name);

I
obj = (property-t *)alist->next 0 ;

ob j = (property-t *) slist->f irst 0 ;
while (obj != (property-t *)NULL)

fprintf(fp, "\t%s \m%s\n\n", obj->label, obj->name);
obj = (property-t *) slist->next 0 ;
1

fprintf (fp, "\t] \n\nn) ;

return;
I

/ /
/ / member functions for the object-t class
/ /

object-t::object-t(int x, int y, char *s) : class-t (x, y, s) {

strcpy (label, "Object ") ;

bdwd = 4;

x2 = xl + textwidth(name) + 8 + 2 * bdwd;

attrj += bdwd;
servj += bdwd;
y2 t= 2 * bdwd;

menu = &object-menu;

alist = new list-t;
slist = new list-t;

return;
I

object-t::object-t(F1LE *fp) { / / must scan itself
char buf[40];
int x, y, end-of-class = 0;

txht = textheight("HR) * 4/3;
bdwd = 4;

getqs (fp,buf) ;
strcpy (name,buf) ;
strcpy (label, "Object ") ;

fscanf (fp, " (%d,%d) { ", &x, &y) ;

Xl = x;
x2 = x1 + textwidth(name) + 8 + 2 * bdwd;

Yl = y;
attrj = yl + txht + 4 + bdwd;
servj = attrj + txht + 4 + bdwd;
y2 = s e m j + txht + 4 t 2*bdwd;

menu = &object-menu;

alist = new list-t;
slist = new list-t;

dispatcher.insert (this) ;

/ / now read in attributes and services

while (!end-of-class) {

fscanf (fp, %s ", buf) ;

if (strcmp (buf, "Attribute") == 0) {

getqs (fp,buf) ;
add-attr (buf) ;
1

else if (strcmp(buf,"ServiceR) = 0) (

getqs (fer buf) ;
add-serv (buf) ;
)

else if (strcmpfbuf, ") ") == 0) {
end-of-class = 1;
1

else (
current-diagram->error = 1;
return;
I

I

return;
1

object-t : :-ob ject-t (void) {

1 return;

1 int object-t: :isa (char *I) {

/ return (strcmp(s,typeof 0 f == 0) I I class-t: :isa(s) ;

void ob ject-t : :show (void) {
selectable *obj;

Mouse .Hide 1) ;

setfillpattern (fine-texturegattern, WHITE) ;
setfillstyle(USER-FILL, WHITE);
bar(xl,ylrx2,y2);

setfillstyle (SOLID-FILL, WHITE) ;
bar(x1tbdwd-1,yltbdwd-l,x2-bdwd+l,y2-bdwdtl);

setcolor (BLACK) ;
rectangle (xltbdwd, yltbdwd, x2-bdwd, y2-bdwd) ;
moveto(xl+bdwd, attr-y) ;
lineto (x2-bdwd, attrj) ;
moveto (xl+bdwd, serv-y) ;

settextjustify(CENTER-TEXT, TOP-TEXT);
outtwtxy((xl+x2)/2, yl+bdwd+3, name);

ob j - alist->first 0 ;
while (obj != (selectable *)NULL) (

ob j->show () ;
ob j - alist->next 0 ;
)

obj = slist->first 0 ;
while (obj != (selectable *)NULL) (

ob j->show 0 ;
obj = slist->next 0 ;
1

Mouse .Show () ; I
return:
I

/ / end of file

/ /
// class definition for the title bar object
/ /

Rifndef TITLEBAR-H
#define TITLEBAR-H

class titlebar-t : public selectable {
public:

titlebar-t (void) ;
-titlebar-t (void) ;

void show (void) ;
void set-title (char *s) ;
int save-current-diagram (void) ;
void start-new-diagram(v0id) ;
void retrieve-diagram(void) ;

char *typeof(void) (return atitlebar-t";
selectable *select(void):
int act (int x, int y) ;

private:

extern titlebar-t titlebar;

/ / end of file

/ /
/ / member functions for the title bar object
/ /

#include "titlebar.hn
(include nmsmouse.hn
#include Rmsgline.h"

titlebar-t: :titlebar-t (void) (

strcpy(name,
strcpy(labe1, "Title bar");

return; I F

I :: inherited member function overridden: titlebar should never be
/ / promoted.
/ /

selectable *titlebar-t::select(void) (

msgline.post("Title bar selected.");

/ return this;

int titlebar-t: :act (int x, int y) {
int selection;
char bufl801, *s;

xl = 1; / extern int exit-flag;
yl = 1;
x2 = getmaxx () ;
y2 = textheight("Hn) * 4/3 t 5; / / allow for tails (e.g. 'yl)

menu = new menu-t (*Filen, "NewR, "OpenR, "Saven, RClose", AName", "Exit*, NULL) ;

return;
I
I

void titlebar-t : :show (void) (

Mouse .Hide () ;

setf illstyle {SOLID-FILL, BLACK) ;
bar(x1, yl, x2, y2);

setcolor (WHITE) ;
moveto(x1, y2);
linet o (xl , yl) ;
lineto(x2, yl);
lineto (x2, y2) ;

/ / add system menu icon and initial title
settext justify (LEFT-TEXT, TOP-TEXT) ;
outtextxy (xlt3, y1+3, "File") ;
settext justify (CENTER-TEXT, TOP-TEXT) ;
outtextxy (getmaxx () /2, 4, name) ;

Mouse. Show () ;
return;
)

void titlebar-t::set-title(char *s) (

if (s - (char *)NULL I I *s == ' \ O f)
strcpy (name, n<untitled>m) ;

else

switch (selection) {
case 0: // new

start-new-diagram 0 ;
break;

case 1: / / open
retrieve-diagram () ;
break;

case 2: / / save
save-current-diagram();
break;

case 3: / / close
if (save-current-diagram())

start-new-diagram();
break;

case 4: / / name
char *s = msgline.gets(REnter diagram title: ") ;
if (s != NULL) {

strcpy(current-diagram->name, sf;
set-title(current-diagram->name);
show0 ;
msgline.post("Diagram title ~hanged.~);
>

break;

case 5: // exit to dos
exit-flag = 1;
break;

default :
break;

1

return selection;
f

int titlebar-+-::save-current-diagramfvoid) (
char *fn = (char *)NULL;
FILE *fp = (FILE *)NULL;
char ch;
int x , y;

if (current-diagram->name[O] == '\Of) (/ / diagram must be named
strcpy(current-diagram->name,

msgline .gets ("Enter diagram title: ")) ;
if (current-diagram->name [O] == ' \Of)

return 0;
else (

set-ti tle (current-diagram->name) ;
show () ;
}

while (fp == (FILE *)NULL) (
fn = msgline.gets("Enter filename: ");

if (fn == (char *)NULL) return 0;

if ((fp = fopenffn, " w t m)) == (FILE *)NULL) (
msgline.post("Unab1e to open file ' ") ;
msgline .append (fn) ;
msgline .append (" I . Click to continue.. .") ;
get-event (ch, x, y) ;
f

I

while (fp == (FILE *)NULL) (
fn = msgline.gets("Enter filename: ");

if (fn = (char *)NULL) return;

if ((fp = fopen(fn, "rt")) == (FILE *)NULL) {
msgline .post ("Unable to open file ' ") ;
msgline.append(fn) ;
msgline.append("'. Click to continue...");
get-event (ch, x, y) ;
)

f

delete current-diagram:
current-diagram = new diagram_t(fp);

while (!end-of-diagram && !current-diagram->error) (

if (fscanf (fp, A %s ", buf) == 0) (
current-diagram->error = 1;
return;
f

if (strcmp(buf, "Class") -= 0) (
current-diagram->add(new class-t(fp)) ;

else if (strcmp(buf, "Object") = 0) (
current-diagram->add(new object-tffp));
I

else if (strcmp(buf, "Message") == 0) (
current-diagram->add(new message-tffp)) ;

current-di agram->save (f p) ; f

fclose(fp) ;
msgline .post ("Save operation complete. ") ;

return 1;
I

void titlebar-t::start-new-diagram(v0id) (

delete current-diagram:
current-diagram = new diagram-t;
dispatcher.clear();
dispatcher-insert (this) ;
dispatcher.insert(&canvas);
canvas.clear();
set-title ("") ;
show();
msgline.post ("Starting new diagram.") ;

return;
f

void titlebar-t::retrieve-diagram(v0id) (

char ch, *fn = (char *) NULL, buf 1801 ;
int x, y, end-of-diagram - 0;
FILE *fp - (FILE *)NULL;

else if (strcmpfbuf, "Inheritancen) == 0) (
current-diagram->add(new gen-spec-t(fp)) ;

f

else if (strcmp (buf, "Whole-Part") --. 0) (
current-diagram->add(new whole~art-t(fp)) ;

1

else if (strcmp(buf, "Association") -= 0) (
current-diagram->add(new connection-tffp));

f

else if (strcmp (buf, "end") == 0) 1
end-of-diagram = 1;
1

if (current-diagram->error == 0) (

current-diagram->ref resh () ;
set-title(current-diagram->name);
show() ;
msgline-post ("Open operation complete.") ;
f

else {
msgline.post("Error reading diagram in file I ") ;

msgline.append(fn);
msgline .append (R ' .") ;

--. rt
--. r r t I-'

8
a - 8 m o

- n
rt I-'

0 m 6 1; . m ..
r I-'

a, 8 5 c r rt
I-'

:: 1
,1,

P * * 4 r --.-.'- 8g.8 $ 4 "'
m m m a
* I - C * v
1 s 1 r 9 9 m o m $a& 3
$ E F f f ' $ "

R 2 8 3
+3 w r* m - m

W N W .5. ::
w

m 3a
n n 2" " '3
I - C * 1
tr rt 9
m m n
,?O O g.

/ /
/ / Miscellaneous functions
/ /

/ /
/ / member functions f o r t h e screen object
/ /

screen-t::screen-t(void) (
i n t gd r ive r = DETECT, gmode, errorcode; / / request auto detec t ion

in i tgraph (&gdriver, &gmode, "c: \ \ tcpp\ \bgi \ \") ;
errorcode = graphresult 0 ;

i f ((errorcode = graphresul t ()) != grOk) { / / an e r r o r occurred
in i tgraph (&gdriver, &gmode, *") ; / / t r y another path
errorcode = graphresul t () ;

i f ((errorcode = graphresult 0) != grOk) (
printf("Graphics e r ro r : %s\nn, grapherrom\sg(errorcode));
e x i t (1) ;
I

1

return;
1

screen-t : :-screen-t (void) {

closegraph () ;

re turn;
I

void getqs (FILE *fp, char *buf) i
char ch, *p = buf;

while ((ch = f g e t c tfpi i != '"') ;

while ((ch = f g e t c (f p)) != '"')
*p++ = ch;
)

re turn;
I

I / / end of f i l e

I

I case 0: / / class
strcpy(buf, msgline.gets("$nter class name: "));

/ /
// Member functions for the canvas object
/ /

Xinclude "canvas.hn
#include "msmouse.h"
#include "msg1ine.h"
#include %onnect .hn
#include "symbol.ha
#include "dispatch.hn
#include "diagram.hn

XI = 1;
yl = (textheight("Hn) * 4/3 + 4) * 2 + 3:
x2 = getmaxx () ;
y2 = getmaxy0 ;

menu = new menu-t("Createn, RClassR, "Objectn, "Messagen, "Gen-SpecR,
aWhole-Part", nAssociation", NULL) ;

return;
}

void canvas-t::clear(void) (

setfillstyle(S0LID-FILL, WHITE);
bar(xl,yl,x2, y2) ;

Mouse.Show () ;
return;
f :

selectable *canvas-t::select(void) (

msgline.p~st(~Canvas selected.");

return this;
1

int canvas-t: :act (int x, int y) (

int selection;
char buf[80];
class-t *class-obj, *from, *to;
connection-t *connection;

selection - selectable::act(x,y):
switch (selection) {

if (buf [O] != '\Or) (
class-obj = new class-t(x,y,buf);
current-diagram->add(class-obj) ;
dispatcher. insert (class-ob j) ;
class-obj->show () ;

msgline.post ("Class ") ;
msgline.append(buf) ;
msgline .append (" Added. "1 ;
}

break;

case 1: // object
strcpy(buf, msgline.gets("Enter object r lame: ")) ;

if (buf [Ol != '\0') {
class-obj = new object-t (x. y, buf) ;
current-diagram->add(class-obj);
dispatcher.insert(class-obj);
class-obj->show () :

msgline.post ("Object ") ;
msgline .append (buf) ;
msgline .append (" Added. ") ;
}

break;

case 2: / / message
from = msgline.getobj("Click on Sending Class/Object:");
if (from !- NULL) (

to = msgline.getobj("Click on Receiving Class/Object:");
if (to !- NULL) (

connection = new message-t(from, to);
current-diagram->add(connection);
dispatcher. i nsert (connect ion) ;
connection->show () ;
msgline.post("Message connection added.");

1
1

break;

case 3: // gen-spec
from = msgline.get~bj(~Click on Derived (Child) Class/Object:"):
if {from != NULL) {

to = msgline.getobj("Click on Base (Parent) Class/Object:");
if (to != NULL) t

connection = new gen-spec-t (from, to) ;
current-diagram->add(connection);
dispatcher. insert (connection) ;
connection->show () ;
msgline.post ("Inheritance connection added. ") ;
1

f
break;

I case 4: / / whole-part
from = msgline.getobj("C1ick on Aggregate Class/Object:");

if (from != NULL)
to = msgline.getobj(*Click on Component Class/Object:");
if (to !=NULL) {

connection = new wholejart-t(from, to);
current-diagram->add (connection) ;
dispatcher.insert(connection);
connection->show 0 ;
msgline.post(RComposition connection added.");
I

i
break;

case 5: / / assocation
from = msgline.get~bj(~Click on First Class/Object:");
if (from != NULL) f

to - msgline.get~bj(~Click on Second Class/Object:");
if (to != NULL) {

connection = new connection-t(from, to);
current-diagram->add(connection);
dispatcher. insert (connection) ;
connection->show() ;
msgline.post("Association connection added.");
)

)
break;

default :
break;

I

return selection;
I

delete menu;

return;
1

/ / end of file

/I
/ / Class definitions for the various types of connection objects.
// The only difference is in their labels and their display methods.
/ /

rifndef CONNECT-H
#define CONNECT-H

/ /
/ / Base class for connections. Also used to represent "associationsn
/ /

class connection-t : public selectable (
public:

connection-t(c1ass-t *objl, class-t *obj2);
connection-t (FILE *fp) ;
-connection-t (void) ;

void show (void) ;
char *typeoffvoid) (return "connection-tn;)

int isa(char *s) ;
selectable *select(void);
int ison(int x, int y):
int act (int x, int y);
void save (FILE *fp) ;

int is-connected-to(selectab1e *obj);

protected:
class-t *from, *to;
int tolerance: // max distance for a click to select

private:

/ /
/ / The message connection class
/ /

class message-t : public connection-t (

public:
message-t (class-t *objl, class-t *obj2) ;
message-t (FILE *fp) :
-message-t(void);

char *typeof(vofd) (return "message-t";)
int isatchar *s) :
void show (void) :

connect. h
I

I / / The generalization-specialization (inheritance) class
/ /

class gen-spec-t : public connection-t (

public:
gekspec-t (class-t *objl, class-t *obj2) ;
gen-spec-t (FILE *f P) ;
-gen-spec-t (void) :

char *typeof (void) (return ngen-s~ec-t'; 1
int isatchar *s);
void show (void) ;

class wholegart-t : public connection-t (

public:
wholegart-t(c1ass-t *objl, class-t *obj2);
wholegart-t (FILE *fp) ;
-wholegart-t (void) : a

char *typeof(void) (return nwholegaLt_tw;)
int isa(char *s) ;
void show (void) ;

extern menu-t connection-menu;

tendi f

/ / end of file

