Computer Science and Systems Analysis
Computer Science and Systems Analysis

Technical Reports

Miami University Year 1992

User Interface Implementation for
Network License Management System

Jianli Jiang
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa_techreports/47

MIAMI UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1992-012

User Interface Implementation for Network License
Management System
Jianli Jiang

School of
Engineering &
Applicd Seienee

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

User Interface Implementation for
Network License Management System
by

Jianli Jiang
Systems Analysis Department
Miami University
Oxford, Ohio 45056

Working Paper #92-012 08/92

User Interface Implementation for
Network License Management System

Presented in Partial Fulfillment of the Requirements
for the Degree of
Master of Science in Systems Analysis

Graduate School of Miami University

Jianli Jiang
Miami University
August 1992

Advisor: Prof. Douglas Troy

Reading Committee: Dr. Alton Sanders
Dr. James Kiper
Dr. Don Byrkett

Table of Contents

Abstract
1. Introduction
2. Information and Terminology

w

© o

Design of the Network License Management System
3.1 Software Modules
3.2 Operation of NLMS
Requirements for the User Interface and Management Reports
4.1 Requirements
4.2 User Interface Design
4.3 Software Usage Reports
Microsoft Windows Implementation
5.1 Interface Description
5.2 Programming with MS Windows
5.3 MS Windows Implementation
5.4 Incompatibility between MS Windows and SUN PC-NFS
X Windows Implementation
6.1 X Windows System
6.2 Programming with X Windows
6.3 X Windows Implementation
Management Reports
7.1 Types of Reports
7.2 Implementation
Bugs Discovered and Corrected
Comparison of Programming in Microsoft Windows and X Windows
9.1 Concepts

9.2 Programming

10. Conclusion

10.1 Interactive Design Tools
10.2 Improvements

References

Appendix 1: An example of Management Reports
Appendix 2: Source Code Listings

o 0 B W

10
12
12
13
18
19
19
20
21
22
23
23
23
24
26
26
26
28
28
29

29
30
30
31

33

34
35

Table of Contents

Abstract
1. Introduction
2. Information and Terminology

W

O o

Design of the Network License Management System
3.1 Software Modules
3.2 Operation of NLMS
Requirements for the User Interface and Management Reports
4.1 Requirements
4.2 User Interface Design
4.3 Software Usage Reports
Microsoft Windows Implementation
5.1 Interface Description
5.2 Programming with MS Windows
5.3 MS Windows Implementation
5.4 Incompatibility between MS Windows and SUN PC-NFS
X Windows Implementation
6.1 X Windows System
6.2 Programming with X Windows
6.3 X Windows Implementation
Management Reports
7.1 Types of Reports
7.2 Implementation
Bugs Discovered and Corrected
Comparison of Programming in Microsoft Windows and X Windows
9.1 Concepts
9.2 Programming

10. Conclusion

10.1 Interactive Design Tools
10.2 Improvements

References

Appendix 1: An example of Management Reports
Appendix 2: Source Code Listings

oo 00 B W

10
12
12
13
18
19
19
20
21
22
23
23
23
24
26
26
26
28
28
29
29
30
30
31

33

34
35

Abstract

This paper describes a project to understand and enhance a distributed application — the
Applied Science Microlab Network License Management System(NLMS), and to design and im-
plement an improved user interface for that system. The NLMS utilizes a client—server architec-
ture, the TCP/IP network protocol suite, and the Remote Procedure Call (RPC) facility for the
program to interface to the network. The new user interface is based on X Windows/Motif for UNIX
client and Microsoft Windows for PC client. In addition, management reports are added to the
system and expected to provide the package usage statistics to aid in future software purchase
plans.

The goals of my project are to do some developmental work in the UNIX environment; to
understand more about network programming; to learn how to write distributed applications; and
to learn to programming X Windows/Motif and Microsoft Windows. In my opinion, I have accom-

plished these goals.

1. Introduction

The Applied Science Microlab is a computing laboratory in the School of Applied
Science at Miami University that consists of approximately 80 IBM compatible personal
computers, running the PC-DOS or MS-DOS operating system. The PCs are networked,
and connected to an IBM RISC/6000 file server running IBM’s UNIX operating system called
AIX. Most of the lab’s PC application software is stored on the file server. When a student
desires to use a particular application on a PC, he or she selects the application from a menu
on the PC which in turn causes the relevant application to be downloaded from the file
server and executed on the PC. In general, the student is unaware of the file server.

Many of the PC application software packages are single-user licensed, and the mi-
crolab does not own enough single-user licenses to serve every PC in the lab. For example,
the microlab may own 30 single-user licenses for word processor XYZ. Thus, to be com-
pliant with the license agreements, no more than 30 students at a time should be permitted
to use the XYZ word processor concurrently.

The Applied Science Microlab Network License Management System (NLMS) is a
distributed application, developed by Systems Analysis students, that permits enforcement
and management of license agreements|Troy, 1991]. NLMS consists of programs that run
on the PCs and the file server, and permits counting and tracking of the number of each
application under execution at a given time. The NLMS also maintains a data base storing
the information of the maximum number of copies licensed for each application. A portion
of the NLMS that executes on the PCs is used to query the database part, that runs on the
server, to determine if a given PC application may be downloaded and executed. If the
application cannot be downloaded because of an insufficient number of available licenses,
then the user is informed to try later. If a license is available, the application is downloaded
and executed on the PC.

Another portion of the NLMS permits the network manager to manage the database
on the server. For example, the manager could examine the number of applications current-
ly executing, change the number of licenses available, or reinitialize the entire database.
Additionally, the NLMS collects data about the usage of each software package. In the

original version of NLMS, written prior to this project, this component of the NLMS had a

simple command-line user interface, and, although the data existed to provide many useful
management reports on software usage, this part of the system was not implemented. These
were major weaknesses of the NLMS prior to my project.

The goals of this project are to:

1. Determine the requirements for an improved and user friendly interface for the
management portion of the Applied Science Microlab’s Network License Manage-
ment System,;

2. Determine the requirements for management reporting;

3. Implement the improved interface on Personal Computers using MS Windows and
on UNIX Workstations using X Windows;

4. Implement the management reporting system; and

5. Summarize and compare the MS Windows and X Windows programming efforts.
The last goal, although not directly related to the NLMS, was an important goal in furthering
my understanding of different programming environments for user interfaces.

The remainder of the report is organized as follows. Section 2 presents information
and terminology on distributed processing and networking that is used in the remainder of
the report. Section 3 describes the design of the NLMS. Section 4 describes the require-
ments for the modifications and improvements to the NLMS. Sections 5 and 6 describes the
Microsoft Windows and X Windows systems that were used to implement the improved user
interface. Section 7 is a description of the management reporting that was implemented.
Section 8 describes some bugs in the original NLMS that were discovered and corrected.
Section 9 presents a comparison of programming in MS Windows and X Windows, and
Section 10 concludes the report. Appendix 1 contains an example of the management
reports, and Appendix 2 is a complete listing of the source code for the revised NLMS

system.
2. Information and Terminology

The NLMS is a distributed processing application designed using the client-server
model. The client-server model is used to describe a network system in which one or more

processes provide services across the network to one or more other processes, and commu-

nication is in the form of request/reply pairs initiated by the client. The term “server” refers
to any process that provides services on request and the term “client” refers to any process
that uses the services offered by a server[Ames, 1991]. In our NLMS, the server keeps the
license information of software packages and their usage information, provides the services
of checking the availability of software packages, and answering the queries from clients.
The client presents all the functions available in a nice user interface, through which the user
can make different kinds of requests to the remote server and get the reply. One centralized
server accepts requests from and responds to all the clients.

The Applied Science Network is an Ethernet local area network that supports the
following protocols:

1. TCP/1P

2. Sun Remote Procedure Call (RPC)

3. Sun eXternal Data Representation (XDR)

4. Network File System

5. X Windows

TCP/IP (Transmission Control Protocol/Internet Protocol), funded by Defense Ad-
vanced Research Projects Agency, was developed to interconnect different subnetworks of
various architectures and make them function as a coordinated unit{Cypser, 1991]. TCP/IP
Internet Protocol Suite, commonly referred to as TCP/IP, consists of a set of network stan-
dards that specify the details of how computers communicate and a set of conventions for
interconnecting networks and routing traffic[Comer, 1991]. Internet provides two broad
types of services that can be used by any application program: connectionless package deliv-
ery service (User Datagram Protocol) and reliable stream transport service (Transmission
Control Protocol). TCP/IP protocols define the unit of data transmission, called a datagram,
and specify how to transmit datagrams on a particular network[Comer, 1991].

Electronic mail, file transfer and remote login are some of the popular and wide-
spread Internet application services. Unlike other underlying protocols, TCP/IP protocols
make these applications more reliable, because the machines at each end (sender and re-

ceiver) are involved in the communication directly[Comer, 1991].

In fact, TCP/IP has become one of the standard protocols at the Transport/Network
layer in the OSI seven layer model. The relation between TCP/IP and OSI Open System
Interconnection reference model is shown in Table 2.1[PC-NFS Programmer’s Toolkit Manu-

al, 1987].

NFS YP TELNET
7 Application — rep <
6 Presentation XDR
5 Session RPC
4 Transport TCP UDP
3 Network IP (internetwork)
2 Data Link Ethernet IEEE 802.2
1 Physical Ethernet IEEE 802.3

Table 2.1 OSI Seven Layer Model and TCP/IP Protocol

Remote Procedure Call (RPC) specifies a particular communication style between
client and server, which allows a client to call a procedure that a remote server executes. To
obtain a service, a client issues a request in the form of RPC. RPC is a paradigm in which a
function call, although appearing as a local call, actually results in a network request/reply
interaction [Ames, 1991]. Program_number, procedure_number and version_number are
used to identify the service that the client desires. The server registers its services with the
operating system using these numbers, and the client passes these numbers as parameters
when making a RPC call. Figure 2.1 shows what actually happens when a client makes a
RPC call[PC-NFS Programmer’s Toolkit Manual, 1987]. Several RPC protocols have been

designed. The one used in our system is based on Sun Microsystems RPC.

Client ' Serve
. 1 .
Machine A 1 Machine B
. |
| : n
client : service
program : daemon)
, |
!]
. |
v callrpe() .
. [
| function '
{ : receive
|) request
+
: ; { call service
| ' -
| ,
{ ! execute
I X service
| .
| . return answer |
1] g
! :
{ ; send
I 2 reply
| receive .
answer .
.
]
]
1]

[S U——

Figure 2.1 Network Communication Mechanism with the Remote Procedure Call

External Data Representation (XDR) specifies standard representations for basic
data types, structures and unions. Before data is sent to the network, it is translated from the
local host’s representation to the standard representation(this process is called encoding);
and when it arrives at the receiving host, it is translated into the data representation that
receiving site uses(this process is called decoding){PC-NFS Programmer’s Toolkit Manual,
1987]. Constructor primitives are the services provided by XDR for encoding and decoding,
which allow programmers to translate basic data types as well as user defined complex data
types. XDR is important because it guarantees that data will be interpreted correctly in a

heterogeneous environment. RPC uses XDR to translate input and output data.

As shown in Table 2.1, the OSI seven layer model, NFS is at the top application layer.
NFS (Network File System) is a facility for sharing resources, including files and printers,
among network users{PC-NFS Programmer’s Toolkit Manual, 1987]. SUN’s RPC and XDR
have been developed and used during the process of implementing SUN’s PC-NFS. In NFS,
file systems can be mounted from remote machines, and its location is transparent to the
users. In our Applied Science Microlab, most of the PC software packages are stored on the
server machine, as mentioned in the Introduction. Using PC-NFS, each PC can mount that
portion of a filesystem, and read or write it as if it were a local disk.

The X Window System is a network-transparent window system that was designed at
MIT in conjunction with DEC. The X Window System Protocol describes the precise seman-
tics of the X11 protocol specification, that is the exact behavior of X[X Protocol, 1988]. One
important difference between X and many other window systems is that X does not define
any particular user interface style. X provides a flexible set of primitive window operations,
and a device-independent layer that serves as a base for a variety of interface styles.

The architecture of the X Window System is based on a client-server model. A
single process, known as the server, running on a workstation, is responsible for all input
and output devices, including keyboard, mouse, and display. Any application that uses the
facilities provided by the X server is known as a client. A client communicates with the X
server via a network connection using an asynchronous byte-stream protocol{X/ib Library,
1988]. X supports many network protocols, such as TCP/IP and DECnet.

Xlib is a low level C subroutine library that application programmers use to interface
with X Window System and to write X-based programs|X/ib Library, 1988].

The next section describes the overall design of NLMS.
3. Design of the Existing Network License Management System
3.1 Software Modules

The NLMS system is designed based upon the client-server architecture and it can
operate on any operating system that supports the Remote Procedure Call, XDR and TCP/IP
protocols[Troy, 1991]. For example, the software has been tested on IBM RISC/6000
(AIX), NeXT (Mach), and DEC VAX (Ultrix), and for PCs, Sun PC-NFS (clients only).

PC DOS

check in

a packagd
PC DOS packag
check out \
a package C:::j\

RISC/6000 AIX

libraria
(server)

libmaint
query licensg

[/

libmaint
query nodlg

=

PC DOS

\

libmaint
PC DOS | query usefrs
pctime
~ L7
[7

Figure 3.1 The architecture of the NLMS system

Figure 3.1 shows the architecture of the NLMS. As can seen, all of the client pro-
grams running on UNIX or PCs send their requests through the network to the server and the
server processes each request and sends back a reply.

The programs that made up NLMS prior to my project were:

libraria -- server program that runs on UNIX only. It monitors the license informa-

tion, counts and tracks the packages being used, and processes the requests
from client program “libmaint”, “check”, or “pctime.”

libmaint —— client program that can run on both UNIX and PCs. It is the manage-

ment portion of the client program, including functions such as query

nodes, query license, query time, reset the database, shutdown server pro-

gram “libraria”, restart the server, etc.

check —- client program that runs on UNIX and PCs. It is used by a computer
node to check out a software package, or check in the software package
running on that node.

pctime —- client program runs on PCs. Its purpose is to set the PC’s clock to the

time of server. This program is used in the program “Sign-in” as well.
3.2 Operation of NLMS

The complete user interface to the existing NLMS is described in the users’ guide
“Librarian, A Multi-User License Manager” [Troy, 1991]. This section presents an overview
of the operation of the existing system.

The NLMS server, which is called “libraria”, is a program that maintains a database
which stores each software package’s name and the number of copies purchased. For each
software package, the “libraria” keeps track of every computer node which is using each
software package. This server program runs as a daemon (background process) on the
server, waiting to receive requests from client machines on the network, which are typically
PCs but could be a processor on the file server as well. When a request arrives, the server
processes the message, and sends back the result. The type of requests include:

1. “check in” or “check out” a software package from client program “check”,

2. query the time and date from “pctime”,

3. query the usage of a particular software package,

4. query the status of a client machine,

5. change the number of licensed copies of a software package,

6. restart the server program.

Before using a software package, the user needs to obtain permission from the NLMS
server by sending a request “check out”. Upon receiving a request from a software user, the
server checks the database to either reject the request, if the number of users using the
software has already reached the maximum number of copies licensed; or grant the request,
if the number of users is fewer than the number of copies of the software licensed. When a

computer node ceases using a software package, it will inform the NLMS server by sending a

10

message “check in”, and the server will update the software usage information accordingly.

The NLMS server also has many provisions for the management of the network facil-
ity. In addition to obtaining the software usage information of the network, an authorized
network manager is able to maintain and monitor the network license configuration by send-
ing appropriate requests to the NLMS server.

An important fact to note is that all of the NLMS programs, except for the server
(libraria), can be compiled to run on either the PC-DOS clients or the UNIX server. To
program the MS-DOS programs, a library of networking functions is required. SUN PC-
NFS Programmer’s toolkit is a library of C functions used to support RPC-based clients|PC-
NFS Programmer’s Toolkit Manual, 1987]. It provides a relatively easy way to write distrib-
uted applications. The AIX operating system, as well as other versions of UNIX such as
Ultrix from DEC and Mach from NeXT, comes standard with the RPC library.

The NLMS server “libraria” generates a log, or audit trail, for every transaction that
it processed. The names of these files are of the format Month_Date_Weekday.audit. For
instance, the audit file for July 4, 1992 is named “Jul_04_Sat.audit.”

The audit log shows the time, the client request, the IP address of the client node
issuing the request, and the package or node (if applicable) involved. Here are some sample

lines stored in an audit file.

01:00:12 SET_MAX 000.000.000.000 Automenu 0
01.00.12 SET_MAX 000.000.000.000 lotus 35
01.00.12 SET_MAX 000.000.000.000 wp51 40
00.00.12 SET_MAX 000.000.000.000 qc 25
09.12.45 CHECK_OUT 134.053.002.051 wpS1

09.24.34 CHECK_OUT 134.053.002.056 qc

10.12.41 QTIME 134.053.002.161

11.09.23 CHECK_IN 134.053.002.056 gc

11.09.23 CHECK_OUT 134.053.002.056 Automenu

19.12.41 QPACKAGE 134.053.002.067 lotus

19.12.41 QNODE 134.053.002.230 134.053.002.056
21.09.23 CHECK_IN 134.053.002.051 wp51

11

If a package is SET_MAX to 0, it means that there is no license limit on it.

In the existing system, it is very inconvenient for the network manager to invoke a
query or maintenance command using the old libmaint program. In order for the manager
to check the usage of a specific software package, one needs to issue a query using the
precise name of the software package, as it is stored in the software license data file. Any
misspelling of the software package name results in an error message or incorrect response.
For example, the following command checks the usage of Microsoft Quick C:

libmaint apsrisc query package qc
If gqc had been spelled as quickC or QC, the command would fail.

It is even more difficult to query a computer node status, since the user has to remem-
ber the exact internet address of the machine on the network. For instance, command:

libmaint apsrisc query node 134.53.3.56
checks the status of the machine whose internet address is 134.53.3.56. Even with excep-
tional memory, a person might find it difficult to remember more than 10 such machine
addresses.

My major goal is to design a user-friendly interface for the program “libmaint.”
Menus and Dialog boxes are used to improve the quality of the user interface. The manager
only needs to select an appropriate entry on the display menu to execute a desired query
and, hence, is free from remembering the software packages’ names and machine address-
es. X Windows for the UNIX version and Microsoft Windows for the PC-DOS version of
“libmaint” are chosen to implement the Menus and Dialog boxes.

The second major goal is to implement functions to produce management reports
that will aid the Applied Science Microlab manager in monitoring software usage and in

making future software purchase decisions.
4. Requirements for the User Interface and Management Reports
4.1 General Requirements

To determine the requirements for the improved user interface for the management
portion of NLMS and for the management reports, I interviewed the original designer of the

NLMS, Mr. D. Troy; the microlab manager, Ms. S. Baker; and the department chair Dr. A.

12

Sanders. The following list summarizes their suggestions:

1. The NLMS should continue to run on either DOS or UNIX machines.

2. The maintenance portion should have a menu-driven and window-based user
interface.

3. The management reports should be implemented. The reports should provide the
information on the maximum number of copies of software packages being used
concurrently; the maximum times each package has been checked out during a
day; and the accumulative length of time each package has been in use during a
day as well.

4. The time interval of the usage reports should be flexible and should have daily,
weekly, monthly or semester time frames.

5. The report should take a reasonable amount of time to produce.
4.2 User Interface

User interface has now been recognized as a critically important part of system de-
sign. In order to implement a user-friendly interface for the system, I researched some
guidelines to good interactive system design. The key goals in user—interface design are to
increase the speed of learning, increase the speed of use, and reduce the error rate[Foley,
1990]. It is recommended that the interface present an easy way for the user to understand
how to accomplish what he or she wants and the interface be consistent throughout the
program|Brown, 1989]. What you see is what you get is fundamental to interactive graph-
ics[Foley, 1990].

Following these good interface principles, menus and dialog boxes are introduced to
improve user friendliness. Menus allow the user to browse the functions the system pro-
vides; and since no typing is involved, the possibility of error occurrence is eliminated.
Dialog boxes for input and output enable the system interface to be consistent. It was
determined that the main menu should have the following choices: “Query”, “Mainte-

nance”, “Report”, “Special” and “Help.”

13

Network License Management System

Query Maintenance Report Special Help

Figure 4.1 Main Window with top level menu

A corresponding pull down menu with detailed options will be displayed for each

entry selected. They are shown in the following figures.

Network License Management System

Query |Maintenance Report Special Help

Node...
Package...

Time

Users
Nodes

License

Figure 4.2 When “Query” is selected

14

Network License Management System

Query [Maintenance |Report Special Help
Check in
Check out...
Remove node..
oet Max...
Figure 4.3 When “Maintenance” is selected
Network License Management System
Query Maintenance | Report Special Help
Daily...
Weekly...
Monthly...
Semester..
Figure 4.4 When “Report” is selected
Network License Management System
Query Maintenance Report | Special Help
Restart
Shutdown
Quit

Figure 4.5 When “Special” is selected

15

Network License Management System

Query Maintenance Report Special Help

Help

This is a popped up dialog box. It gives a
brief introduction to the NLMS, and a help
message.

OK More Help

Figure 4.6 When “Help” is selected

There exist two types of menu selections. If a selection not ending with “...” such as
“Users” under “Query” is clicked, the corresponding function is executed, and the result is
displayed on a popup dialog box. If a selection ending with “...” such as “Node...” under
“Query” is clicked, a dialog box will be popped up for further user input. Only after suffi-
cient input is provided, can the desired function be executed.

For example, on the popped up dialog box corresponding to “Query Node”, a list of
nodes is displayed for the user’s choice. This is shown in Figure 4.7. Buttons “APPLY”,
“CANCEL” and “HELP” are placed at the bottom of the dialog box. A scroll bar is pro-
vided if the list is longer than can be display at one time. The user can click the “CANCEL”
button to return to the previous main menu window; or click “HELP” for available help; or
select an item from the list and click “APPLY” to query the status of the selected node. The

result is then presented to the user, as shown in Figure 4.8.

16

Network License Management System

Query Maintenance Report

Special Help

Query Node Selection

134.053.003.102
134.053.003.112
134.053.003.116
134.053.003.136

Node Address Node Name
134.053.003.085 lab 85
134.053.003.123 sign_in pc

troyd pc
kiperj pc
san office pc

dean office pc

134.053.003.200 Micro Vax
134.053.003.230 APSRISC
134.053.003.231 X station 1
134.053.003.232 X station 2
134.053.032.001 APSWS1
134.053.032.002 APSWS2
134.053.003.100 APSSRV
APPLY CANCEL HELP

Figure 4.7 When “Node...” Under “Query” is selected

17

Network License Management System

Query Maintenance Report Special Help

Query Node Result

134.053.003.161 (graphlab 85): wpS.1

OK

Figure 4.8 Query Node Result

This interface provides a hierarchical interaction between the program and the user,
and since it is WYSIWYG (What you see is what you get), the interface is quite intuitive and
is very convenient to use.

In this new interface environment, the mouse has become the most important input
device. All the functions of the system can be invoked by moving the mouse, pointing to the
desired item, and clicking the mouse to select. An item can be a menu item, a selection item
or a control button.

The above windowing interface was expected to be implemented on the PC-DOS
operating system and the UNIX operating system. Because of different windowing systems

available on DOS and UNIX, the interface programs are different for these two versions.
4.3 Software Usage Reports

The usage reports should give the management people an overview of the frequency
and duration of use of each software package. It should help people to understand how often
and how long the software packages are used by the lab users. For example, in the morning,
the lab manager may desire to have a report on the previous day to know if any package had

been used at a level near its license limitation. That information can be shown by the

18

maximum number of packages being checked out concurrently compared to the number of
packages licensed. The lab manager may also desire to know how much each package has
been used, which can be shown by the total times each package has been checked out (re-
gardless of concurrency) and the total length of time in minutes or in hours that each pack-
age has been used.

Similarly, the reports over a week, a month, or a semester can tell which packages
are popular, and which were rarely touched during that week, month or semester.

According to the above requirements, the reports have five columns. The first one
lists the names of software packages, the second tells how many licensed copies of the
packages are owned by our microlab, the third shows the maximum number of copies of the
package that were used concurrently during the day, the fourth shows the total times the
package was checked out during the day, and the last tells the total time in minutes that the
package was in use.

From the figures shown in these reports, the microlab manager can easily tell if a
package has been used to its maximum capacity frequently, and hence, to purchase more
copies when upgrading it, or to reduce the number of copies, if a package was rarely used
over a long period of time.

By providing different time intervals for reporting, the manager may observe a usage
pattern and thus enable him or her to make some arrangement of lab users’ schedules to

further increase the lab utilization.
5. Microsoft Windows Implementation
5.1 Interface Description

Microsoft Windows 3.0 is the windowing interface development tool we chose to use
for the PC-DOS implementation. It is a popular product for personal computers and is the
dominate windowing system for PC-DOS based systems. MS Windows provides a multi-
tasking graphical-based windowing environment and a consistent appearance and com-
mand structure[Petzold, 1990] which makes it easy for the users to learn and use the appli-

cations.

19

The design of the MS Windows program consists of the screens shown in Section 4.2

User Interface, Figure 4.1 through Figure 4.8.
5.2 Programming with MS Windows

Windows has the reputation of being difficult for programmers. The approach to
construct a window programs is quite different from a conventional, non-GUI program, and
new concepts such as graphical devices, event or message~handling, and object-oriented
programming have to be learned and digested[Petzold, 1990].

Programming Windows is especially difficult for beginners. MS-Windows Software
Development Kit (SDK) provides a library of C functions that can be used to build a win-
dows application[Microsoft Windows Software Development Kit, Reference, 1990]. It has more
than five hundred functions and is overwhelming.

Another difficulty is that everything in Windows is interconnected|[Petzold, 1990]. If
you want to draw anything on the video display, you need a “handle to a device context.” To
get that, you need a “handle to a window.” To have that, you must create a window and be
prepared to receive “messages” to the window. To receive and process messages, you need
a “window procedure.” That is why even a program which only prints “Hello World” has to
have all these components and is quite lengthy in its code.

Windows is started as a normal application program running under DOS. After it is
loaded, it shares the responsibilities with the operating system for managing the hardware
resources of the computer and scheduling processing power among applications{Microsoft
Windows Software Development Kit, Guide to Programming, 1990]. Since Windows provides a
multitasking environment, more than one program can run under Windows concurrently.
Most of the time, these programs sit passively awaiting the user input, such as mouse move-
ment, mouse click, or key stroke. Therefore, Windows programs must be event-driven.
Unlike conventional programs that only make calls to the operating system to perform cer-
tain tasks, the operating system and Windows call and inform the application program of
events so that the application can respond to the input events[Petzold, 1990]. For example,
when a user resizes a window, Windows sends a message to the program indicating the new

window size. Then the program can adjust the contents of its window to reflect the new size.

20

This is implemented by message passing and handling. Thus, a large portion of the program
is the code to process the messages.

As we know, it is quite typical that there are multiple programs running under Win-
dows, each with window(s) and menu bars or dialog boxes, etc. In MS Windows, all these
entities are treated as objects. Windows are rectangular objects on the screen, which receive
user input from the keyboard or mouse and display graphical output on its surface. An
application window usually contains the program’s title bar, menu, sizing border, and per-
haps some scroll bars. Dialog boxes are additional windows which may contain several
additional “child” windows. These child windows take the form of push buttons, radio
buttons, check boxes, text entry fields, list boxes, or scroll bars. These windows are seen as
objects by the users and are programmed as objects by the programmers as well.

Every window in a Windows program has an associated window procedure. This
window procedure is a function that can be either in the program itself or in a dynamic link
library. Windows sends a message to a window by calling the window procedure. The
window procedure does some processing based on the message and then returns control to
Windows|Microsoft Windows Sofiware Development Kit, Guide to Programming, 1990].

In order to make the programming job easier and reuse the code of the window
procedure, windows are grouped into classes. Every window class has a data structure, its
“resources”, to define its appearance, and a window procedure to process messages. The
use of a window class allows multiple windows to be based on the same window class, and
hence, use the same window procedure. In addition, MS Windows provides a rich set of
predefined window classes such as menus, dialog boxes, buttons and other commonly used
window classes that programmers can use. Thus, you only write window procedures for the
windows that are created by your program and based on new window classes to fulfill your
application’s specific needs. Minimally, a window program needs to have one window pro-

cedure for the main window it creates.
5.3 MS Windows Implementation

My program consists of WinMain(), WinProc() and other Dialogbox window proce-

dures to invoke all the functionality of the client side of the NLMS. WinMain() is the entry

21

point of the program. It specifies the name, the window procedure, the icon, the cursor and
other characteristics of the window class by filling out the window class structure
WNDCLASS. Then it registers the window class with Windows and creates the top window
of my program based on that window class. After calling some functions, the newly created
window is displayed on the output device, it enters a “while loop” until the program is called
to quit. It is the “while loop” that receives messages and dispatches them to the correspond-
ing window procedures that actually process the messages.

WndProc() responds to some of the messages, such as the ones that indicate a menu
selection or window resizing or window movement, and ignores other messages by passing
those messages back to Windows and letting Windows handle them using default proce-
dures. For example, part of the response to WindowCreate (received when the main win-
dow is created) is to obtain the starting point of all the other window procedures for later
references. All the functionality of the NLMS client program is grouped into menu selec-
tions. A unique integer is assigned to each menu selection so that the program can identify
each menu selection. The response that handles the reaction to menu selection is either to
invoke a dialog box to prompt and get more information from the user or to issue a remote
procedure call to the server and then display the result in a dialog box. There is one window

procedure for each dialog box.
5.4 Incompatibility between MS Windows and SUN PC-NFS

The implementation of the MS Windows interface could not be completed because of
an incompatibility between MS Windows and SUN PC-NFS. It turned out that as soon as
our client code would issue an RPC call, the windows system would freeze up and no longer
respond to user input. We consulted SUN, and were informed that this is due to a conflict in
the way that PC-NFS and MS Windows both attempt to take over the PC’s clock interrupts.
After consultation with my thesis advisor, we decided that the programming effort to get
around this problem was beyond the scope of my project, and we thus abandoned further
development of the MS Windows implementation. However, I have done enough program-

ming with MS Windows to be able to make comparisons between it and X Windows.

22

6. X Windows Implementation

6.1 X Windows System

The X Windows system is an industry-standard, device-independent and distributed
software system|[Young, 1990]. The device-independent feature of X Windows system pro-
vides a convenient and portable programming environment which allows programmers to
concentrate primarily on his/her application design instead of worrying about portability
issues among different machines.

This feature is achieved through its particular client-server architecture. The server
process is responsible for both the input and output hardware and shields all the device—de-
pendent operations. The client may be any application that uses the services provided by the
X server. More than one client can be supported by a single X server. Therefore, the X
window system is essentially a distributed system and hence it is necessary to have a X
window manager to control the sharing of X window resources among multiple users. The X
window manager controls the positions of the windows on the screen, and allows the user to
move a window, resize a window or switch among windows, etc. It also processes all the
requests sent by all the clients and this generally leads to more efficient utilization of the
various computer resources.

Furthermore, the X server and the client do not need to be on the same machine
provided that the display is a X terminal. For example, I once logged onto a SUN worksta-
tion at Ohio State University, telneted to our RISC/6000 machine, started the program and it
ran perfectly. In this case, the processing is taking place on our RISC/6000 and the output is
displayed on the SUN station. Amazingly, it does not require recompilation to have the
interface displayed across the network. I also noticed that the interface components (menus,
dialog box, borders, arrows, etc.) had a different look because the display was running a

different window manager.
6.2 Programming with X Windows

Although the X protocol is defined at the very low level of network packets and
byte-streams, application programmers generally make use of higher level library functions

that provide an interface to the base window system. The most widely used low-level inter-

23

face to X is the C language library known as Xlib. Xlib defines an extensive set of functions
that provide complete access and control over the display, windows, and input devices.
Based on Xlib, toolkits have been built to provide more convenient ways of programming.
Examples of toolkits are InterViews (Stanford University), Andrew (Carnegie Mellon), Xray
(Hewlett Packard), etc[Young, 1990].

The toolkit I used is a standard toolkit known as the X Toolkit, which consists of two
parts: a layer known as the Xt Intrinsics and a set of user interface components known as
widgets. The Xt Intrinsics supports many different widget sets, including OSF/Motif, Open
Look and Athena. OSF/Motif 1.0 comes with the IBM RISC/6000 AIX and is the widget set]
chose to use. This layered architecture of an X windows system provides portability and
flexibility. Figure 6.1 is the application programmer’s view of the X Windows sys-

tem|[Young, 1990].

Application

Network Connection

Figure 6.1 The layers of X Windows System from Application Programmer’s View
6.3 X Windows Implementation

Applications with a windowing user interface may contain a large while loop, which

dispatches all the events. For example:

24

while (TRUE) do
get next event;
case event of

pushed “help” button: HelpProcessProcedure();

end case

end while

This sort of loop is called “busy waiting.” It is not a desirable feature of a system,
since it wastes the precious computer resources. In X Windows/Motif, the Callback function
implementation provides an alternative to the “busy waiting” event~processing mechanism,
which is an interrupt-driven or event-driven mechanism|[OSF/Motif Programmer’s Guide,
1990]. The system requires an application to register in advance all the actions that will be
taken to respond to each event. Therefore a large part of the program is chained event
processing procedures to handle user input. A convenient function is available to register a
callback function[OSF/Motif Programmer’s References, 1990].

XtAddCallback (button, XmNactiveOK, MenuCallback, QNODE);
The above line is a statement in my program after “button,” a widget of type BUTTON, is
created to represent an option “query node” under the top menu “Query.” The XtAddCall-
back function specifies that when this button is clicked (XmNactiveOK), a procedure Menu-
Callback() is invoked and executed, and QNODE is an integer passed to MenuCallback()
as a piece of client data. The MenuCallback() procedure creates a selection dialog box
displaying all the nodes for the user to select. The callback function for this selection dialog
box is CallRPC(). It is in the CallRPC() procedure that the remote procedure call is sent
after it determines which node is being selected by the user. From a programmer’s perspec-
tive, it is truly interrupt-driven.

As we can see, in addition to saving the computer resources, the interrupt-driven
feature of the X windows system makes an application easier to write soon after you get used

to it.

25

7. Management Reports

7.1 Types of Reports

There are two important requirements that need to be addressed for the statistical
reports. One is the time interval for the report. It should be flexible and should not require
too much typing to specify. So Mrs. Baker and I decided to have different options, such as
daily, weekly, monthly and semester reports. A daily report produces the collective infor-
mation of usage for any specified day. Weekly, monthly and semester reports give the
corresponding statistical report over the specified week, month or semester, respectively.

The second requirement concerns the content of the reports. It should contain rele-
vant information for management. We determined four types of data to support: the num-
ber of copies licensed, the maximum copies in use concurrently, the total number of times a
package was used during a day, and the total time length a package was in use during a day.
The last data is necessary because Mrs. Baker suggested that some packages are checked
back in right after being checked out, which causes the total times a package has been
checked out to misrepresent the usage. Having this report, the lab manager knows what
packages have been used heavily and frequently hit maximum capacity, and what packages
have rarely been used by students. This will provide a piece of key information to help in

making future purchase plans.
7.2 Implementation

The audit file generated every day records each request from all the clients in the
time sequence as it happens during that day. It looks like:

00.00.01 SEX_MAX 000.000.000.000 qc 25

09.01.23 CHECK_OUT 134.053.003.056 wp51
It shows at time 00.00.01 the package Quick C was set to have 25 licensed copies and at
09.01.23 client node 134.053.003.056, one of the PCs, checked out WordPerfect 5.1. The
file for a typical school day has 4000 to 6000 such lines.

Since the file is so large, it would take a long time to produce a report if the audit file
were read in and analyzed at the time a report was requested. For example, a monthly or

semester report requires 30 or more than 100 such files to be scanned. Also, if a report is

26

requested more than once for a day, the reading and analysis process for that file is repeated
completely.

In order to prevent the scenario that a user has to wait a few minutes to get the report,
I took advantage of UNIX’s multitasking capabilities. After midnight, the server forks
another process, and the newly created process accumulates usage information from that
day’s audit file.

The algorithm is very simple. At the beginning, an array:

struct package_rec

{ char package[16];

int max_copy; /* # of copies licensed */

int concur_copy; /* max # of copies used concurrently */

int times_checkedout; /* max # of times being checked out */

int amount_time_in_use; /* total time in seconds a package in use */

} package_infol MAX_PACKAGES];
is initialized. Then the process scans every line of the audit file. The “SET _MAX" is used
to set the value of “max_copy” for each package to get the number of license. During of the
process of scanning, only “CHECK_OUT” and “CHECK_IN” are read into memory be-
cause they are the only information related to lab usage. A sort function is then used to
group all the “CHECK_OUT” and “CHECK_IN” information by the client nodes. So for
each node, we are able to generate repeated pairs of “check out a package at one time, and
check in that package at a later time.” The difference in time between the consecutive pair
of “check out” and “check in” is assumed to be the time that package has been in use. This
accumulates to the total time in seconds that package has been in use. At the same time,
concur_copy and times_checkedout is also computed.

This way, a daily usage report is generated and stored in a file for each day. The
report file is named as Month_Day_Weekday.report. For instance, Aug_03_Mon.report is
the report file name for August third. Thus when a report is called on, only these small
summary data files (each contains less than 100 lines) have to be read in and the report can

be ready in seconds. An example of the report is shown in Appendix 1.

27

8. Bugs Discovered and Corrected

In the course of the project, a few bugs were discovered in the old NLMS program in
our Microlab. First, the original design of “check”, reversed the intuitive meaning of “in”
and “out”. “Check in” was used when a package was to be requested, and “check out” was
used when the user was done with the package. This use of “in” and “out” was confusing,
and had to be reversed.

Secondly, since the communication between the client and the NLMS server is im-
plemented via the mechanism of User Datagram Protocol (UDP), and since the maximum
length of data communicating between the client and the NLMS server is 1024 bytes in
UDP[PC-NFS Programmer’s Toolkit Manual, 1987], a client query, when issued from a PC
and requires communication data longer than 1024 bytes, would fail. Query nodes and
query license are two functions whose returned data are longer than 1024 bytes. Therefore,
these two functions behave abnormally in the old NLMS when they were invoked from a PC.
In order for the communication data between the client and the NLMS server to accommo-
date more than 1024 bytes long, a different transport protocol is needed. The more reliable
and powerful transport protocol TCP is used as the underlying protocol of RPC. Therefore,
the network manager can execute the query nodes and query license with the desired result.

To recover from a server failure, the NLMS server maintains an audit file on a daily
basis to record all the software usage information. When restarting the NLMS server “li-
braira” after a crash, the audit file is used to restore the network state back to the one before
the failure[Troy, 1991]. The old program failed to read in all the information from the audit
file correctly, and thus, the restored state did not reflect the correct software usage in the
network. Furthermore, the amount of information kept in the audit files was insufficient to
generate the statistical reports. The above limitations and bugs were corrected as a part of

my project.
9. Comparison of Programming in Microsoft Windows and X Windows

MS Windows and X Windows/Motif are similar at the high conceptual level and

different at the detailed programming level.

28

9.1 Concepts

They both use an object-oriented approach. Although programmers can use their
conventional procedure-oriented language interface, the application program needs to be
centered around the concepts of objects because all the interface components are objects.
Both systems are event~driven and significant amount of code is required to process the user
input events.

I felt that it was very difficult for me to get to a level where I felt comfortable in
writing X Window programs, partially because I had to learn X Windows/Motif on my own
and I did not have good books on the topic at that time. Another reason is that no debug
tools were available. Quite often, a small mistake in the program caused the windows in my
program to disappear with no information about the error. It was thus very time consuming

to find errors and made me less likely to experiment.
9.2 Programming

At the coding level, programming MS Windows is more tedious than programming X
Windows/Motif. One reason is that Motif is built on top of X lib and Xt Intrinsics and thus
provides a rich set of high level functions to assist with the implementation of the interface.
Another reason is that it assumes a “window manager” is running at the client workstation to
help manage some of the hardware resource, especially the X terminal. The X window
manager handles what is actually displayed on the screen taking into account the layout and
overlapping of the windows. In MS Windows, the application program has the responsibility
of repainting the screen when the window moved to another position, resized, or some por-
tion of your window became visible because other windows were moved away.

The logic or steps of writing programs in Motif is quite straight-forward. You have a
pattern to follow: create an interface component by creating a widget of suitable class,
specify its parent widget, define its appearance using some of its resources, and define its
behavior using the callback function(s). A Widget is the object; the call back function is the
procedure to handle the user input.

While in MS Windows, the flow of control is not clear by looking at the code because

messages can be generated from window function calls. In order to have a workable window

29

program, one needs to follow the program structure recommended by Microsoft. For exam-
ple, after the main window is created, you need to have two statements:
ShowWindow{(...);
UpdateWindow(...);
What they do is to send to the window procedure a message WM_PAINT requiring the
application program to paint the newly created window. If these two lines had been missing
in your program, you could not get your window on the monitor at all. In the window
procedure, part of its code in the big event loop responds to this message:
case WM_PAINT:
hdc=BeginPaint (...);
GetClientRect (...);
DrawText (...);
EndPaint(...);
return 0;
/* other case blocks */
This part of the code is to repaint the content of the window when receiving the message
WM_PAINT, which arrives at the time of window creation(ShowWindow() procedure call)
or later on when the window needs to be repainted.
I personally prefer X Windows/Motif programming environment. If I am going to
develop a user interface and I have a choice of either MS Windows and X Windows/Motif, 1

would choose X Windows/Motif.
10. Conclusion

10.1 Interactive Design Tools

After completing the programming, I have done some research on the tools that can
make windows programming easier. If the only tools available to develop a user interface
are library functions, the time required to learn, code, and test is a big concern, and pro-
gramming becomes very tedious. Visual design tools are being developed to boost the
productivity of user interface design and implementation under Microsoft Windows. The

simplest one is the Dialog box Editor, which lets a user position and size buttons and other

30

controls within a dialog box. The Editor generates resource script statements and can be
used in conjunction with the source code[Microsoft Windows Software Development Kit, Guide
to Programming, 1990]. More sophisticated tools provide a visual development environment
(VDE), which allows users to prototype and design all kinds of interface objects interactive-
ly, and generates source code that can be modified and compiled[Petzold, 1992]. But the
logic control part of the program still needs to be coded using a programming language and
sometimes it can get more complicated in the VDE because the VDE is less flexible. Even
so, these tools appear to take some of the pain out of interface design and generally they
save some development time[Petzold, 1992].

There are some commercial OSF/Motif GUI builders available, similar to VDE. One
is called Interactive Design Tools that allow a user to specify the interface components and
generate corresponding source code. For example, TeleUSE from Telesoft claims to be a
full-featured User Interface Management System that prototypes, designs, and implements
GUIs using an object-oriented methodology[Hogan, 1992]. It is reported that the develop
time using these tools to build interfaces can be cut by fifty to eighty percent compared to
directly using Motif function calls.

Since I do not have first hand experience with these tools, I can only assume that they
would help out with the tedious part of development, and still need coding to produce the

flow of control and to put all the interface components together.
10.2 Improvements

The usage reports can be improved further. Right now, the reports only present all
the figures to show the actual usage of all the software packages owned by the lab. If we can
define the criteria for high usage rate (above 90% or 95% of license limitation) and low
usage rate (below 50% of license limitation), the reports can flag the packages whose usage
falls into these two categories, in addition to providing those usage statistics. Thus the
reports would provide information as opposed to just data.

User interface design is a on-going process. The new interface is designed based
upon the prototype and current requirements. As users continuing using the system, they

may come up with new ideas and new requirements, which can be incorporated and result in

31

a better design for the user.

The reasons that I chose this project are that I wanted to do some developmental work
in the UNIX environment; I wanted to understand more about network programming, espe-
cially client-server models of the network; I wanted to learn a way to write distributed
applications; and I wanted to learn how to design and develop applications in the two most
popular windowing environments, namely Microsoft Windows and X Windows/Motif. 1 feel
that by doing this program, my knowledge has been broadened, and my learning skills and

my programming skills have been improved greatly.

32

References

1.

AR

10.
11.

12.

13.

14.

15.

16.

17.
18.

19.

Ames, C., Overview of RPC, unpublished report for Distributed Processing and Net-
working, Systems Analysis, Miami University, 1991

Brain, M., Motif tutorials, Version 1.1, NetNews (comp.windows.x.motif), 1990
Brown, J. & Cunningham, S., Programming the User Interface, Wiley, 1989

Comer, D. E., Internetworking with TCP/IP, Vol 1, Prentice Hall, 1991

Cypser, R. J., Communications for Cooperating Systems OSI, SNA, and TCP/IP, Addison-
Wesley, 1991

Foley, J., van Dam, A., Feiner, S. & Hughes J., Computer Graphics — Principles and Pra-
citce, Addison-Wesley, 1990

Hogan, T., TeleUSE, UNIX Preview, Vol. 10, No. 4, pp 8., April 1992

Petzold, C., Programming Windows, The Microsoft Guide to Writing Applications for Win-
dows 3, Microsoft Press, 1990

Petzold, C., The Visual Development Environment: More than Just a Pretty Face? PC
Magazine, Vol 11, No 11, pp. 195 - 204, June 1992

Sommerville, J., Software Engineering, Addison Wesley, 1989

Troy, D. A., Librarian, A Multi-User License Manager, Miami University, Systems Ana-
lysis Department Technical Report 1992-0012, 1991

Young, D. A., The X Window System — Programming and Applications with Xt, OSF/Motif
Edition, Prentice Hall, 1990

Microsoft Windows Software Development Kit, Guide to Programming, Microsoft Press, 1990
Microsoft Windows Software Development Kit, Reference, Vol. 1, Microsoft Press, 1990
OSFI/Motif Programmer’s Guide, Revision 1.0, Open Software Foundation, Prentice Hall,
1990

OSF/Motif Programmer’s References, Revision 1.0, Open Software Foundation, Prentice
Hall, 1990

PC-NFS Programmer’s Toolkit Manual, Sun Microsystems, April 1987

X Protocol, Ultrix Worksystem Software, Programming Volume 5, Digital Equipment
Corporation, 1988

Xlib Library, Ultrix Worksystem Software, Programming Volume 4, Digital Equipment
Corporation, 1988

33

Appendix 1 An Example of Management Reports

Network License Management System

Query Maintenance Report Special Help
Package Usage for 04/29/92
Package licensed concurently checked/day used(in minutes)/day
acad10 0 4 26 6701 A
basica 0 1 5 1650
gwbasic 0 4 16 7854
dbase3 15 1 3 40
dbase3p 25 8 75 13145
lindo 15 1 6 600
lotus 30 6 21 8640
nortonutil 2 2 21 3210
ow61 0 2 3 5822
prolog 15 1 2 260
qc 30 4 30 9347
suggestions 0 3 8 3705
te 10 1 3 44
tn3270 0 1 2 186
tp60 25 9 88 17914
wpS1 30 10 193 26459
APPLY CANCEL HELP

34

Appendix 2 Source Code Listings

1. libraria.h

2. libraria.c

3. xface.c

35

AR RR KRR R KA R TR */

y* */
/* Include File: LIBRARIA.H */
/* */
/* This header has all the predefined constants, structures, */
[6* translation routines used by LIBRARIA, CHECK, PCTIME, XFACE and LIBMAINT*/
* */
;* Eight translation routines are present: */
* >/
/* xdr stringlé -~ allows the encoding and decoding of strings whose */
/* “length does not excesd 15 characters (as in node number, package */
/* name) . */
/* xdr_date ~ allows the enceding and decoding of MOST of the tm */
Vid “time structure found in <time.h>. */
/* xdr_software block - allows the encoding and decoding of package */
/* “structurss, Thie is used for the passing of complete package info */
/* during gueries, */
/* xdr_node block - allows the encoding and decoding of node */
/* Tgtrudtures. This is used for the passing of complete node info */
/* during queries, */
/* xdr_node_array -~ allows the complete passing of a node array */
/* T{client_list). */
/* xdr__gac:kage “array - allows the complete passing of a package arzay */
/% etween APSLIB and LIBMAINT, */
/* xdr_usage block ~ allows the encoding and decoding of report */
/% ~strucEures, This is used for the passing of complete report info */
/* during requests. ®/
/* xdr_usage array -~ allows the complete passing of a usage array */
/* “betwedn APSLAB and LIBMAINT, */
* *

; . . 7

#define BSD

#include <rpc/rpe.h>
#include <sys/socket.h>
$#include <netdb.h>
#include <time.h>

§define LICENSE_DP "scftware.lab"
$define ERRORLOGNAME "license.err™

$define RPC_ERROR 1
#define MAX ERRCRS 10
fdefine IDLE MACHINE "automenu”
jdefine MAX PACKAGES 150
$define MAX CLIENTIS 150
#define SOFTLIB 550000001
#define SOFIVERS 2

/* User—available functions */
#define NULL_PROC
#define CHECK IN
#define CHECK_OUT
#define READ

WO

/* Maintenance—level functions */
g#define REMOVE 16
#define QNODE 17
#define QPACKAGE 18
#define QUSERS 19
#define QTIME 20
#define QNODES 21
#define QLICENSE 22

J* Ad.mxnistratrv@-level functions */
#define SET MAX

#define SHUTDOWN 129
#define RESTART 130
#define CLEANUP 131

/* Report-related functions */
#define DAILY 256
#define WEEKLY 257
#define MONTHLY 258
#define SEMESTER 259

char weekday[7]} [4)={"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"};
char day[31] [3]_”01“ nozn noan, woqe, nosn noeu noyn, mpgh, nogr, 1O,
11w, wy2n, 13w, ulA"'nlsn'wlsw myyw, mign, nigw n2Qv,
NQYM, MM N3N MQAN NZEN NZEN WP nggw npQh, UIOW, MIIN).
char month{12] [4]-{“Jan” "Feb" "Mar" "Apr" "May“ “Jun“ "Jul" “Aug" "Sep™, "Oct",
Nov", "Dec™ },
int first day of month[12}'(3 6,0,3,5,1,3,6,2,4,0,2};
int no of‘days{l?) {31,259, 31, 30, 31 30 31 31 30,31,30,31);

/ kk*/
/* */
/* The following two structures are the building blocks for APSLIB: */

/* SOFTWARE BLOCK and NODE BLOCK., An array of SOFIWARE BLOCK contains all */
/* known software data in Ehe librarian server, and an array of NODE BLOCK */

/* contains all current node information. */
I */
/ bkt /

struct SOFTIWARE BLOCK
{

char scoftware package[16];

short int total coplies;

short int copies in_use;
b

struct NODE_BLOCK
{

char node_address(16];
<har softwa.re‘_pack,aga [16];
struct SOFIWARE BLOCK *software_ in _use;
Yi
struct USAGE BLOCK
{
char softwaxe_rpackage {161;
short int copiss;
short int concurrent;
short int checked;
int time used;
ir

struct DATE

int mday, mon, year, wday;

/ bl *
/* */
/* There are several global variables used by all APSLIB related programs. */
/* They include: */
/% */
/* software liet is an array of MAX PACKAGES elements composed of */
/* SOFTWARE BLOCK., */
/* number__o'fjackagea contains the number of SOFTWARE BLOCKs in use. */

/* client list is an array of MAX CLIENTS elements composed of */

/* NODE_BTOCK. */
/* numbér of clients contains the pumber of NODE BLOCKs in use, */
* */
fu 27
/ /
struct SOFTWARE BLOCK software list [MAX__PACKAGES] H

struct NODE_BLOCK client” list [MAX CLIENTS];

struct USAGE BLOCK usage_ list[MAX PACKAGES];
int number_of packages=1;

int number of clients =0;

int in_usage number of _Gpackages-o;

int pumber_in usage = 0;

/ e e /
/* ~/
/* The following six xdr routines are six of eight fundamental */
/* translation routines used by APSLIB (the others being XDR_INT and */
/* BDR_STRING). */
/* N */
/ /
xdr_stringl 6 (xdrsp, xdxr_data)

XDR xdrsp;

char *xdr_data;

if (ixdr string (xdrsp, sxdr data,16)) xeturn (0);
return (I};
}

xdr_mydate (xdrsp, xdr_data)
XDR *xdrsp;
struct DATE *xdr data;

if (Ixdr_int{xdrsp, sxdr_data->mday)) return(0); /* 1-31 day of month */
if (ixdr int(xdrsp,sxdr_data->mon)) return{0); /* i~12 month */
if (Inmdr int(xdrsp,&xdr data->year))} return(0); /* O~ year - 1900 */
if (1xdy int(xdrep,sxdr data->wday)) return(0}; /* 0-6 day of week */
return (17

}

xdr_date (xdrsp, xdr_data)
KDR *xdrsp;
struct tm *xdr data;

if (Ixdr int(xdrsp, &xdr data->tm sec }} return{0); /* 0-59 seconds */
if (Ixdr_int{xdrsp,sxdr_data~>tm min }) return{0); /* 0~59 minutes */
if (1xdr_int{xdrsp,&xdr data->tm hour}) return{0); /* 0~23 hour */

if (1xdr_int{xdrsp,sxdr data->tm mday)) return(0); /* 1-~31 day of month */
th */

}

i

{

if (ixdrint{xdrsp,&xdr_data->tm mon)} return(0); /* 0~11 mon
if (Ixdr int(xdrsp,sxdr_data->tm year)) return{0): /* 0- year - 1900 */
if (Ixdr int(zdrep,sxdr_data->tm wday)} return(0}; /* 0-6 day of week */
if (Ixdr int{xdrsep,sxdr_data~>tm_yday)) return(0); /* 0-365 day of year */
return (17 ;

}

xdr_software block{xdrsp,xdr data)
XDR *xdrsp;
struct SOFTWARE BLOCK *xdr data;

char *string pointer 1;
string peintér lexdx data->software package;

if (ixdr string(xdrsp, sstring pointer 1,16 }} return(0);

if { Ixdr_short (xdrsp, &xdr__data->total__copies }) return{0);
if {ixdr short (xdrsp, &xdr_data—)copies_in_use) } return{0};
return {1¥;

}

xdr_node block(xdrsp,xdr data)
*DR Fadrsp;
struct NODE_BLOCK *xdr_data;

char *string pointer_ 1,*string pointer 2;

string pointer l=xdr data->node address;

string inter_z-xdr__data—>softﬁare _package;

if {1xdr_string{xdrsp, éstring pointer 1,16}} return(0);
if {(ixdr string(xdrep, éstring pointer 2,16}) return{0);
return{1¥;

x*dr_node array {xdrsp,xdr_data)
XDR Fxdrsp;
struct NODE_BLOCK *xdr_data;

if (Ixdr_array(xdrsp,xdr_data, énumber of clients,MAX CLIENTS,
sizeof (stTuct NODE_BLOEK) yxdr_node block)} return(0};
return{l);

xdr_package array (xdrsp,zdr_data)
KDR *xdrsp;
struct SOFTWARE BLOCK *xdr data;

if (ixdr_array{xdrsp, xdr_data, énumber of packages,MAX PACKAGES,
sizeof {struct SOFIWARE BLOCK), xdr_software_bloek) } return{0};
return {1);

xdr_usage_block {xdrsp, xdr_data)
#DR *xdrep;
struct USAGE BLOCK *xdr data;

char *string peinter 1;
string_pointexr lexdr data->software package;

if (ixdr_ string(xdrsp, sstring pointer 1,16 }} return{0);
if (lxdr_short ({xdrsp,sxdr data->copiea)} return(0);
if (Ixdr_short (xdrsp, éxdr data->concurrent})} return{0j};
it ¢ Izdr_ghort (xdrsp,&xdr data~>checkad)) return(0);
if {Ixdr_int (xdrsp, sxdr_data->time used)) xeturn{(0);
return {17; -

}

xdr_usage_array (xdrsp,xdr_data)
ADR *xdrsp;
struct USAGE BLOCK *xdr data;

if (Ixdr array(xdrsp,xdr data,&in usage number of packages,MAX PACKAGES,
sizeof (stTuct USAGE BLOCK), xdr Tsafe_block)) refurn{0);
return{l);

@

Jxx * /
/% */
/* Program: LIBRARIA.C */
/* */
5* Purpose: NIMS server program *//’
* *
/* Port Ristory: This program runs on NeXT, DEC MicrxoVax II, and */
,/,* IBM RS/6000 *;
% *
/* Purpose: This is the Applied Science software librarian. It accepts */
/* requests from microcomputer-based clients, and returns the */
/* appropriate responses. Requests are as follows: */
u P POl =7
;: RPC request action ”5
*
;* SHUTDOWN This function performs a controlled shutdewn */
* of the librarian server., All files ave */
/* closed and all socket connections are torn */
4* down. *;
* *
/* RESTART This function re-initializes all relevent data */
/* structures (client list and software list are */
/* zerced) and the sife agreement file [software, */
5: lab) is re-read, *;
*
/* CHECK_OUT The client~PC is requesting to check out */
/* {gain possession of a copy) a software */
Ve package. If the ber of copies in use is */
/* less than the site agreement maximum for the */
/* package, the librarian returns a zero to the */
/* client-PC, indicating that it can use the */
/* package. If the maximum number of copies are */
{l* in use, a non~zerc is returned. */
* 4(/
/* CHECK_IN The client~PC is signalling that it has */
/* f£inished using a software package, and the */
/* number of copies in use for that package is */
;* ?ecxmnted. The default package, IDLE_MACRINE *5
* & then checked in. In the event of two *
7* consecutive CHECK OUTs, an automatic CHECK IN */
;: is implied, - *5
*
/* REMOVE Occasionally a node will die (as in a bhardware */
/* failure) without releasing a software package. */
/* This function removes a node from the data- */
/* base and decrements the total usage on the */
5* software it was using at the time of death. */
* */
/* SET_MAX In the event that the software librarian is */
/* running, and the system administrator wishes */
/* to change the site agreement file, two options */
/* exist - SHUTDOWN the system and edit the file, */
/* or issue a SET MAX and have the file rewritten */
/* autopatically.” SET_MAX will fail if the new */
/* site requirement is less than the number of */
;: copies in use, *;
*
;* QNODE Given a noﬁ number, this function }:ogurns the *5
*
package being used on that node, It is *
5* convenient when monitering a group of PCs, */
* */
;* QPACKAGE This query returns the number of coples in use */
* for a given software package as well as the */
;* site agreement restriction, */
* */
/* QUSERS This query returns the number of active and */
/* idle nodes registered in the network, Idle *f
/* nodes are determined by checking the usage of */
;: AutoMenu. *5
*
/* QTIME One of the nice features of a Centralized */
;* server is the ability to coordinate several *;
* aspects ~ such as a Detwork time, This *
/* function returns the time of day to the */
;: alient-PC, *5
*
/* QNODES This query returns every node address using */
/% the server and the package curzently being =/
;: executed, *;
*
5* QLICENSE This query returns every software package in */
* the librarian database with the maximum */
/* allowable package usage (the site license */
/% agreement) and the actual number of coples in */
;: use., *;
*
;* DAILY This request produces a usage report for a spe~*/
* cified day. */
;* WEEKLY Thiés xeque;t produces a usage report for a spe—*§
* cified week. *
;: MONTRLY lea.is request produces a usage report for a spe-*/
cified monty. */
/* SEMESTER This request produces a usage report for a spe~*/
/* cified semester. *
/ S /
#include "libraria.h™
#include <stdioc.h>
#include <fentl,bh>
/w * hk * e e e dok A /
/% */
/* There are several global variables used by the rest of the program. */
5* They include: */
* */
/* audit_file is the file containing the librarian-generated audit, and */
,;* error_log contains the librarian-generated error messages. */
* */
/* starting date contains the time—dependent audit file name. Every */
VA time an audit is generated, starting date is compared to the system */
/* date., If thay do no match, a new audit trail is created and */
/* starting date is updated, */
/* - */
/* days in_service contains the number of days that the server has been */
/* running without shutdown or crash. Special things must cccur on the */
/* zerceth day - the system must be restarted, */
7 */
1* number of system errors contains the number of non-fatal system */
/* errors that have occurred since system start, If this number */
/* excesds MAX ERRORS, the system is terminated, */
e */
/% /
int number_of_aystem Srrors;
int days_ih_service=U;
FILE *audif file, *error log;
char starting date[ll];
char audit fiTe name[20];
int child pid = 07
e ¥

/* Procedure "open error log" */
/*

/* This procedure opens the erxror log file ("apslib.errors"). If an aerror */
/* during this procedure, we have one valid option — terminate the program, */

/* This ghould ke the first procedure called by this program. *5
*
e /

open_error_log(}
if {{error_log=fopen (ERRORLOGNAME, "w")) ==NULL)
printf ("\nFATAL ERROR: Unable to write error log file,\n"};

exit(1);
}

}

/* * /
* */
/* Procedure "system error" >/
* " */
/* This proceduxe, given a pointer to an error message, prints the time and */
/* the error message in the error log file and increments the number of */
/* overall system errors. */
7 */
/ FRAARIARAAR KR AR RARRARA AR KR KRAA KR AR K/

system erroxr(errox _Tessage}
cha¥ *error megBage;
{

time t time_of error;
char erroxr message time[21];

time (stime of ervor);

strncpy {exTor 1 - ressage ttme,ct:.me (&tlme of . error) 120} ;
error_message time{20T="\0'

fprintf {error log,“%zbs%a\n",error message time, error - _message};
£flush(error_logj;

numbezr of system errorstt;

if (nufibe¥ of syStem errors==MAX ERRORS) exit(l);

* Kk RR AR]
7% */
/* Procedure “initialize software lisgt" -/

*/

/* This procedure initializes all MAX PACKAGES software_list entries. The */
/* software package name is set to null, the total cop:.es for that package */

/* is set to zexo, and the copies in use for the package is set to zero. */
/* */
/* Software list[0] always is set to contain "AuteMenu", the equivalent of */
/* a lab PCTin an idle state. */
/* *
JHxx Arkk RSk R s ArkrR)

initialize software list(}
{

int counter;
for {counterw(; counter<MAX PACKAGES; countert+)

* (software llst[counte:} aottwareﬁpackage}-’\O“
software lxst[countar] total COp:Lesto,
goftware lxst{counter] copies in use=0;

strcpy{software 1list[0].scftware package, IDLE MACHINE) ;
number o:_packages-l;

A /
/* */
/* Procedure "initialize client list" */
/* - */

/* This procedure initislizes all MAX CLIENTS client list entries, The node */
/* address for each client list is set to 000,000.006.000, and the software */
/* in use is set to software list([0] ("ButoMenu"). */
/* */
/ Kok 7/

initialize client list()
{

int counter;
for (counter=0; counter<MAX CLIENTS; countert+)
{

strepy{client list [counter].node _address, "000.000,000,000"} ;
strcpy(client ligt [counter] .softWare package,™);
client l:.at[countcr] software_in use= ssoftware li.st[Ol,

}
numbez_oﬁ_clients-o 7

2k /
7+ */
/* Function "find_.software _package” */
/* */
/* This function, given a package name and an addition flag, returns an */
/* integer corresponding to its location in software list, If the package */
/* can not be found, and the addition flag is TRUE, &n attempt is made to */

/* add the package name into the software list. If addition is attempted, */
/% but all array elements are in use, a ~1 is returned {indicating that the */

/* the client-PC will remain idle), and an error log is generated. */
/* */
/ * /

int find software package{package name,add package)
chax *package name;
int add _)ackage,

int software_location=0;

int software_ found=FALSE;

while ((software losation<number _of packages) && (software found=~FALSE)}
{

if (strcmp(softwa::e list[software location],
software ckage,package name) !=0F software_locationt+;
else soffware found=TRUET

1

if ((software found==FALSE} && (number of packages<MAX PACKAGES))
if {add _package-ﬂ‘rRUE)
{

software fmmd—TRUE,

punbex o }}:ackaqea-ﬁ-‘

stropy{software list [software location].software package,
package Tame);

software 1ist[software location],total copies-o,

software_ list[software location].copied in_use=0;

}

if ({scftware found==FALSE)) software_ location= ~1;

=l

if {{software found==FALSE) && (add package==TRUE})
system e¥ror {"software list arfay limit reached.");

return (software location);
}

int find package_in_usagelist (package name,add package)
char” *package _name;
int add package;

{
int software location=0;
int software found=FALSE;
while ((soft¥Ware location<in usage number of packages)
§&¢ (softwire foundw=~rFALSE))
if (stromp(usage list[software location),
software package;package name)T=0) software_ locationt+;
else software found=TRUE]
}
if ({software found==FALSE) && {(in_usage number of packages<MAX PACKAGES)}
if (add Package==TRUE) -
{
software found=TRUE}
in_usage number of packagesi+;
at¥opy (uSage list{software location].software package,
package name};
usage list[soffware location].copies=0;
usage_list[software location].concurrent=0;
usage_list[software location].checked=0;
ugage_list[software_location] .time used=0;
}
if {(software found==FALSE}) software lowation= =l
if ((softwarevfound-FALSE) && {add_package==TRUE))
system eTror ("software list arFay limit reached.");
return (software location)j
}
e * P TT Kk)
/* */
/* Function "find node address” */
/* - */
/* This function, given a node address and an addition flag, returns an */
/* integer corresponding to its location in software list, If the node */
/* can not be found, and the addition flag is TRUE, @n attempt is made to */
/* 2dd the node address into the client_list., If addition is attempted, */
/* but all array elements are in use, a =1 is returned (indicating that the */
/* client-PC will remain idle), and an error log is generated, */
* */
/**k*ﬂ *k /

int find node address(node_address,add node)
char *node address;
int add node;

{
int node location=0;
int node_found=FALSE;
while {(node_location<number of clients) && {node_found==FALSE)}
if (stremp{client list{node location].node_address,
node_address)T=0) node_Tocationt+;
else nodé_found=TRUE;
¥
if (lnods__foundanFALSE) &6 (numbex_of__clients<M.Ax_cLIENTS))
if (3dd_node==TRUE}
{
node-found-mUE;
nunber of clientet+;
strcpy'(cl'{ent_}ist [node_location] »node_address,node address) ;
strcpy{client” list[node location].softWare_ package, IDLE MACHINE);
cliem:__list (node location]. software_in_use- &software__l?fst 015
software list[0].copies_in usei+t;
¥
if ((node_found==FALSE)}) node location= -1;
if ((node found==FALSE) ¢4 {add_node==TRUE))
system error("client list aXray limit reached.™);
return (nede_location};
}
/ Rk
* */
/* Function "read software configuration™ *5
/* *
/* This procedure attempts to read in the software configuration file */
/* ("LICENSE_DB") and set the maximum number of usable copies for each */
/* software package. In the event that the file is not present, or the file */
/* ia corrupt, a system error message is flagged and the function is */
/* terminated with a return value of 1. If the file is successfully read, */
/* 0 is returned, */
’/* */
/ *ow *ekk [

int r:ead_software__canfigurat ion {}
{
FILE *sonfiguration_file;
int total coples,@xit condition, elements_read, software location;
char long_package_nameTSO] » software package[16] ,audit__descripbion {601

if ({configuration file=fopen(LICENSE DB, "r+")})==NULL}
{

system_error("LICENSE DB is not present, Unlimited usage granted.");
return (1) 7

}
long_package name [01=/\0‘;

elements read=0;
while (1Feof (configuration_file))
{
elements_read=fscanf(configuration_file, "$2d%s”,
stotal copies, long paTkage name);
if (elements_read=wZ) -
{

strnepy (software package,long package name,15);
software package[15]='\0';
sprintf(avdit_description,"000,000.000,000 %-15s %34",
goftware package,total coples);
generate audit("SET_MAR",audit_description);
software location=
find_software _package (software __package » TRUE} ;
if {goftware locationlwm -1}
software Tist[software_location].total copieswtotal copies;

else
if (elements readl=EOCF}

{
system _error("Unable te read LICENSE DB configuration,");
return{l);

}
felose (configurat ion__file) H
return{0};

/ /
/* */
/* Function "rewrite software configuration” *;
/* e - *
/* If the aystem adminisitrator opts to take the safe approach to updating */
/* the LICENSE DB configuration file via SET_MAX, this procedure is called */
/* to rewrite The new software configuration to disk, If the file can not */
/* be rewritten we return a value of one, and if it can, we return a value */
/* zero. 1If the function fails, we proceed onward, hoping that the */
/* administrator dees not issue a RESTART command (which will force a */
/* re-reading of the file). */
/* */
/ * b /
int rewrite software configuration()
FILE *configuration file;
int countex;
if ({configuration file=fopen ("temp,lab", "w")}==NULL}
{
system error ("LICENSE DB configuration can not be rewritten.");
return{l);
}
for {counter=0;counter<number ofﬂpacknges,countex&ﬂ
fprintf (configuration f£ile, ™24 $s\n
software_listToounter].total cop:.es,
software list [counter] software_yackage),
fclose (configuration File):
if (rename("terup lab\o", LICENSE ,_DB)== 1)
system error{"LICENSE DB configuration can not be rewritten,™);
return{i};
}
return{0);
}
/> # *f
J* */
/* Functien M"regstx™ */
/* */
/* Pasged the addresses of a node_address and a package name, this routine */
/* attempts to register that node for use of the requested program. If the */
/* node is still clinging to anothber package, that package is released, and */
/* its current usage is decreased. If the node is new, or the software is *f
/* not present in the "LICENSE DB" file, there is the possibility that */
/* either client_list or software list is filled to capacity. In that case, */
/* a two is retufned to the callzng routine. If the reguested package has */
/* the maximum amount of copies in use, one is returned. If the requested */
/* package is already registered, a negative one is returned. If the */
/* package can be registered, the package’s usage is incremented, and a zero */
/* is returned, */
/* */
/ /
int regstr(node address,package name,caller,copies_in use)
char *node address;
char *package name;
int caller;
int “*copies_in usey
{
int software_location-o;
int node location=0;
char audit descriptien(40];
struct SOFTWARE BLOCK *software to_ check in;
struct SOFTWARE] TBLOCK *software to_ “check out;
software location=find software package{package name, TRUE);
if (software location==~1) return(2);
node location-fxnd node_address (node address, TRUE) ;
if (node location==~1) FTeturn{2);
software to check out = &software list[software locat:.on],
software_to_check in = client 1iFt{node locatidn}.software_in_use;
if (stromp{software_to_check_ in->software package,package name)} 1=0)
if {{software list[software_ location],total copies)>0)
if (softwax:e list{softWare location].tBtal _copies ==
software 1ist[softvta.xe location] .copies_in use) return(l};
if (strcmp(cllent list[node 1ocat10n] software_package, nUy te 0O}
if (caller == CHECK OUT || caller == CHECK IN)
sprintf{audit description, "$~15s %-15s",
node address,softwax:q to_ check :.n->softwate_package),
generate_: aud:.t("cﬂl!cx INY, audit aescrlption),
}
{software to check in->copies_in use)--;
(software to check out—xoples in use)++;
*copies : ih uSe = software to_check . _out->copies in use;s
stx:cpy(cl:.ent list[node location].Boftware acEaga,
softwate to_check out~>sottwa:e_yac age) ;
client | llattncd@ 18ecatiol]. software in use-software to_check ._out;
}
else return{-l);
return(0);
}
/ /
/* */
/* Function "set max" By
7 - */
/* Given a software info block, and a package addition flag, this routine */
/* resets the site license maximum for the package. If the package iz new, */
/* and the package array is filled, a negative one is returned. If the site */
/* license maximum is successfully reset, a 2ero is returned, and if the */
/* present number of cop:.eu in use for the package exceaed the new maximum, */
/" a one is r d and the pack in tion iz left unchanged. */
*/
/,.” 7

int set max(soicware lnfo,addzpackaqe)
striict SOFTWARE BLOCK *software info;
int add package}

int software location,library reply;

software location=find |_software package (software : info->software_package,
add _Ipackage);

if (software lecationm=—1) library reply= -1;

else

library reply=0Q;
if ((so’itware_lxst[software location].copies m uged=
software info->total copies) || (softwa:e Info~>total |_copies==0)}
software lint[softwaze location].total copies-
aoftware info->total cop:.as,
else library reply=l;

return (library reply);

}

/* * *

/* */
/* Function "remove node™ */
/% - */
/* In the event that a machine is powered-down while still technically */

/* possessing a copy of a given software package, the library administrator */
/* san issue a remove node command to check out the software associated with */
/* a given node. The software data associated with that node {(aka, the */
/* number of copies in use) is updated, and the node is completely removed */
/* from the cliemt list, If the node is successfully removed from the client*/
/* list, a zerc is returned. If the specified node does not exist, a one is */

/* raturned, */
/* */
/ * /

int remove node(node address)
char *hede address,
{

int ipl,ip2,ip3,ip4;

int node_ location;

int counter, library reply;
char audit_description(40];

secanf (node_address,"$d,%d.%d, %d", &ipl, sip2, &1p3 &ip4);
sprintf (noda address, "%03d, %03d. %03d %0347, ipl, ip2, ip3, ipd);
node locatlon-find nede address (node address,FthE}

if (Tode_ locationt® «1)7

if (strcmp(client list[node location].software package, "7} I= 0)
{

{client_list{node_ location] .software_in use->copies_in use)--;
sprint¥(andit_ descrlption, "4«15g B~1587,

node Address,client list[node location].software package);
generate_audit ("CHECK INT, alidit descrfpt:.on),

for {counter=node location;{counter<number of clients~1); countertt)
client list [counter+0]=client list [Counter+il];
number _of clisntg——;
library reply=0;
}
else library reply=l;
return (library _reply};

/* - > /
/* */
/* Function "restart system” */
/* */
/* Sometimes the library administrator needs to completely restart the */
/* server (as in the case of a power ocutage taking down a bulk of client */
/* machinesz, This routine initializes the software list, the client list, */
/* and returns the result of reading the software configuration (a zero */
,;* indicates a success, and a one indicates a read error. *;
b *
Y2 ey * * /

int restart_system()

{

initialize software list():

initialize client 1¥st();

return{read software configuration{)}:
}
JrEr /
/>)
/* function "read library image" */
/* */

/* In the event of a system crash, we can try te re-read our own audit file =*/
/* te vebuild out internal database, If the audit file is there, and we are */
/* able to read it (and execute its contents), a FALSE is returned by this */
/* function (indicating that we do not need to restart the system from */
/* scratch, If the audit file isn’t thexe, or it is corrupted, or the last */
/* entry in the audit file is a SHUTDOWN, we need to return a TRUE (ro force */

/* system re-initialization), LY
7% */
/* /

int read library image (}

{
char audit _entry([80]1;
char audit t:m\e[Q) client eomandw],cllent _address{16],
package name[16], nods addresu[lﬁ},
int total copies, copies In_use,library reply:
struct SOFTWARE BLOCK softwafe Lnfo,
int system resFart;

initialize software l:Lst(),
inztlalzze "client lxst(),
stem restart=FALSE;
while Tifeof (audit_file))

if (fscanf{audit_file,"%s %s %s",audit time, client command,
client_address)==3)
{

if (stromp(client command,"CHECK OUT™)==0}
{
facanf (audit file, "$s%d", package name, écopies_in use);
library) reply=regstr {client address,package name; READ,
scopied_in use);
}
if {(strcmp{client command,”SET_MAX")==0}
{
fscanf(audit file,"%s%d", package name, stotal coples),
strcpy(software info, software _yackage, package name) ;
software info,tdtal _coples=total coples;
library Teplymset max(&aoitware Info,TRUE) ;
}
if (stromp(client command, "REMOVE")wm=0)

fscanf(audit_file, "$s" node address);

library_reply-remove__node (node__address) H
if (stromp (client command, "SHUTDOWN™) =0}

initialize software list{);
initialize client 1¥st();

}
if (stromp{client comnand,"caECK IN')==0}
fscanf (audit file,"!a",package name) ;
if (stromp{client command, "OPACKAGET)==0)
facanf{audit " f£ile, "%s",package name);
if (stromp(client command, "ONODE"} w0}
facanf (audit”, tile,"%s",node address) ;
) }
if (stromp(client command, "SHUTDOWN")==0) gystem restart=TRUE;
return{system . restart);

}
/ R /
A */
/* Procedure "save library image" */
* - = */
/* When a day change is detected, and a new audit file has been opened, we */
/* need to save the current status of the librarian, The current state is */
/* defined by the current site requirements and the nodes/packages in use, */
/* These are all output to the audit file; in the event of a librarian */
/* failure, its current state can be regenerated for the day by re-reading */
/* its own audit trail - even if "LICENSE_DB" was destroyed, */
/* */
/
save_ library image()
int countex;
time t 1:.brar:y image time;
char current tma[gl,
time (slibrary i.mage tima);
strncpy(currtnt time, (ct:me(&llbrary J.mage time)+11),8)
current_time [8]%\0';
for {(counter=0;counter<number of packages;counter++)
fprmtf(audlt file,"4~88 !—Tgs %-15s $-15s %3d\n",
curreht :_time, "SET_MAX", "000,000,000.000",
softwars llst[aount:er] soft:ware_;?ackage,
software list [counter] ., total _copiles};
for (counter-o'countexxnumber of clients;counterdt)
fprincf (audit_file,"%~8s "%~10s %~15s 3-15s %3d\n",
currefit t;uue, TCHECK oUT",
client Tist[counterT. ncde address,
client ll.st[counter] software in use->software_package,
elient 1lst[counter] software in_use~>copies_in use);
}
/ /
/* =/
/* Prosedure "open_ audit_ file® */
/* - - */
/* This procedure opens the audit file, The audit file pame is in the */
/* format day mon_dd. audit. Likewise, starting date is set to the format */
/* day mon dd. IF an error is detected while attempting to open the audit */
/* file, an error message is generated, and the server dies. */
/* */
/ /

open_audit file(}
{

}

vo
st
{

time t startlng audit t;u'ue,
int Fudit file presen’
int systelm_resEart;

number of system errors=0;

audit Filé preseft=TRUE;

system restart=FALSKE;

time(&stsrtxng audit time);

strncpy(start: ng date sotime {(éstarting audit_time)-+0,10);
st:ncpy(audlt £iTe name,ccxme(&utarblng audit 1 txme)v&-q, i
audit file name['l]-’\O’ :

starting date [10]1=/\0';

strncat (audit_file name,ctme(&start:.ng audit_time), 3);
streat (audit Tile RHame, ", audit");

audit file name[3]-’ s

audit " file name[6]=""';

it (audit ?119 name ["4']--’ 7) audit : file name[4]='0';

if ((andit_file=fopen (audit_file name,"r™)) I=NULL)
{
if (days_in_service==0)
{

system reatart=read library_ image();
foloselaudit file);

}
else system error ("Existing audit file detected. Ignored”};
}
else audit file present=FALSE;

if ({audit_file=fopen{audit file name,“a"))==NULL)
system error {("Unable tO open audit file.¥);

if ((audit Txle_present-FALSE) &¢ {days_in_service==0)) system restart=TRUE;

if (system restart=~TRUE) restart . system{);
days_in aewice++,~

id get nextday(date)
ruct DETE *date;

int dd, mm, wday;

dd = date->nday;
mm = date->mon;
wday = date->wday;

dd +4;
if {(dd > no_of daysimm~1])
{
dd = 1;
o A
}

wday ++;
if {wday == 7)
wday = 07

date~>mday = dd;
date->mon = mm;
date->wday = wday;

void get filename {(filename, date)
char *filename;

struct DATE *date;

{

int 44, mm, wday;

dd = date->mday;
wm = date~>mon;
wday = date->wday’

st:CPy(filoname, nonth [rre~11) §
filename(3] = 7 '

filename [4] = X0’

strcat {filename, day fda~11y
filename{§] = '

filename[7] = 'TO"

streat {(filenane, weekdaywdayl};
filename[10] = '\07;

strcat {(filename, Y.report™);

}

int oneday report{filename)
char *fileflame;
{
FILE *report file;
char package) " nare [16])
int elements read, total copies, concurrent, checked, time used;
int softwue location;

if ({report_file=fopen (filename,"r+"})==NULL) return;
package_name[0]='\0';

while {lfeof({report_ f£ile)} {
elements tead-fscanf(report fxla,"%s 3d 8d %d ¥d\n", package_name,
stotal oopxes, sconcurrent, &checked, &time_used);
if (elements read==3) {
package name{15]=’\0';
software locationm=
findeackage in_usagelist (package _name, TRUE) ;
if (software cationT= T1) {
usage 1ist {software location].copies = total coples,
if {(cOnourrent > usage 115t[so£cware locatioh] .concurrent)
wsage list(softhu:e location] .conGurrent = conhcurrent;
if (checKed > usage 1xst[so£twara location] .checked)
usage list[software location].Bhecked = checked;
iz (ti.me used > usage . I;st(software location],time used)
usage__ 1iet[software location] . tme uzged = time used,

}
} else if (elements _read!=EOF} {
system error{"Unable to read LICENSE DB configuration.”);
return{l) 7
¥

¥
fclose(report file);
return{0};

}

get report(type, date)
int™ type;
struct DA‘IE *date;
{
char filename[18];
int i;

in_usage number of packages = 0;
switch {type)

cage DATLY:
get_filename(filenane, date);
oneday_report {filename) ;
break;

case WEEKLY!
for (L = 0; 1 < T; i++)

get_ filename (filename, date);
eneday_report (f£ilename};
get_neXtday (date);

break;
case MONTHLY:
for {i = 0; i < no_of days[date~>mon -1}; A+)

get_filename (filename, date);
oneday report (£ilenane);
get neXtday (date) s

}
break;
case SEMESTER+L:
case SEMESTER+3:
for (i = 07 & < 120; i++)

get_ filename (filename, date};
oneday_report (filename);
get nextday(date),
}
break;
case SEMESTER+2:
for (i = 0p i < 100; i++)

get_filename (filename, date);
oneday_report (filename) ;
get_neXtday (date) ;

break;
}
1
/% ok ek ok * /
/% */
/* Procedure "generate audit"® */
/% - */

/* This procedure, given a node number and an action string, places an audit */
/* item in the audit file. If the current date is no longer valid (we bhave */
*

/* been running for more than a day), the current date is updated, the /
/* output file is closed, and a new output file is generated. */
/* */
/* The format of the audit file typically is as follows: */
5* {time) {action) (node) {rction parametexs) *;
* *
/* Q0:00:00 ACTION 000.000,000,000 */
7% */
/* Variations do exist, however, */
* *
/*******iﬁ*****k*******hi**k***** ***i*/

generate audit (audit act.wn,auda.t description)
char Faudit action, *andit doscr:.pt:ion,
{

time t present audit time;
char current ta_me[9]vprﬁsent date{11];

time (spresent audit . bime) ;

strnopy (pzaaem: date, ct;me(&present audit_time),10);
strnopy (current time, (ctime(&present “audit t:\.me}+11) 8);
present_date [107=’\07 ;

current tims[BI='\O" ;

if (strncmp(starting date,present date,10)1=0)
{

folose {audit £ile};
if (child pid 1= 0) wait();

if ({child pid = fork{}) == 0)
execl {"gen report", audit file name, 0);
open_audit_fiTe();

save_libra¥y image();
}

fprintf (avdit file,"$~8s $~10s $s\n", current tlme,audit actmn,
audit descriptibn);
££lush (audit_gfile);

}
/ * /
7% */
/* Function "get client address" */
/* - */
/* This function returns a sixteen character internet node address given a */
/* client SVCXPRI transp pointer, The node address is in The formakt of */
/* "000,000,000,000\07, */
/* */
Faakala * /
get_client addreas{transp,node address)
Tregist@r SVCXPRY *transp;
char *node address;
{
char internet address[4];
beopy (stransp=>xp_raddr.sin_addr, internet address,d),
sprintf(node ; address, "$03u.%03u.303u, 034",
(internet address[0] & Oxff),
{internet address[l] & Oxff),
{internet “address[2] & Oxff),
{internet “address[3) & O0xff));
}
/ * RAeR Py
/* */
/* Function "get client arguments® */
/% - - */
/* This function, given a SVCXPRI transp pointer, an xdrproc_t peinter to */
/* the xdr handling routine, and a pointer to the return argiments, attempts */
/* an eve getargs. If the get fails, an error is generated and logged. */
* */
/*i*w* ke ek /
int get client arguments (transp,xdr routine,return parameters)
register SVCXPRT *transp;
xdrproc_t xdx_routine;
chaxr *return_yaramete:s,
{
if (sveo getargs (transp,xdr_routine, return_parameters)==0)
system error("Unable to get RPC arguments.”);
return (RPC_ERROR)
}
return (0);
}
/ ES kS
/* */
/* Function "send client_reply" */
/* */
/* This function, given an SVCXPRY transp peinter, an xdrproc_t pointer to */

/* the zdr handling routine, and a pointer to the return argulients, attempts */
/* a svae sendreply. In the event that the sendreply can not occur, an error */
/* message is generated and logged. */
/% */
/* ok */
send client _reply (transp,xdr_routine, library reply)

“register SVCXPRT *transp!

xdrproc t xdx routine;

int” *1iBrary Feply;
{

if (svc_sendreply (transp, xdt_x:cutine ylibrary reply)==0)

{
system error("Unable to send RPC reply."};
returny
}

}
/ Mok Rk kR */
/* */
/* Procedure "rpc service" */
/* - */
/* This is the heart of the APS librarian. Once svc run receives an RPC */
/* request, all essential information is passed to this routine for further */
/* processing. We first get the client address of the rpc—originator, and */
/* then one huge case statement to handle the various RPC procedure numbers, */
/* There are three ways to exit this routine: via an error while getting RPC */
/* arguments, via the SHUTDOWN command {which exits the program completely}, */
/* and via normal termination of an RPC progedure, Errors during the sendlng“/
/* of client replies are not handled speclally; since they are the last
/* routine called bafore returning to svc run, we merely record their result */
/* and continue. */
/* *
/ **ki*/

fa- sexvice (xgstp, transp)

regis\:er struct sve req *rqstp;
register SVCKPRT *tF¥ansp;

struct sockaddr in client addr;

int coples_in _lse,libraxy reply, countex;
int node locat:.on-{) software_location=0j
int ipl,ip2z,ip3, ipll-

char client nede[16];

char node_address[16},package name[16];
char audif description(40];

char *node _dataj

time_t curfent time;

struct tm *gerver time;
struct DATE report date;
struct SOFTWARE BLUCK software_info;

get_client address(transp,client node)};
switch (rgstp~>rq_proc)
{

case SBUTDOWN:
{

if (get_client arguments{transp,xdr_vold, NULL)==RPC_ERROR) return;
generatd_audit{"SHUTDOWN™, client_node) !

fclose (alidit_file);

folose (arror_log) ¢

library reply=0;

send clTent reply (tranep,xdr_int,slibrary reply);
sve_destroy{transp};

exi®(0);

}

cage RESTART:

{
if (get_client arguments(transp,xdr void, NULL)==RPC _ERROR} return;
genarate__auditT"RESTART“ selient node);
library Teply=restart system(};
send _clfent reply{trafisp, xdr_int,&library reply);
return;

}

case CBECK IN:

if (get_client arguments{transp,xdr void,NULL)==RPC _ERRCR) return;
library reply=regstr{client node, IDEE_MACHINE + CHECK_IN,
&copies_in use);
if (library replym=0) -
{

sprintf (sudit description, "$-15s %~15s %347,
client node,IDLE MACHINE,copies in use);
generate_audit {"CHECK_OUT", audi t_deschption)]

send_client reply(transp,xdr_int,&library reply);
return;

case CHECK_OUT:

if {get client arguments(transp,xdr stringl€,package name}=e
RPC_ERROR) return;
library_ reply=regstr{client node,package name, CRECK OUT,
scopies_in use);
sprintf{audit_description,"$=158 %-15s %3d",
client node,package_name,copiee in_use);
if {library reply==0) -
generaté audit ("CHECK OUT",audit description);
send client Teply(transp,dr_int,&liBrary reply);
return;

case REMOVE:
{

t_client arguments(transp,xdr stringlé, node address)=e
C_ERROR) " return; -
library_reply’-ramove_.node {node address};
sprint¥laudit_descriPtion,"s-15s ¥~15s",client node,node address);
if (library réply==0)

generate audit ("REMOVE", audit_description);

if (ge
RP

send_client _reply (transp,xdr_int,&library reply);
return;

case SET_MAX:

if (get_client arguments(transp,xdr software block, ésoftware_info)
== RPC_ERROR) returng - -
sprintf(audit_description, "$~152 %-15s $3d”,client node,
gzoftware info,software package, software infG.total copies);
library reply=set_max (ssoftware info, TRUE); -
if (1ibTary reply==0) -
{

library reply=rewrite software configuration(};
generat® audit ("SET MEX",audit] description);

}
send_client reply(transp,xdr int,&library reply)s
return;

case QNODE:
{

if (get_client arguments(transp,xdr stringlé,node address)==
¢ ERROR} return;

sscanf (node_address, "d, %d, %d,.%d", £ipl, &4ip2, $ip3, &ipd);
sprintf (node address, "$03d,%03d.%03d,%034", ipl,ip2,ip3, ipd);
sprintf(audif_description,™$-~15s %-15s",client node,node_address);
generate_audif ("QNODE", audit description); -
node_location=find node addr@ss(node address,FALSE);
if (node_locationl=-1) Stropy(package name,

cliefit_list[node location],software_in use->software package);
else stropy (package Tame,"Node not in uSe,™);
send _client_reply(t¥ansp,xdr stringlé,package name);
return;

}
case QPACKAGE:
{

if {(get client arguments (transp,xdr_stringlé,package pame)=s=
RPC ERROR) retuin;
sprintf{audit_description, "$~15s %-15s",client node,
ckage name}; -
generate_audit (TOPACKAGE",audit description);
software_location=find software_package (package name, FALSE);
if (software locationim-1)

strncpy {software info,software package,

software_list [software_ location].software package,15});
software_info.tStal_copies=

ssftware_list {software location].total copies;
software info.copies in use= -

sSftware_listTscftware locationl].copiss_in use;

else
stropy (software_info.software package, "Not in use."};
software_info,total _copies=0;
software_ info.copies in use=0;
send client reply{transp,xdr software block, ssoftware _info);
retun; -

case QUSERS:

if (get_client arguments(transp,xdr_void, NULL}==RPC_ERROR} return;

generate audit ("QUSERS",client node};

softwaxe_info.software packageT0l='\0';

software info. tctal‘copies-mumber_of_cl jents;

software info.copies in use=software 1ist({0].copies in use;
send_cli@nt reply{tr&nsP,xdr_softwar block, ssoftwafe Info);
return;

case QTIME:

if (get_client_ arguments (transp,xdr_void, NULL)==RPC ERROR} return;
time(scirrent Time);

gensrate audit {("QTIME", client node);

server timewlocaltime (acurrent time};

send client reply({transp,xdr_date, server time);

return;

case QNODES:
{

if (get_client arguments(transp,xdr veid, NULL)==RPC_ERROR) return;
generate audit{"ORODES",client node¥:

node dat3=client 1ist[0].node Fddress;

send client repl¥ (transp, xdr Hode array,snode_data);

retutn; - -

cage QLICENSE:
{

if {get_client arguments{transp,6xdr void, NULL)==RPC ERROR} return;
generats auditT"QLICENSE", client node); -

node data=software_list[0].software package;

send client reply(transp, xdr package array, &node_data);

retuzn;

}
case DAILY:
{

int i;

if (get client arguments(transp,xdr mydate, téreport date)==RPC_ERROR}
retirn; - -

get_report (DAILY, &report date});

node_datamsage 1ist {0}, software__yackage;
send_client_repTy {transp, xdr_usage array,&node_data);
return;

}
case WEEKLY:

{
int i;
if (get client arguments{transp, xdr mydate, éreport_date)==RPC_ERROR)
return;
get_report (WEEKLY, &report date);

node data=usage 1ist{0] .software_package;
aend_clientw:epxy {transp,xdr_usage_ array,énode_ data};
return;

}

case MONTHLY:

int i;
if (get_client arguments(transp,xdr_mydate, éreport date)==RPC ERROR}
return

B
get_report (MONTHLY, &report date);

node data=usage list{0]l. software_yackage;
send_client_reply (transp, xdr_usafe_array, énode_data);
return;

}

case SEMESTER+1:

case SEMESTER+Z:

case SEMESTER+3:
{

int i;
if (get‘_cl ient_ax:guments {transp, xdr_mydate, sreport_date)==RPC_ERROR)
return;

get report {rgstp->rq_proc, sreport date);

node data=usage list{0].software_package;
send_client reply(transp, xdr_usage_array, &node_data)

return;
}
default:
{
sveerr noproc{transp);
returni
}
}
}
* e 7
/* */
/* procedure "main" */
/* */
/* This routine opens the error log file, opens the audit file, and then */
/* attempts to creats a top connection., If it fails in creating the tep */
/* connection, the program terminates. It then registers itself as an RPC */
/* server, and gees inte an infinite loop, waiting for RPC responses to */
/* arrive. *7/
/* */
> */
/ A AR *k o e ek ek /

main ()}
register SVCXPRT *transp;

open_erroxr_log();

open_audit file();

if (‘(transp-svctcp_create {RPC_ANYSOCK,BUFS1Z, BUFSIZ) } »=NULL})
{ -~

system error ("Unable to create TCP server.");
exit (1}

prap unset (SOFTLIB, SOFTVERS) ;

if {Tsvc:_registox {transp, (u_long) SOPTLIB,
{u_long} SCFIVERS,
rpe_service, IPPROTO_TCF)}

system_error("Unable to register service,");
exit {177

if {fork{)} exit(0); /* run as daemon */
clese{0);

close{l};

close(2);

setpgrp{}; /* detach from process group */

sve_run();

static char sccsid{] = "@(#)license.c July, 927;
*

* COMPONENT NAME: X11

Program: XFACE.C

%X Windows/Motif interface for NLMS management portion,

/%

bl Include Files
*/
#define £d set

#include "libraria.h®
#include <stdio.h>
#include <string.b>
#include <fontl.h>

#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <X11/X.h>
#include <X11/X1ib.h>
#include <X11/Xatom.h>
#include <X1l/Intrinsic.h>
#include <X11/Shell,h>
finclude <X1l/Core,h>

#include <Xm/Xm,h>
finclude <Xm/List.h>
#include <Xm/CascadeB.h>
#include <Xm/Dialogs.h>
#include <Xm/BulletinB.h>
#include <Xm/MainW.h>
#include <Xm/MessageB. h>
#include <Xm/PushB.,h>
#include <Xm/RowColumn.h>
#include <Xm/SelectioB.h>

/%

il Global Variables

*/

#define MAX COPIES 200

fdefine ABOUT 232

#define BELP 230

#define QUIT 999
#define DIALOG HELP 305
#define DIALOG_CANCEL 306
#define DIALOG OK 307
#define NOMATCH 310
#define DESTROYL 321
#define DESTROYZ 322
#define SUCCESS 0

fdefine HRONGFORMAT 1

#define NODEFILE "nodeslist .dat”

FmStringCharSet charset = XmSIRING DEFAULT CHARSET;
/¥ used to set up XmStrings */

static int no_nodes;

static char Nodes [MAX CLIENTS){15];

static char CharNodesList[MAX CLIENTS][30];
XmString NodesList [MAX CLIENTE);

static int no_packages;

static char s_m_package[l6];

static char cSarPackagesName [MAX] PACKAGES] [16]
static char CharPackagesList [MBX CPACKAGES] [20) 7
XmString PackagesList[MAX PACKAGES] ;

¥mString PackagesName [MAX PACKAGES];

static char CharlicenselList[MAX PACKAGES][24];
X¥mString LicenseList [MAX PACKAGES);

static char CharUsageList[MAX PACKRGES)[75};
¥mString UsagelList [MAX PACKAGES];

static char CharQNodesList [MAX CLIENTS] [331;
HmString ONodesList [MAX CLIENTE];

char Error[l128];
char server(] = Yapsrisc";

static void DialogAcceptCB (Widget, caddr t, caddr t);

int date disect {str, ddp, mnp, yyp, Weekdayp)
char *stx;
int *ddp, *mmp, *yyp, *weekdayp:

{
char stxl({3};
int temp;

3trnc‘py(=tr1, str, 2);
stzl[3] = ‘\O
*rp = atol (etrl),

str += 3;

strncpy (strl, st:, 2);
strl{3] = '\0';

*ddp = atoz(strl),

sty 4= 37
strnopy{strl, str, 2);
strlf3] = ‘\0’

*yyp = atol (strl),

if {(*mmp <= 0 }) *ddp <= 0)] *yyp <= 0}
return WRONGFORMAT;

tenp = *ddp ~ 1 + first day of month (*mmp-1] 7
*weekdayp = temp - temp / 7 * T;
return SUCCESS;

int month_disect(str, ddp, mmp, yyp, weekdayp}
char *str;
int *ddp, *mmp, *yyp, *weekdayp;

{
char strlf3];
int temp;

*ddp = 1;

strncpy (strl, str, 2y
strl[31 = 7\07;
*mop = atoi (strl);

str += 37
strncpy{strl, str, 2);
styl{3] = \07;

*yyp = arol {strl);

if (*mmp <= 0 || *ddp <= 0 || *yyp <= 0}
return WRONGFORMAT;

*weekdayp = first_ day of month{*mmp~1};
return SUCCESS;

/*
*x ReadLocalNodes

* Read in nodes list and their names.
*/

int ReadlocalNodes()
{

FILE *nodefile;

int i, 3s

char addlist[15], namelist{l0};

if ({(nodefile = fopen (NODEFILE, "r")) == NULL} {
printf{"can’t open nodeslist.dat\n"};
exit{l);:

}

i = 0;

while {fscanf{nodefile, "%s %s", addlist, namelist) == 2} {
sprintf(Nodes {i], ng-145\0%, addlist);
sprintf(CharNodesList[i], "%-14s %$~14s\0", addlist, namelist);
it

}

folose (nodefile);

for (§=0; 3<i; j++) |
NodesbList([j] = (XmString) XmStringCreateLtoR (

CharNodesList{j], charset};
}
NodesList{i] = NULL;

return ij

}

/%

hedad GetPackages

el Make a RPC call to get the list of packages for latex display.
*/

int GetPackages ()
{

int counter, library function, librarian result;
char package name {167, total copies[3);
char *node datay

library function = QLICENSE;

node_data=software list[0].software package}

call rpe{server, 1iBrary_function,xdf void,NULL,
xdr_package Array, snode_dita);

for {counter=0;counter<number of packages;countert+)

sprintf {CharPackagesName [counter], Tys\0",
scfcwax:e__list {counter] . software_package}

sprintf {CharPadkagesList{counter], "%=15s %3d\0",
software_list{counter]. software package,
software_list[counter].total copies);

}
for {(counter=0;counter<number of packages;countert++) {
PackagesName [counter] = (XmString} XmStringCreateltoR (
CharPackagesName [counter], charset);
PackagesList [counter] = (¥mString) XEmStringCreateltoR (
CharPackagesList[counter], charset);

}
Packagealist [pumber of packages] = NULL;

return (number‘cf__packages) H

J*
*E DesteryCB

*/

void DestroyCB (w, client data, call data)
widget w;

caddr t client_data;

caddr t call_data;

{
Widget pps
4 gwitch { {(int) client data)
{

case DESTROY1:
XtpestroyWidget (w);
break;

case DESTROY2:
pp = XtParent {w)}
XthestroyWidget (w);
XtDestroyWidget (pp):

break;
}
}
7%
** CallRPC
*/
void CallRPC (w, client data, call data)
Widget w; /* widget id */
caddr_t client data; /* data from application >/
caddr t call_data; /* data from widget class */
{
register int acq; /* arg count */
Arg all10); /* arg list */
char msg{l50];
Widget magDh, kid;
Widget Q Nodes Result dialogy
Widget QO Licen¥e_Result dialeg;
Widget Q Usage Résult_ dialog;

XnSelectionBoxCallbackStruct *cb;

int i, countexr, library function, librarian result;
char package name([16];
char *node data;

struct tm server_ time;
struct SOFTWARE BLOCK package infoe;

libtaryvf\mction = {int)client_data;
switch (llbraty_function)
{

case QNODE:
cb = (XmSelectionBoxCallbackStruct *}call data;
i = 0y
while (! {X¥mStringCompare (cb->value, NodesList{i])))
it
call rpe{server, library function, xd.z:__strinng,Nodes[i) '
xdr_stringlé, package name);

sprintf (mSg, "Node Number + %s\nSoftware Package: %3=z\n\0",
Nodes[i], package nane);
ac = 07

XtSetarg{allac]}, XmNautoUnmanage, FALSE)}; act+;

XtSetArg{allac], XmNmessageString, XmStringCreateltoR(msg, charset));
astty

megd = XmCreateMessageDialog{w,

" Query Node Reault v, al, ac);
XtAddCallback(msgD, XnMokCallback, DestroyCB, DESTROYL);
XtAddCallback (msgh, XniNhelpCallback, DialeghcceptCB, DIALOG HELP) ;
kid = XmSelactionBoxGetChild{msgD, XmDIALOG CANCEL BUTION};
XtUnmanageChild{kid); - -

XtManageChild {msgP)};

break;

case QPACKAGE:
ob = {fmselectionBoxCallbackStruct *)call _datay
i = 0y
while’ {1 (XmstringCompars (cb->value, PackagesName[i])))

ity

call rpclserver, library function,xdr stringlé,CharPackagesName[i],
xdr_so ftware_block, &package_in?o) H

sprintf (meg,

"Software Package: %s\nCopies Available: $2d\nCopies in Use : %2d\n\o",
package info.software package, package info. total copies,
package info.copies_in use);

ac = Oy

KtSetArg(al{ac], XmNautoUnmanage, FALSE); ac+d}
XtSetarg(allac], XmNmessageString, ¥mStringCreateltoR (msg, charset});
acH+;
msgD = XmCzeateMaasageDLalog(w,

Query FPackage Result w, al, achy
%taddCallback (megh, XmNokCallback, DestroyCB, DESTROY1);
XtAddcallback (megD, XmiNhelpCallback, DialogAcceptCs, DIALOG HELP)
kid = XmSelectionBoxGetChild{msgD, XmDIALOG CANCEL BUT’ION),
KtUnmanageChild(kid};
XtManageChild (msgD);
break;

case CHECK IN:

call xchaetver, library : function,xdr void,NULL,
xdr_int,&libTarian_result};

sprintf (meg, "L:.brarian Result iz ’ld\n\o" librarian_result);
ac = 0y
XtSetArg({allac], ZmNautoUnmanage, FALSE); ac++t;
XtSetarglaliacl, XnNmessageString, XmStringCreatelLtoR(msg, charset});
actH+;
msgD = XmCreateMessageDialog(w, " Check In Result 7, al, ac);
KtAddCallback (megh, XmNokCallback, DeatroyCB, DESTROYL);
XtaddCallback (msgl, XmlhelpCallback, DialogAcceptCB, DIALOG _HELP} ;
kid = XmSelectionBoxGetChild(msgD, XmDIALOG CANCEL BUT'ION),
XtUnmanageChild(kid);
XtManageChild (megD};
break;

case CHECK OUT:
cb = (XmSelectionBoxCallbackStruct *)ecall data;

i = 0;
while’ (1 (¥mStringCompare (cbh->value, PackagesName{i]}})
iy

call rpc(server, library function,xdr stm.ngls CharPackagesName[i],
®dr_int,&libTarian_result

sprintf {nsg, "1 Tbrarian Result™is %d\n\o" liprarian result);

ac = 0;

XtSetaArg(allac], XmNautoUnmanage, FALSE); act++;

XtSetArg{allac], nNmessageString, XmStringCreateLtoR(msg, charset));

achty

msghd = XmCreateMessageDialog(w, " Check Out Result v, al, ac);

KtAddCallback {msgh, XmNokCallback, DestroyCB, DESTIROYZ);

XtaddCallback (msgDd, XmNhelpCallback, DialogAcceptCB, DIALOG BELP);

kid = XmSelectionBoxGetChild(msgh, XnDIALOG CANCEL BUT'I‘ON),

XtUnmanageChild (kid) s

XtManageChild (msgD);

break;

case QTIME:
call rpc{servexn, llbrax:y function, xdr void,NULL,
Tadr -_date, §server tIme) ;
sprintf (msg
"Current date iz %3s $02d-%02d-%04d\nCurrent time is %02d:%02d:%024.00\n\0",

weekday [server time.tm wdayl,
server time.tm mon+1,
server time.tm_mday,
server time. tm_year+1300,
server time . tm hour,
server Ttime . tm mm,
server time, tm_sec);

ac = 07

XtSetArg{allac], XmNautoUnmanage, FALSE); act+;

XtSetArg(allac], XnNmessageString, XmStringCreatelLtoR(msg, charset));

acd+;

magD = XmCreateMessageDialog{XtParent(w), " Query Time Result 7,

al,ac);

KtaddCallback {msgD, XmNokCallback, DestroyCB, DESTROY1);
XtAddCallback (msgh, XmNhelpCallback, DialogaAcceptCB, DIALOG HELF);
kid = XmSelectionBoxGetChild(msgD, XmDIALOG CANCEL BUTTON)}
XtUnmanageChild(kid);

XtManageChild (msgD);

break;

case QUSERS:
call_rpc{server, library Iunct:wn,xdr void,NULL, xdx_software block,
spackage_infoY;
sprintf {msg
"Machines Registered: §3d\nMach1nea in Use:s3d\nMachines Tdle:s3d\n\0",
package_info.total copies, package info.total . copies-package_info.copies in use,
package_info,copies_in use);

ac = 07

Xtsetarglaliac], XmNautoUnmanago, FALSE); ac++]

Xtsetarg{allac], XmNmessageString, ZmStringCreateltoR (msg, charset));

ACH+]

magh = XmCreateMessageDialog (XtParent(w),"” Quexry Users Reault ",
al,ac);

XtaddCallback {(msgh, XmNokcallback, DestroyCB, DESTROY1);

¥taddCallback {msgD, XmNhelpCallback, DialogAcceptCB, DIALOG_RELF};

kid = XmSelectionBoxGetChild(msgd, XmDIALOG_CANCEL BUTTON};

XtUomanageChild(kid);

XtManageChild {msgD);

break;

case QNODES:
node_data=client list[0].node address;
call tpc(sewer,l'lhrary functTon,xdr_void,NULL, xdr_node array,
4node_data);
librarian_r@sult=0;

for {counter=0;counter<number of clients;countexr++)
sprmtf(CharQNodesL:.stchunter], 3155 %~13s\0",
client_ list [counter].node address,
cl;ent list {countex] ‘software_yackage) ?
for (counter=0;counter<number_of clients;countertt)
PNodesList [counter] = RmstringcreateLtoR {
CharQNedeslist [counter]}, charset);
QiodesList [number _of clients] = NULL;

ac = 07
XtSetarg{aliac], XmNautoUnmanage , FALSE); actt;
XtSetArg(alfac], XmNlistLabelString, XmStringCreateltoR(
"Machine Packages”, charset});

ac i
XtsetArg(allac], XZmNlistItems, QNodesList); act+;
XtsetArg(aliac], XmNlistItemCount, number‘of_clients); act+;
XtSetArg(al (ac] , EmNvisibleItemCount,

tArgVal} number of clients); ac+t+;
thethg(al[ac], KnmNlistvisibleTtemCount, 16); actt;

AtSetArg(allac], XmiselectionLabelString, NULL}; ac++;
Q Nodes Result dialog = xmc::eateselectlonbialog(XtParent (w},
T Query Nodes Result ", al, ac)y

XthddCallback {Q Nodes Result dialeg, XmNokCallback, DestroyCB,
TDESTROTL) ;
XtAddCallback{Q Nodes_Result dialog, XmNhelpCallback, DialogAcceptCB,
DIALOG HELF) ;
kid = XmSelectionBoxGetChild{Q Nodes Result dialog,
XmDIALOG CANCEL_BUTTON);
XtUnmanageChild (kid);
kid = X¥mSelectionBoxGetChild(Q Nedes Result _dialog,

XmDIALOG SEIECTION LABEL);
¥tUnmanageChild(kid};
kid = XmSelectionBoxGetchJ.ld(Q Hodes Result d:.alog,
¥mpIALOG TEXT),
XtUnmanageChild(kid);
KtManageChild lQ_Nodes_Result__di.alog) 3

break;

case QLICENSE:
node datamsoftware list[0],.software package;
call rpe{server, 1iBrary_function,x cE'pvcid NULL,
xdr_package_array,snode_data);”
librarian results=D;

for (counter=0;counter<number of_packages,counter++)
spx—intf(Chaz:LxcenaeLlst(oounter] "%-15s %34 %34\0",

software list[counter]. seftwaxe_package,
software list[countexr].total cop:.es,
software list [counter] copxes in use),

for (counter=0;counterinumber of_packagea,counte:++)

LicenseList {counter] =~ (XmString} ¥mStringCreateLtoR (

CharlicenseList [counter], charset)};

Licengelist[number of packages] = NULL;

at = 07
Xtsetarg{allaa], XmNautoUnma.nage, FALSE); act+;
XtSethArg{allac], XmNlistlLabelString, XmStringCreataLtoR(
*Packages Total Use", charset));

ac g
xtsatarg(al{ac], XmNlistItems, Licenselist); ac++;
Xtsetarg(aliac], XmNlistItemCount, number af_packages), ach+;
XtsetaArg{allac), XmNvisikleltemCount,

{XtArgVal) number of packages); act+;
XtSetArglallac], XmNlistVisibleTtemCount, 16); actts

XtsetArg{allac], XmNselectionlabelString, NULL); act+t;
Q] License Result _dialeg = XmCreateSelectionDialog(XtParent (w),
" Query Ticense Result ", al, ac);

XtAddCallback({Q License Result dialog, XmNokCallback, DestroyCB,
DESTROYLY;
XtaddCallback(Q License Result dialog, XmNhelpCallback,DialoglcceptCB,
piavnoc HELE) ;
kid = ¥mSelectionBoxGatlhild(p License Result dialog,
IALOG CANCEL BUTTO‘N) H

XtUnmanageChild(kid);

kid =~ XmSelectionBoxGetChild(Q License Result dialog,
KmDIALOGT SELECTION_LABEL) ;

XtUnmanageChild({kid);

kid = XmSelectionBoxGetChild{Q Licensa Result_dialoeg,
KmDIALOG TEXT) 7

XtUnmanageChild{kid}; -

xtMa.nagaChild(Q‘License_Resultwdialog) 2

break;

case REMOVE:
cb - (XmSelactzcnbomallbackstmcc *)aall datar

while {1 {¥mStringComparas (cb~>value, NodesList[i))))

F2]
call x‘pc(server, library function, xd.r str:.nglG, Nodes [11,
dr_int, §librarian_result)
sprintf (meg, "Librarian Resilt is %d\n", likbrarian_zesult);
ac
xtsetkrg(al [ac], XmNautoUnmanage, FALSE}; actd;

xcSethArg{allac], XmNmessageString, XmStringCreateltoR{msg, charset});
acHy;
megD = ¥mCreateMessageDialog(w,

* Remove Node Result ", al, ac);
ReAddCallback(msgD, XmNokCallback, PestroyCB, DESTROYL);
XtAddCallback (megD, XniNhelpCallback, DialogRcceptCB, DIALOG HELP);
kid = ¥mSelectionBoxGetChild(msgD, XmDIALOG_CANCEL BUTTON);
XtUnmanageChild{kid);
XtManageChild (msgD);
break;

case SET MAX:
{
chaxr *p;

cb = {(XmSelectionBoxCallbackStruct *)ecall data;
XmStrmgGetLtaR(cb-»zalue, charset, &p)/
i = atol(p}s
stropy (package info. software_paclrage, s_m_package);
package_info.tdtal oopxes—;,
psckag‘e info.copies_in use=0;
call rpc(servex:, 1ib:ax:y function,xdr software block, tpackage info,
xdr_int, 4librarian rasult) ;
sprintf {msyg, "Librariem Resilt is td\n“ librarian result};
ac = 0f
XtSetArg(allac], XmNautoUnmanage, FALSE}; ac++;
XtSetArg(allac], ¥nlnessagesString, FmStringCreatelitoR (msy, charset)});
acH+]
meghD = mcreateMessageDialog(xtParent(xtParent(w)) ’
" Set MAX Result ", al, ac);
XtAddCallback(msgD, XmNokCallback, Desttoyca, DESTROY2) ;
XtAddCallback {msgD, XmNhelpCallback, DialogAcceptCB, DIALOG ; HELP) 7
kid = XmSelectionBoxGetChild(msgD, XmDIALOG CANCEL BUTTON);
XtUnmanageChild(kid);
XtManageChild (msgD};
break;
}

case DATLY:

{

char *p, title[50}17

int dd, s, yy, dateinputok, weekday;
struct DATE report date;

cb = (X¥mSelectienBexCallbackStruct *)call data;
xrustring&etz.ton(cb—y«alue, charset, &p):

dateinputok = date disect(p, &dd, &mm, &yy, &weekday);
if (dateinputok = SUCCESS)

sprintf (rnsg,
"pate has not been entered correctly\nPlease use the format of MM~DD-YY\0");
ac = 0;
XtSethrg {aliac], meautoUmnanage, FALSE); ach+;
XtSetArg (alfac], XmiNmessageString, XmStringCreateltoR({msg, charset));
ack+;
megh = chreeteErroeralog(xtParant(w),
Warning , al, acl;
XtAddCallback (magD, XmNckCallback, DestroyCB, DESIROY1);
XtaddCallback {(msgD, XmNhelpCallback, DialogAcceptCB, DIALOG HELP) 7
kid = XmMessageBoxGetChild{msgD, XmDTIALOG CANCEL BUTTON);
XtUnmanageChild(kid) s
XtManageChild (magD);
break;
}
report date,mday = ddj
report date.mon = run;

report date.year = yy;
report date.wday = weekday;
sprint® (title, "Daily Usage Repoxt {for the day of %s) ", pii

node data=usage_list[0].software __‘package }

call_xpc(sexver, library function,xdr mydate,&report date,
xdr_usage array,&node data);
librarian resulE=0;

for {(counter=0;counter<in usage number of packages;counter++)
sprintf(CharUsageList[colinter], "$~15% %5d %14d %13d si9d\o",
usage_ list{counter].software package,
usage list[counter],copies,
usage”list[counter].concurrent,
usage list[counter].checked,
usage list[counter).time_used/60);
for (counter=0;counfer<in usage number of packages;countert+}
UsageList [counter] = (Xmgtring)"Xmstringcreatel-toli {
CharUsageList {counter], charset);
UsageList[in_usage number of packages] = NULL;

ac = 0y
XtSetArg{aliac], XmNautoUnmanage, FALSE); act+;
¥tSetarg(allac], XmNlistLabelString, XmStringCreatsLtoR{

"Package licenses concurrently checked/day used(in minutes)/day", charset));
ac 4+
XtSetarg(allac], XmNlistItems, UsageList); act+j
xtSetArg{allac], XnNlistItemCount, in_usage number of packages); ac++;
Xtsetarg(allac], XmdvisibleltemCount,”

{XtArgVal} in usage_numbe:_of zpackages); acd+;

XtSetArg(allac], XmNlistVisibleItemCount; 1%); act+;

XtsetArg{allac], ZmNselectionlLabelString, NULL); ac++;
Q_Usage Result dialog = XmCreateSelectionDialeg (XtParent (w),
title, al, ac);

XtAdaCallback(Q Usage Result dialog, XmNokCallback, DestroyCB,
DESTROYL) ;
XtAddCallback(Q Usage Result dialog, XmiNhelpCallback, DialoghcceptCB,
DIALOG HELP);
kid = XmSelectionBoxGetChild{Q Usage Result dialog,
FrpIALTG CANCEL BUTTON);
ZtUnmanageChild(kid);
kid = XmSelectionBoxGetChild{Q Usage Result dialog,
FrDIALGG_SELETTION LABEL);
XtUnmanageChild{kid) - -
kid « XnSelectionBoxGetChild(Q Usage Result dialog,
FnDIALDC TEXTY
XtUnmanageChild{kid);
XtManageChild(Q_Usage Result dialog);
break; -
}

case WEEKLY:

{

char *p, title[501;

int dd, mm, yy, dateinputok, weekday;
struct DATE report date;

ok = {XmSelectionBoxCallbackStruct *)call data;
XmStringGetLtoR (ch~>value, chaxset, &p);
dateinputok = date disect(p, &dd, &mm, &yy, &weekday);
if {(dateinputok I=" SUCCESS)

sprintf (msq,

"pate has not been entered correctly\nPlease use the format of MM-DD~YY\O");
ac = Oy
XtSetArg{aliac], XrNmeszsageString, XmStringCreateltoR(msg, charset});
act+;
magDh = AmCreateErrorDialog(XtParent (w},

” Warning Y, al, ac);

XtAddCallback {msgh, XmNokCallback, DestroyCB, DESTROY1);
XtaddCallback {msgD, XmNhelpCallback, DialoghoceptCB, DIALOG HELF) 7
kid = XmMessageBoxGetChild({msgD, XmDIALOG_ CANCEL BUTTON};
XtUnmanageChild(kid);
XtManageChild (msgD);
break;

}
if (weekday l= 1}
{

sprintf (meg,

"Weekly report requires to enter that Monday\nin the format of MM-DD~YY\O0©};
ac = 07
XtSetArg(alfac], XnNautoUnmanage, FALSE}; act+;
XtSetArg{allac], XnNmessageString, ZmStringCreateltoR{msy, charset});
actt;
magD = XmCreateErrorDialog(XtParent(w),

" Warning ", al, ac);

XtaddCallback (msgD, XmNokCallback, DestroyCB, DESTROYL);
XtAddCallback (msgD, X¥mNhelpCallback, DialogBcceptCB, DIALOS_HELP) 7
kid = XmMessageBoxGetChild{msgD, XmDIALOG CANCEL_BUTTON);
XttUnmanageChild{kid); -
XtManageChild (msgD);
break;

}

report_date.mday = dd;

report date.mon = mm;

report date.year = yy;

report date.wday = weekday;

eprintT (title, "Daily Usage Report {over the week of %sz) T,)

node_data=usage list[0].software_package;

call rpo(server, 1library_ function,xdr mydate, &report date,
xdr_usage array,&node data);
librarian_result=0;

for (counter=0jcounter<in usage number of packages;counter++)
sprintf(CharUsagelList[colinter]; "%~15F 35d %144 %134 al9d\o",

usage_list[counter],software package,
usage_list{counter].copies,
usage_list[counter].concurrent,
usage_list{counter].checked,
usage_ list{counter]. time__used,lso) 2

for (counter=(;coungexin_usags_number__cf J:ackages;counteré-#-)

UsagelList [counter] = (XmString) XmStringCreateLtoR (

CharUsagelList [counter], charset);

Usagelist {in_usage number of packages] = NULL;

ac = 0}
XtSetArg{al{ac], XmNautoUnmanage, FALSE); actd;
XtsetArg(allac], XmNlistLabelString, XmStringCreateLtoR{

"Fackage licenses concurreantly checked/day uged({in minutes)/day”, <harset));
ac ity
XtsetArg(alfac], XnNlistItems, Usagelist); ac++}
XtSetarg(allac], XmNlistItemCount, in usage number of packages); act+;
XtgetArg(al{ac], XmNvisibleItemCount,

{XtArgval) in_usage number of packages); actd;

XtSetArglallac], XmNlistVisThleIt®mCount; 1%8); ach+;

XtsetArg(allacl, XmNselectionLabelstring, NULL); ac+d;

Q_Usage Result dialeg = XmCreateSelectionDialeg (XtParent (w),
title, al, ac);

XtAddCallback(Q Usage Result dialog, XmNokCallback, DestroyCB,
TDESTROY1) ¢
XtaddCallback (Q_Usage Result d:\.alog, XmNhelpCallback, DialoghcceptCs,
ALOG HELF) ;
kid = XmSelectionBo ‘f"h‘ﬂdTQ Usage Result dialog,
FDIALDE _CANCEL BUTTON);

XtUnmanageChild(kid);

kid = xmselectionBoxGetChlld(Q Usage Result dialoeg,
FmDIALOC SELETTION LABEL) 7

XtUnmanageChild{kid);

kid = XmSelectionBoxGetChild(Q Usage Result dialeg,
KmDIALDG_TEXTT

XtUnmanageChild (kid);

¥tManageChild(Q Usage Result dialog);

break;

}

cagse MONTHLY:

char *p, title[50];
int dd, mm, yy, dateinputok, weekday;
struct DATE report_datey

cb = (XmSelectionBoxCallbackStruct *)call data;

XmStrmgGetLtoR(cbv»}alue, charset, &p);

printf("input string is %8\n", p);

dateinputok = month disect(p, &dd, &smm, Lyy, &weekday);s

if (dateinputok != BUCCESS)

{
sprintf(nsg,

"Date has not been entered correctly\nPlease use the format of MM=YY\0");
ac = 07
XtSetArg(allac], XmNautoUnmanage, FALSE): actt;
XtgetArg (allac], XrlinessageString, XmStringCreateltoR {msy, charset});
actt;
msgh = chreateErrch:Lalbg(xtP!u:ent {w),
HWarning ", al, ac);

XtaddCallback {msgD, XnmNokCallback, DestroyCB, DESTROYL) 5
BtAaddCallback{msgD, ¥mNhelpCallback, DialoghcceptCB, DIALOG HELP)
kid = XrMessageBoxGetChild(msgD, XmDIALOG CANCEL BUITON);
XtUnmanageChild(kid);
XtManageChild (msgD);
break;

}

report_date.mday = dd;

report “date,mon = mm;

report_date,year = yy;

report date wday = weekday;

sprmt?(title, "Daily Usage Report {over the month of %s) APES -3

node_data=ugage list{0].software package;

call rpc(server,library_function,xdr_mydate,&report date,
xdr_usage_array,sfode data};
librarian resulEw=0;

for (counter=0;counter<in _usage ! number of ackages ; countert+)
sprintf(CharUsageList [counter]; "3-15s %5d %14d 313d %19d\0",
usage_list{counter]. software package,
usage_list[oounter],copies,
usage list[counter].concurrent,
usage_ "1ist [counter].chescked,
usage_. “list{counter].time \xsed/SO),

for {counter=0;counter<in _usage nunber of'packages,counter-)--r)
UsagelList [counter] = {XnBtring) KmStringCreatsLtoR (
CharUsagelist [counter], charset);
UsagelList [in_usage number of packages] = NULL;

ac = 0
XtSetArg(allac], XmNautoUnmanage, FALSE); act+;
XtSetarg(allacl, XnmNlistlabelString, XmStringCreateLtoR(

"Package licenses concurrently checked/day used{in minutes)/day", charset));
ac ++;
XtSetArg{allac], XmNlistItems, UsageList); ac++;
XtSetarg(allac], XmNlistItemCount, in_usage number of packages); ac++;
XtSethArg(aliacl, XvaJ.s:bleItemCount,

{XtArgVal) in usage number of ackages) 7 acHt;

XtBetArg{allac], ¥mNlistVisTbleItEmCounty acd+;

XtSetarglallac], XmNselectxonLabelstring, NULL} ; act+i
@ Usage Result dialog = chreatesalectlonbxalog(XtParent {w),
ticle, a¥, ac);

XtAddCallback (Q Usage Result dialeg, XmNokCallback, DestroyCB,
TDESTROYL) ;
XtAddCallback(Q Usage Result dlalog, XmNhelpCallback, DialoghcceptCB,
TDIALOG HELP) ;
kid = XmSelectionBoxGetChildlQ Usage_Result dialog,
Frb1aLbe cancEL_BUTTON) ;
XtUnmanageChild(kid);
kid = XmSelectionBoxGetChild(Q Usage Repult dialog,
DIALDC_SELECTION LABEL);
XtUnmanageChild(kid);
kid = X¥mSelectionBoxGetChild({Q Usage Result dialog,
FroDTALDE TEXTT;
XtUnmanageChild(kid);
XtManageChild(Q Usage Result dialeg);
break;

}
case SEMESTER:

{

char *p, title(50];

int dd, me, yy, weekday, semester;
struct DATE report date;

ck = (¥mSelectionBoxCallbackStruct *}call data;
XmStringGetLtoR (cb->valua, charset, &p};

semester = atoilp);

if (semester l= 1 2& semester I= 2 4§ semester l= 3)

sprintf (msq,
"pate has not been entered correctly\nPlease enter 1 for Spring, or 2 for Summer, or 3 for Fall\0");
ac = 0;
XtSetArg{(aliac], XmNautoUnmanage, FALSE); act+;
XtSetArg (allac], XnNnessageString, XmStringCreataltoR(msg, charset));
acH+;
megh = x:ncreataxrrorblalog(XtParent (w),
Warning " al, ac);
XthddCallback{msgD, XmNokCallback, DestroyCB, DESTROYL) 5
XtaddCallback {nsgD, XmihelpCallback, DialogAcceptCB, DIALOG HELP);
kid = XmMessageBoxGetChild{msgD, XmDIRLOG_CARNCEL BUTTON);
XtUnmanageChild (kid);
XtManageChild (rsgD);
break;
}

switch (semester) {
case 13

date disect ("01~15-92", &dd, &mm, $yy, &weekday);
sprifitf(title, "Daily Usage Report (over Spring semester) "y:
break;

case 2:
date_disect(“05-15'92", &dd, &mm, &yy, &weekday);
sprintf{title, "Daily Usage Report (over Summer sections) "y:
break;

case 33
date disect ("09~01~92", &dd, &mn, &yy, &weekday);
spriﬂtfltitle, "Daily Usage Report {over Fall semaster) "y

}

report_ date,mday = dd;
report_date.mon = mm;
report date.year = yy;
report»date.wday = waekday;

node_data=usage list[0].software package;

call rpc{server, library functiontgemester,xdr mydate,&report date,
xdr_usage_array,&node data);
librarian__result=0;

for {counter=0;counter<in usage number of ackages jcountert+)
SP:intt(Char'JsageList[cct{n\:er], "%-158 %54 $14d %13d #15d4\0",

usage_list{counter]. software_package,
usage_list[counter],copies,
usage list [counter) ., concurrent,
usage_list[counter] .checked,
usage list[counter].time used/60);

for {counter=0 ;counfer(in_usage_number:of _Packages;counteri—ﬂ

Usagelist [counter] ™= (XmString) ¥mStringCreateLtoR (

CharUsagelist [counter], charset);

Usagelist [in_uisage number of packages] = NULL;

ac = 0Oy
XtSetArg(al{ac], XmNautoUnmanage, FALSE); ac++;
XtSetArg{al{ac], ¥mNlistLabelString, XmStringCreateLtoR{

"Package licenses concurrently checked/day used{in minutes)/day", charset)};
ac ++}
XtSetArg{allac], XmNlistItems, Usagelist); act+;
XtSetArg(aliac], XmNlistItemCount, ix_usage__number_of_packages); act++;
XtSetArg(alfac], XmNvisibleItemCount,

{XtArgVval) in_usage number of packages}; act+;

XtSetArg(allac], XmNlistVisibleItémCount] 1%); act+;

XtSetArg(al{ac], XmNselectionlabelString, NULL); ac++d;
Q_Usage Result dialog = XmCreategelectionDialog(XtParent {w),
title, al, ac):

XtAddCallback (Q_Usage_Result dialog, XmNokCallback, DestroyCB,
TDESTROYL) ;
XtaddCallback(Q Usage Result dialog, XmiNhelpCallback, DialoghAcceptCs,
DIALOG RELF);
kid = ¥mSelectionBoxGetChilda{Q Usage Result dialog,
FmpIALDG_CANCEL BUTTON) ;
XeUnmanageChild(kid);
kid = XmSelectionBoxGetChild(Q Usage Result dialeg,
FrDIALOG SELETTION LABEL);
XtUnnanageChild{kid);
kid = XmSelectionBoxGetChild(Q _Usage Result dialog,
FmDIALDG TEXTT;
XtUnmanageChild({kid);
XtManageChild(Q Usage Result dialeg);
break;
}

cage RESTART:
call rpa{server, library function, xdr void,NULL,
xdr_int, &librarian_result); ~
sprintf (msg; "Librarian Restlt is %d\n",librarian result);
ac = 0
XtSetArg{allac], XmNautoUnmanage, FALSE); act+;
XtSetArg{alfac}, ¥mNmessageString, XmStringCreateLtoR (msg, charset)};

actt) /*%tParent {XtPavent{w)),*/
msgD = XmCreateMessageDialog(w,
" Resgtart Result ", al, ac);

xtaddCallback (magDh, XmNokCallback, DestroyCB, DESTROY1);
XtAddCallback (msgh, XmNhelpCallback, DialoghcceptCB, DIALOG HELP);
kid = XmSelectionBoxGetChild(magD, XmDIALOG_CANCEL BUTTON) ;
XtUnmanageChild(kid); - -

XtManageChild (msgD);

break;

case SHUTDOWN:
call_rpe(server,library function,xdr void,NULL, xdr_void, NULL) 7
spriftf (msg, "OK, The sefver program Eas been shutddwn.\n"};
ac = 07
XtSetArg(allac), XmNeutoUnmanage, FALSE); acts;
XtSetarg(allac], ¥nNmessageString, XmStringCreateltoR({msg, charset});

act+; /*%tParent (XtParent{w})), */
msgh = XmCreateMessageDialog(w,
4 shutdown Result v, al, a¢);

XtaddCallback (megD, fmNokCallback, DestroyCRB, DESTROY2);
XtAddCallback{msgD, XmNhelpCallback, DialogAcceptCB, DIALOG HELP) ;
kid = XmSelectionBoxGetChild(magD, XmDIALOG CANCEL BUTTON);
XtUnmanageChild(kid); -

XtManageChild (msgD);

break;

okl DialogCancelCB

** Process callback from Dialog cancel actions.
*/

static veid DlalogCancelc’B (w, client d.ata, call data)

Widget /* widget id */
caddr t ¢1:Lent _data; /* data from application */
caddr” t call_dita; /* data from widget class */

{
switeh ({int)client data)

{
case DIALOG_CRNCEL:
XtUnmanageChild (w) !
case DIALOG HELP:
/* no action is necessage */
break;
default:
/* a unknown client _data was recieved and
there is no setup to bandle this */
fprintf (stderr, "Warning: in cancel callback\n"};

break;

}
}
/%
okl HoMatchCB
kel Process callback from dialog whem no match,
*/
void NoMatahCB (w, client data, call data)
Widget
caddr_t client_data;
caddr t call data;
{

Widget magD, kid;

char nsg{60];

register int ac}

Arg alfi10);

sprintf {msg, "Check your typing or\nSelect one item\nfrom the list\0v);

ac = 07

XtSetArg{aliac], XnNmessageString, XmStringCreateltoR{msg, charset});

ac++;
msgh = XmCreateEx:roeralog (XtParent {w),
ing ", al, ac);
kid = XnM&ssageBoxGetch).ld(msgD, XmDIRLOG CANCEL BUTTON) ;
XtUnmanageChild{kid);
XtManageChild (msgD);

static veid GetCopJ.es {w, cllent7data, call data)
Y

Widget widget Id */
caddr_t chent _datay /* data from application */
caddy t call datay /* data from widget class */
{

¥mSelectionBoxCallbackStruct *cb;

register int ac; * arg count */

Arg alll0l; /* arg list */

Widget Copies select;

int iy

cb = (¥mSelectionBoxCallbackStruct *)call data;

i= 0y

while (! (¥mStringCompare (cb->value, PackagesList[il)))
FE]

strcpy (s m_package, CharPackagesName [1]);

ac = 07
XtSetArg{allac], XnNmessageString, PackagesList(i]};
acthy
XtSetArg{allac], XmNselectionLabelString,

XmstringCreateLtoR ("Set up New Total Copies:", charset));
act+;
XtSetArg{allac], XmNokLabelString,

XmStringCreateltoR("Confirn”, charset) };

actd;
XtSetArg(allac], XmNautoUnmanage, FBLSE)}; ac++;
Copies_select = XmCreatePromptDialeg(w, " Total Copies? ",

& ac);
XtAddCallback(Copies_select, meokcallback, CallRPC, SET MAX);
xtAddCallback(caples select, XmihelpCallback, DialoghccePtCB, DIALOG ;_BELP) }
RKtaddCallback (Copies select, XmNcancelCallback, DestroyCB, DESTROY1)T
XtManageChild(Copies select};

*
*x MenuCB
ol Process callback from PushButtons in PulldownMenus.
*/
void MenuCB {w, client data, call data)
wWidget w3 - /% widget id */
caddr_t client data; /* data from application */
caddr t call dita; /* data from widget class */
{
register int ac; /* arg count */
arg alll0}; /* arg list */
char wsgl80];
Widget msgD;
Widget Q_Node select;
Widget R Node selact;
Widget Q Package select;
Widget <70 packae_select;
Widget s 1 M Package select;
Widget Dars_selectT
Widget Restart _selecty
Widget Shutdown_select;
wWidget kidy

switch (({int)client data)
{
cage QUIT:
{
exit{0);
break;
}

{
no_nodes = ReadLocalNodes ()}

case QNODE:

ac = 07

XtSetAx:g(al fac], X¥mNlistlabelString, XmStringCreatelitoR(
ddress Nane®, charset));

ac ++}

XtSetArg(al(ac], XmNokLabelString, XmStringCreatsLtoR("Apply”,charset}};
ac
XtSetArg(allac)], XmNlistItems, NodesList); ac+t;
XtSetArg{allac], XmNlistItemCount, no nodes}; ac++;
XtSetdrg(allac], XmNvisibleItemCount, (XtdrgVal) no_nodes}; act+;
XtSetArg(al [ac], XnNlistVisibleItemCount, 16); ac++7
XtSetArg{al[ac], XmNmustMatch, True); act+;
XtSetArg(alfac], XmNautoUnmanage, FALSE); actt;
Q Node select £ chrenteselectlonblalog(XtParent(w),
Node Selection Box 7, al, ac);

AtAddCallback (Q Node select, XmNokCallback, CallRPC, ONODE);
xtaddcallback(g Node select, XmNoancelCallback, DestroyCB, DESTROY1);
XtAddCallback ((Node select, XmihelpCallback, DialeghcceptCB, DIRLOG HELP);
Xt:AddCallback(Q Nods™ _Belect, KoNnoMatcohCallback, NoMatchCB, NOMATCR)?Z

XtManageChild(Q NWode select);
break;
}
case QPACKAGE:

{
no_packages = GetPackages (};
ac = 07
XtgetArg(al (ac], XlelstLabelstring, XmStringCreateLioR{

"Packages”,charset}};

ac ++;
xts;targ (al{ac], XmNoklLabelString, XmStringCreatsLtoR("Apply",charset));

ac ++j
XtsetArg(al[ac], XmNlistItems, PackagesName}; ac++j
XtSetArg{allac], XmNlistItemCount, no_packages); ach+;
XtSetdryg(allac], XmNvisibleItemCount, (XtargVal) no_packages); actt;
XtsetArg(allas], ¥mNlistVisibleltemCount, 16); act+;
%tSetArg{al [ac], XnNmustMatch, True); act+;
XtSetArg(allac], XmautoUnmanage, FRALSE)} ; actd;
Q Packaga select = XmCreateSelectionDialog{XtParent(w),

"7 package Selection Box", al, ac)}
KtAddCallback(Q Package select, *roNokCallback, CallRPC, QPACKAGE);
XtAddCallback (Q) Package select, XmNcancelCallback, DestroyCB, DESTROYL);
XtAddCallback (Q Package select, XmNhelpCallback, DialoghcceptCB, DIALOG HELP);
X¥taddCallback{Q Package select, ZXmNnoMatchCallback, NoMatchCB, NOMATCE)F

Child(Q Package select);
break;

case CHECK_QUT:
{
no_packages = GetPackages ();
ac = 07
XtSetArg{al [ac] ‘. XlezstLabelStrlng, XmStringCraateltoR{
"Packages”, charset}) s

ac 7
XtSetArg(aliac], XmNokLabelString, XmStringCreateLtoR("Apply",charset}};
ac ++;
XtSetaArng{aliac], XmNlistItems, PackagesName); actd}
xtSethrg(allac], XmNlistItemCount, no_packages); act+}
¥tSetArg(al [ac], XmNvisibleItemCount, (XtArgVal) no_packages}; actt;
XtSetarg(aliac], KmNlistvVisibleItemCount, 18); act+y
XtSethrg(allac], XmNmustMatch, True); ac++;
XtSetarg{allac], XmNautoUnmanage, FALSE); acti;
C_O_Prackage select = XmCreateSelectionDialeg{XtParent{w),
n” Fackage Selection Box ", al, ac);
XtAddCallback(C_O Package select, XmNokCallback, CallRPC, CHECK OUT);
XtAddCallback (C o Package “select, SmihelpCallback, DxalogAcceptEB DIALCG EBLP) ?
xtAddcallback(c O Package select, ZmNcancelCallback, DestroyCB,
DESTROY1L) T
XtAddCallback(C_O_Package select, XmNnoMatchCallback,NoMatchCB, NOMATCH} ;

XtManageChild(C O Package select);
Ireak;
}
case REMOVE:

no_nodes = ReadLocalNodes ()

acT= 0}

xtSetA:g (allac], XmNlistLabelString, XmStringCreatelLtoR(
"Address Name", charset});

ac

XtSetarg(allac], XmNlistItems, NodesList}; ac++;
¥tSetArg(allac], XmNlistItemCount, no_nodes}; ac+t;
XtSetArg{allac}, XvaisibleItemCOunt, (XtArgVal) no nodes); actt)
XcSetdrg{allac], XmNlistVisibleItemCount, 16); ac++;
XtSetArg(allac], XnNokLabelString,
¥uwStringCreateltoR{"Confirm®, charset}); ac+d;

XtSetArg(allac]l, XmNmustMatch, True)}; act+;
XtSetArg{aliac], XmNautoUnmanags, FALSE); ac++;
R Nede_select = XmCreateSslectionDialog(XtParent(w),

" Node Selection Bex Y, al, ac);
XtAddCallback (R Node_select, KNokCallback, CallRPC, REMOVE);
XtAddCallback (R Node select, XmNcancelCallback, DestroyCB, DESIROY1);
¥taddCallback (K Node select, XmNhelpCallback, DialoghcceptCB, DIALOG HELP);
XthddCallback (R_Node select, XmNnoMatchCallback, NoMatchCB, NOMATCH);

XtManageChild{R Node select);
break;
}

case SET_MAX:
{
no__packages = GetPackages ()}

ac
thethrg {allac], Xm¥listlLabelString, XmStringCreateLtoR({
"Packages Total”,charset));
ac ++;
XtSetdrg(allac), XmNlistItems, PackagesList); act+;
XtSetarg{allac], XmNlistItemCount, no_packages); act++;
RrSetarg(allac], XmNvisibleItemCount, (¥tArgVal) no‘packages), act+;
KcSetdrg(allac], XmNlistVisibleItemCount, 16} 5 act++)
XtSetarg{allac), XmNmustMatch, True); act+;
XtSetarg({aliac], XnNautoUnmanage, FALSE); ac++;
5_M Fackage_select = XmCreateSelectionDialog(XtParent(w},
Fackage Selection Box ", al, ac);
¥tAddCallback (8 M Package_select, xmﬂokcallback, GetCopies, REMOVE):
XtAddCallback {5_M Package select, KmicancelCallback, DestroyCB,
pEsTROY1)T
XtAddcallback (8_M Package select, XmihelpCallback, DialoghAcceptCB,
DIALOG HEIP);
XtAddCallback (S_M_*Package_aelect ; ¥mNnoMatchCallback,NoMatchCB, NOMATCH) ;

XtManageChild(s_M Package select);
break;
}

case DAILY:

{
ac = O;
#eSetarg(alfac)], XmNselectionlabelString,
gmStringCreateLtoR{"Enter the date correctly (MM-DD-YY)}", charset)});
ac++;
XtSetaArg{al[ac), XmNokLabelString,

¥mstringCreateLtoR{"Confirm”, charset) };
act+;
XtSetArgiallac], XmNautoUnmanage, FALSE) ; act+ty
Date select = XmCreatePromptDialog(w,

" Specify Which Day? *, al, ac);
xtAddCallback(Date_select, ¥mNokCallback, CallRPC, DAILY} ¢
XtaddCallback {Date select, XmicancelCallback, DestroyCB, DESTROY1);
KtAddcallback (Date select, XmihelpCallback, DialogAcceptCB, DIALOG_HELP);
XtManageChild{Date select); -

break;
}

case WEEKLY:
{
ac = OF
XtSetarg{allac], XmNselectionlabelString,
XmStringCreateLtoR("Enter that MONDAY correctly (MM=DD~YY)} ", charset)};
act+;
KtSetArg(al{ac], XmNokLabelString,
*mStringCreatelLtoR ("Confirm®, charset));
acti;
xtSetA:g(aliac], XmNauteUnmanage, FALSE) 1 ac++s
Date_select = ¥mCreatePromptDialog(w,
" Specify Which Week? ", al, ac);
%tAddCallback{Date select, KnokCallback, CallRPC, WEEKLY);
XtAddcall.back(Date select, ¥mNcancelCallback, DestroyCB, DESTROY1);
XtAddCallback (Date select, XmNhelpCallback, DialoghAcceptCB, DIALOG HELF);
XtManageChild(Date select);

break;
}

{
ac = 0;
XtSetArg{al{ac], XnNselectionLabelString,
ImBtringCreatelioR("Enter the month correctly (MM-Y¥)", charset)};
ach+;
¥tSetArglal[ac], XmNokLabelString,
X¥mStringCreateLtoR ("Confirm”, charset));
ac++;
XtSetArg{allac], XmNautoUnmanage, FALSE); actdr
Date selegt = chreate?.tomptbzalog(w,

" ecify Which Month? ", al, ac);
XtAddCallback(Date select, XmNokCallback, CallRPC, MONTHLY);
XtaddCallback (Date : select, XmNeancelCallikack, DestroyCs, DESTROYL);
XtAddCallback (Date : select, ZmihelpCallback, DialogAcceptCB, DIALOG EELP) ;
XtManageChild(Date select}; -

break;

case MONTHLY:

case SEMESTER:

ac = Q7
XtSetArg(al (ac], XmNselectLonL&belStrxng,
¥mStringCreateltoR ("Which semester?\nEnter 1 for Spring, 2 for Summer, 3 for Fall", charset));
act+;
RtSetArg({allac]l, ZXmNokLabelString,
¥rStringCreateLtoR ("Confirm™, charset) };
act+;
XtsSetaArg(allac], XnNautoUnmanage, FALSE) ; act+;
Date_select = XmCreatePromptDialog(w,

" Specify Which Semester? ", al, ac);
XtAddCallback(Date select, XmNokCallback, CallRPC, SEMESTER);
XtAddCallback {Date _select, XmNcancelCallback, DestroyCB, DESTROY1);
XthddCallback(Date select, XmNhelpCallback, DialogAcceptCB, DIALOG HELP);
XtManageChild{(Date " select);

break;

}
case RESTART:

{
strepy{msy, "Are you sure you want tol\nrestart the server program?");
ac = 0}
XtSetArg(al {ac}, XnNmessageString, XmStringCreateltoR(msg, charset));

thatarg (al{ac], XmNokLabelString,

XnmstringCreateltoR{"Confirm®, charset));
ac ++;
XtSetArg{allac], XmNautoUnmanage, FALSE); act+;
Restart select = fmCreateQuestionDialog{XtParent (w),

" Attention ", al, ac);
XtAaddCallback (Restart select, XwNokCallback, CallRPC, RESTART);
chddCallback(Restart select, XmNcancelCallback, DestroyCB, DESTROY1);
XtAddCallback (Restart : _select, XmNhelpCallback, DialogAcceptCB, DIALOG _EELP);
XtManageChild (Rostart__select) ;

break;

}

case SHUTDOWN:
sti‘cpy(msg, "Are you sure you want to\nterminate the server program?\nif so,\nyou have to restart the
;gsztg’rg {allac]), XmNmessageString, XmStringCreateLtoR (mag, charset));
;tSetAx:g {al{ac], XmchLabelStxtlng,
AmStringCreateltoR{"Confirm”,charset));

server\nmanually!t"”);

ac t;
AtsetArg(allac], XnNautoUnmanage, FALSE); act++t;
Shutdown select = me:eateQuestionDlalog(XtParﬂnt {w),
Attention al, ac);
XtAddCallback (Shutdown select, XmNokCallback, CallRPC, SHUTDOWN) 7
xtAddcallback(Shutdcwn select, XmNcancelCallback, DestroyCB, DESTROY1);
XcaddCallback{Shutdown select, XmNhelpCallback, DialoghcceptCBs, DIALOG_RELP);
XtManageChild{Shutdown_select); -
break;
}

case HELP:

sprintf {msg, "This is a X Window intexrface for Libmaint\n\0");
ac = 0;
XtSetArg (al{ac}, XrNmessageString, AmStringCreateltoR{msg, charset));
ackt)
msgD = XmCreateMessageDialog (XtParent (XtParent (W)},

" Help Box ", al, ac);
%tAddCallback (msgDh, XmNokCallback, DestroyCB, DESTROYL);
XtAddCallback{megD, ZEmNcancelCallback, DestroyCB, DESTROYL);
XtAddCallback (msgD, XmNhelpCallback, DialoghAcceptCB, DIALOG_HELP) ;
XtManageChild (msgD);
break;

default:
/* unknown client data was recieved and
there is no sefup to handle this */
fprintf{stderr, "Warning: in menu callback\n"};
break;

I

*h
*k
*

DialoghcceptCB
Process callback from Dialog actions,

/
static void DialogRcceptCB (w, client data, call data)

widget w; /* widget id
caddr t client data; /% data from application */
caddx” t call_dataj /* data from widget class */
{
register int ac; /* arg count */
Arg al[10}; /* arg list */
char mag[80];
Widget magD, kid;
switch ({int}client data)
{
case DIALOG OK:
{
RtUnmanageChild (w};
}
break;
cage DIALOG HELP:
{
sprintf {msg, "Sorry! Help is not available at this time\n\0");
ac = 07
XtSetArg{allac], ¥mNmessageString, XmStringCreateLtoR(msy, charset));
ac+;
msgh = XmCreateMessageDialog (XtParent (¥tParent (w}},
" Help $ 4 T, al, ac);
KthddCallback {megD, XmNokCallback, DestroyCB, DESTROYL);
KtAddCallback {magD, XmiNhelpCallback, DestroyCB, DESTROY1};
kid = XmSelectionBoxGetChild{msgD, XnDIALOG CANCEL BUTTON);
XtUnmanageChild{kid); -
XtManageChild (msgD};
break;
}
default:
/* unknown callback type */
fprintf (stderr, "Warning: in accept callbacki\n®”};
break;
¥
}
/%
okl CreateMenuBaxr

ke
*

Widget
{

Create MenuBar in MainWindow

/
static Widget CreateMenuBar ({parent)

parent;
Widget menu_bax; /* RowColumn */
Widget renu”_pane; /* RowColumn */
Widget cascade; /* CascadeButton */
Widget button; /% PushButton */
aryg alfl0}; /* arg list */
register int ac; /* arg count */
/* Create MenulArea.
*/
ac = 07

menu_bar = XmCreateMénuBar (parent, "menu bar", al, ac);

/* Create "Options" PulldownMenu.

*/

ac = 07

menu_pane = XmCreatePulldownMenu (menu bar, "menu pane", al, ac);

ac = Oj

XtSetArg(alfac)], XmNlabelsStxing,
XnStringCreateltoR{"Node...”, charset)}; actis

XtSetArg(al{ac], XnNmnemonic, 'N'}; actt;

button = XmCreatePushButton (menu pane, “"QNODE", al, ac) ;

RrAddtallback (button, XmNactivatéCallback, MenuCB, QNODE);

¥tManageChild {button};

ac = 0;
XKtSetArg(allac], XmNlabelString,

¥mStringCreataLtoR ("Package...", charset)); actt;
XtSetarg{allac), XmNmnemonic, ‘B'}; ac++i
button = XmCreatePushButton {(menu_pane, "QPACKAGE", al, ag)?
XtAddCallback (button, ¥mNactivateCallback, MenuCB, QPACKAGE)};
XtManageChild (button);

ac = 07
XtSetArg(allac], XnNlabelString,

AmStringCreateltoR ("Time", charset)); ac++;
XtSethrg(aliac], XmNmnemonic, ’T7}: actd;
button = ImCreatePushButton {(menu e, COTIME™, al, ac);
ftAddCallback (button, XmMactivateCallback, CallRPC, QTIME);
XtManageChild (button};

ac = 0}
%tSetarg{alfac], XmNlabelString,

FmstringCreatelLtoR{"Usexrs™, charset)); act;
XtSetarg{allac), XmNmnemonic, ’'U7}; actt;
button = XmCreatePushButton (menu_pane, “"QUSERS", al, ac);
KtaddCallback (button, XmNactivateCallback, CallRPC, QUSERS);
XtManageChild {button);

ac = 0;
XtSetArg{al[ac], XmNlabelString,

¥mStringCreateltoR ("NodeS"™, charset}); ac+d;
xeSetarglal{ac], XmNmnemonic, '5'); acti;
button = XmCreatePushButton (menu _pane, "QNODES", al, ac);
XeaddCallback (button, XmNactivateCallback, CallRPC, QNODES);
XtManageChild (button);

ac = OF
XtSetArg(allac], XmNlabelString,

#mStringtreateltoR ("License™, charset)}; act+;
XtSetArg(al[ac), XmNmnemonic, ‘L); ac+s;
button = XmCreatePushButton {menu pane, "QLICENSE", al, ac};
xtaddCallback (button, XmNactivateCallback, CallRPC, QLICENSE);
XtManageChild (button);

ac = 07
XtSetdrg (alfac], XmNsubMenuld, menu _pane); act+;
XtsetArg(allac], XmNlabelstring,

ImsStringCreateLtoR {("Query ", charset)); ac+t;
KtsetArg(al[ac], XmNmnemonic, ‘Q’); act+;
cascade = XmCreateCascadeButton (menu har, "Quexy”, al, aw)}
Xt Child ¢ de} ;7

/* Créate "COptions" PulldownMenu.
*/

ac = 07
reny_pane = ¥mCreatePulldownMenu (menu_bar, "menu_pane", al, ac);

ac = 07
XtSethryg(allac], XmNlabelString,

XmStringCreateltoR ("Check In™, charset)}; act+;
XtSetArg(al[ac], ¥nNmnemonic, I17); actt]
button = XmCreatePushButton (menu e, "Check In", al, ac);
XtAddCallback (butten, XmNactivateCallback, CallRPC, CHECK_IN);
XtManageChild {butten};

ac = 07
XtSetArg(allac]l, XmNlabelString,

EmStringCreateltoR ("Check Out,.. Y, charset)); ac++;
XtSetArg(al [ac], Xmmnemonic, 707); act+;
button = XmCreatePushButton (menu pane, fcheck Cut", al, ac);
XeaddCallback (button, XmNactivateCallback, MenuCB, CHECK_OUT) ;
KtManageChild (butten};

ac = 07
¥tSetArg(alac], XmNlabelString,

Km§tringCreateLtoR ("Remove Nede...", charset)); ac++;
XtSetArg(alfac], XmNmnemonic, "R7); actt;
button = XmCreatePushButton (menu_pane, "Remove Node™, al, ac);
XtaddCallback (button, XmNactivate&Callback, MenuCB, REMOVE);
XtManageChild (button);

ac = 0
XtSetarg(al{ac], XmNlabelString,

FmStringCreateltoR ("Set Max...", charset}); act+;
XtSetarg{allac], XmNmnemonic, ‘§7); actt;
button = ¥mCreatePushButton (menu_pane, "Set Max", al, aa);
XtAddcallback {button, XmNactivateCallback, MenuCB, SET MAX);
XtManageChild (butten); -

ac = 0f
%tSetArg {allac], XmNsubMenuId, menu pane); actt;
¥tSetarg(allac], XmNlabelString,

¥mStringCreateltoR ("Maintain ", charset)); acd+;
HrSetArg{allac], XmNmpewmonic, 'M'); actt:
cascade= XmCreateCascadeButton (menpu bar, "Maintain®, al, ac);
KtManageChild (cascade); -

/* Create "Options™ PulldownMenu.,

*/

ac = 05

menu_pane = KmCreatePulldownMenu (menu bar, "menu_pane“, al, ac);

ac = 07

XtSetdrg(allac], XmNlabelString,
X¥mStringCreateltoR{"Daily...", charset}}; act+;

ztSetarg(allac], XmNmnemonic, "D'}; acth;

button = XmCreatePushButton {(menu pane, "Daily”, al, ac});

¥tAddCallback (button, XmNactivateCallback, MenuCB, DAILY):

¥tManageChild (button);

ac = 0;
KtSetArglallac], XmNlabelString,

XmStringtreateLtoR ("Weekly...”, charset}); act+;
XtSetArg(aliacl, XmNmnemonic, W' }; achd;
putton = fmCreatePushButton (menu pane, "Weekly", al, ac);
ReAddCallback {button, XmNactivateCallback, MenuCB, WEEKLY};
XtManageChild (button);

ac = Of
XtSetArg(allac], XmNlabelString,

XmStringCreateltoR ("Monthly...”, charset}); act+;
XtSetArg(aliac), XmNmnemonic, 'M'}; ac+t;
button = XmCreatePushButton (nenu ne, "Monthly", al, ac);
XtaddCallback {(button, XmNactivateCallback, MenuCB, MONTHLY);
XtManageChild (button);

ac = 03
XtSetArg{alfac], XmNlabelString,

ZmStringCreateLtoR {"Semester...", charset}); ac++;
XtSethrglal[ac], XmNmnemonie, 787); act+;
button = ZnCreatePushButton {(menu ne, "Semester™, al, ac);
XtAddCallback (butten, ¥mMactivat@Callback, MenuCB, SEMESTER);
KtManageChild (button);

ac = 0f
XtSetRArg (aliacl, XmNsubMenuld, menu_pane); ac4t;
XtSetArg(allac], XmNlabelstring,

EmStringCreateltoR ("Report ", charset}}; acH;
XtSetArqg(allac], XmNmnemonic, 'R7}; ac++;
cascade= fmCreateCascadeButton (menu_bar, "Report”, al, ac};
XEM Child de} ;

/* Create "Options™ PulldownMenu.

ac = 07
menu_pane = HrCreatePulldownMenu (menu bar, "menu_pane’, al, ac)y

ac = 07
XtSetArg(al[ac], XmNlabelString,

¥mStringCreateLtoR ("Restart™, charset)); ac++;
XtSetArg(alfac], Xmimnemonic, 'R')}; acHs;
button = XmCreatePushButton {menu pane, T"Restart™, al, ac);
XtAddCallback (button, XmNactivatéCallback, MenuCB, RESTART};
RtManageChild (button);

ac = 07
¥tsetArg(allac], XmNlabelstring,

AmStringCreateLtoR {"Shutdown", charset)}; actt;
¥tSetArg{allac}, XnNmoemonic, '8'}; ac++;
button = XmCreatePushButton {(menu pane, "Shutdown", al, ac};
XtaddCallback {button, XmNactivatéCallback, MenuCB, SHUTDOWN);
XtManageChild (button);

ac = 0
XtsetArg(allac], XmNlabelsString,

AmStringCreatelbtoR ("Quit®, charset)); ac+d;
xtSetArg{allacl, XnNmnemonic, ‘Q7}; ac+b;

button = XmCreatePushButton {menu_pane, nouit", al, ac);
XtAddCallback (button, mNact ivateCallback, MenuCB, QUIT):
XtManageChild (button};

ac = 07
XtsetArg (allac], KrNsubMenuld, menu_pane); acH;
KeSetArg(allacl, KN labelString,
}s’mStringCreateLtoR{“Special ", charset}}; actt;
xtSetArg{aliac], KnNrnemonic, '§7); achHt;
cascade= XmCreateCascadeButton {mepu_bax, "special®, al, ac);
i de}

I

7* Create "Help” buttoen.
*/

ac = O}

cascade = XmCreateCascadeButton {menu_bar, "Help", al, ac}y
SenadCallback {(cascade, XmNactivateCallback, MenuCB, HELP) ;
XtManageChild {cascade);

ac = Oj

KtSetArg {allac], FnNmenuHle lpWidget, cascade); acth;
XtSetValues (menu bar, al, ach;

return {menu bar};

/

** main

id initialize toolkit.

*k Create MainWindow and subwidgets.

Lid Realize toplevel widgets.

kol Process events,

*f

void main {arge,argv}

unsigned int arge;

char *rargv;

{
pisplay *displays /* Display */
widget app_shell; /* applicationShell */
widget maifiwing /* MainWindow */
Widget menu_bar; /* RowColumn */
Arg alf{lol; /* arg list */
register int as; /* arg count */
register int iy /* counter */
/’; Initialize toolkit and open display.
*

KeToolkitInitialize ()7

display = XtOpenDisplay (NULL, NULL, argv[0], "¥Mdemos™,
NULL, 0, &arge, argv);

if (ldisplay)

XtWarning ("license: can’t open display, exiting..."};
exit (0)f

/* Create Applicationshell.

*/

app_shell = AtappCreateShell (argv(0], TgMdemos™,
applicationShellWidgetClass, display, NULL, 0}7

/* Create MainWindow.

*/

ac = 07

ZtSetarg (allacl, FnlghadowThickness, 0); ac+h}

mainwin = XmCreateMainWindow (app_shell, "main", al, ac);
XtManageChild {(mainwin);

/* Create MenuBar in MainWindow.
*/

menu bar = CreateMenuBar {mainwin} ;
XtMahageChild (menu bar);

/* Realize toplevel widgets,

*

/
KtRealizeWidget {app_ shell);

/* Process events.
*

XtMainLoop {)};

* KA ARk /
/* */
/* Procedure "call rpc” */
’* - */
/* Given an RPC number, the addresses of the XDR input and output routines, */
/* and the addresses of the XDR resturn parameters, this procedure calls the */
/* standard RPC interface and returns the client status. If an error */
/* occurs, the RPC error is displayed and the program terminates. */
/* */
Vi e e ok e e ek Kk [/

call_rpo(server,library function,inproc, in,cutproe, out)
- char *server;
int library function;
zdrproc_t ifiproc, outproc;
chax *in, *out;

int client status;
elient staftus=callrpctop{server, (u_long) SOFILIB,
- (u_lofg} library function,
(u_long) SOFTVERS,
inProe , in,
outproc, out}y
if (alient status)

clnt_perrne (client status);
prin€E{"\n");
exit {~1};

callrpotep (host, prognum, procnum, versnum, inpree, in, outprog, out}
long prognum, procnum, versnwm;
char *host, *in, *out;
»drproc_t inprec, OUtprocj

struct sockaddr in server addr;
int socket = RPT_ANYSOCK;

enum clnt_stat cInt_stat;
struct hoStent *hp;

register CLIENT *client;

struct timeval total timecut;

if {(hp = gerbostbyname (host}) == NULL) {
£printf {stderr, "can’t get addr for ‘%s’\n”, hest);
exit(~1};

}
beopy (hp~>h_addr, (caddr_t)sserver addr,zin_addr, hp~>h_length);
server_addr.sin_family = AF_INET; -
server addr.sin rt = Q;
if {(client = cInttcp create{gserver addr, prognum, Versnum,
ssocket, BUFSIZ, BUFSIZ)) == NULL)™{
perror ("rpotep create’);
exit(~1);

total timeout.tv _sec = 20;

total timeout,tv uses = 0

clnt_Stat = cint call{client, procnum,
Inproc, in, Sutproc, out, total timeout);

clnt_destroy{client);

retu¥n (intjclnt_staty

