
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

User Interface Implementation for

Network License Management System

Jianli Jiang
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/47

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1992-012

User Interface Implementation for Network License
Management System

Jianli Jiang

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

User Interface Implementation for

Network License Management System

Jianli Jiang
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #92-012

User Interface Implementation for
Network License Management System

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Science in Systems Analysis

Graduate School of Miami University

Jianli Jiang

Miami University

August 1992

Advisor: Prof. Douglas Troy

Reading Committee: Dr. Alton Sanders

Dr. James Kiper

Dr. Don Byrkett

Table of Contents

Abstract

1. Introduction
2. Information and Terminology

3. Design of the Network License Management System

3.1 Software Modules
3.2 Operation of NLMS

4. Requirements for the User Interface and Management Reports
4.1 Requirements
4.2 User Interface Design
4.3 Software Usage Reports

5. Microsoft Windows Implementation
5.1 Interface Description
5.2 Programming with MS Windows

5.3 MS Windows Implementation
5.4 Incompatibility between MS Windows and SUN PC-NFS

6. X Windows Implementation
6.1 X Windows System
6.2 Programming with X Windows

6.3 X Windows Implementation
7. Management Reports

7.1 Types of Reports
7.2 Implementation

8. Bugs Discovered and Corrected
9. Comparison of Programming in Microsoft Windows and X Windows

9.1 Concepts

9.2 Programming
1 0. Conclusion

10.1 Interactive Design Tools
10.2 Improvements

References

Appendix 1: An example of Management Reports
Appendix 2: Source Code Listings

Table of Contents

Abstract

1. Introduction
2. Information and Terminology
3. Design of the Network License Management System

3.1 Software Modules
3.2 Operation of K M S

4. Requirements for the User Interface and Management Reports

4.1 Requirements
4.2 User Interface Design
4.3 Software Usage Reports

5. Microsoft Windows Implementation
5.1 Interface Description
5.2 Programming with MS Windows
5.3 MS Windows Implementation
5.4 Incompatibility between MS Windows and SUN PC-NFS

6. X Windows Implementation
6.1 X Windows System
6.2 Programming with X Windows
6.3 X Windows Implementation

7. Management Reports
7.1 Types of Reports
7.2 Implementation

8. Bugs Discovered and Corrected
9. Comparison of Programming in Microsoft Windows and X Windows

9.1 Concepts

9.2 Programming
1 0. Conclusion

10.1 Interactive Design Tools
10.2 Improvements

References

Appendix 1: An example of Management Reports

Appendix 2: Source Code Listings

Abstract

This paper describes a project to understand and enhance a distributed application - the

Applied Science Microlab Network License Management System(NLMS1, and to design and im-

plement an improved user interface for that system. The NLMS utilizes a client-server architec-

ture, the TCPIIP network protocol suite, and the Remote Procedure Call (RPC) facility for the

program to interface to the network. The new user interface is based on X WindowslMot~for UNIX

client and Microsoj? Windows for PC client. In addition, management reports are added to the

system and expected to provide the package usage statistics to aid in future sofiware purchase

plans.

The goals of my project are to do some developmental work in the UNZX environment; to

understand more about network programming; to learn how to write distributed applications; and

to learn to programming X WindowslMotifand Microsofi Windows. In my opinion, I have accorn-

plished these goals.

1. Introduction

The Applied Science Microlab is a computing laboratory in the School of Applied

Science at Miami 'University that consists of approximately 80 IBM compatible personal

computers, running the PC-DOS or MS-DOS operating system. The PCs are networked,

and connected to an IBM RISCl6000 file server running IBM's UNIX operating system called

AIX. Most of the lab's PC application software is stored on the file server. When a student

desires to use a particular application on a PC, he or she selects the application from a menu

on the PC which in turn causes the relevant application to be downloaded from the file

server and executed on the PC. In general, the student is unaware of the file server.

Many of the PC application software packages are single-user licensed, and the mi-

crolab does not own enough single-user licenses to serve every PC in the lab. For example,

the microlab may own 30 single-user licenses for word processor XYZ. Thus, to be com-

pliant with the license agreements, no more than 30 students at a time should be permitted

to use the XYZ word processor concurrently.

The Applied Science Microlab Network License Management System (NLMS) is a

distributed application, developed by Systems Analysis students, that permits enforcement

and management of license agreements [Troy, 19911. NLMS consists of programs that run

on the PCs and the file server, and permits counting and tracking of the number of each

application under execution at a given time. The NLMS also maintains a data base storing

the information of the maximum number of copies licensed for each application. A portion

of the NLMS that executes on the PCs is used to query the database part, that runs on the

server, to determine if a given PC application may be downloaded and executed. If the

application cannot be downloaded because of an insufficient number of available licenses,

then the user is informed to try later. If a license is available, the application is downloaded

and executed on the PC.

Another portion of the NLMS permits the network manager to manage the database

on the server. For example, the manager could examine the number of applications current-

ly executing, change the number of licenses available, or reinitialize the entire database.

Additionally, the NLMS collects data about the usage of each software package. In the

original version of NLMS, written prior to this project, this component of the NLMS had a

simple command-line user interface, and, although the data existed to provide many usefui

management reports on software usage, this part of the system was not implemented. These

were major weaknesses of the NLMS prior to my project.

The goals of this project are to:

1. Determine the requirements for an improved and user friendly interface for the

management portion of the Applied Science Microlab's Network License Manage-

ment System;

2. Determine the requirements for management reporting;

3. Implement the improved interface on Personal Computers using MS Windows and

on UNIX Workstations using X Windows;

4. Implement the management reporting system; and

5. Summarize and compare the MS Windows and X Windows programming efforts.

The last goal, although not directly related to the K M S , was an important goal in furthering

my understanding of different programming environments for user interfaces.

The remainder of the report is organized as follows. Section 2 presents information

and terminology on distributed processing and networking that is used in the remainder of

the report. Section 3 describes the design of the NLMS. Section 4 describes the require-

ments for the modifications and improvements to the NLMS. Sections 5 and 6 describes the

Microsoft Windows and X Windows systems that were used to implement the improved user

interface. Section 7 is a description of the management reporting that was implemented.

Section 8 describes some bugs in the original K M S that were discovered and corrected.

Section 9 presents a comparison of programming in MS Windows and X Windows, and

Section 10 concludes the report. Appendix 1 contains an example of the management

reports, and Appendix 2 is a complete listing of the source code for the revised NL,MS

system.

2. Inf ormation and Terminology

The NLMS is a distributed processing application designed using the client-server

model. The client-server model is used to describe a network system in which one or more

processes provide services across the network to one or more other processes, and commu-

nication is in the form of request/reply pairs initiated by the client. The term "server" refers

to any process that provides services on request and the term "client" refers to any process

that uses the services offered by a server[Ames, 19911. In our NLMS, the server keeps the

license information of software packages and their usage information, provides the services

of checking the availability of software packages, and answering the queries from clients.

The client presents all the functions available in a nice user interface, through which the user

can make different kinds of requests to the remote server and get the reply. One centralized

server accepts requests from and responds to all the clients.

The Applied Science Network is an Ethernet local area network that supports the

following protocols:

1. TCP/CP

2. Sun Remote Procedure Call (RPC)

3. Sun external Data Representation (XDR)

4. Network File System

5 . X Windows

TCPlIP (Transmission Control Protocol/Internet Protocol), funded by Defense Ad-

vanced Research Projects Agency, was developed to interconnect different subnetworks of

various architectures and make them function as a coordinated unit[Cypser, 19911. TCPiIP

Internet Protocol Suite, commonly referred to as TCP/IP, consists of a set of network stan-

dards that specify the details of how computers communicate and a set of conventions for

interconnecting networks and routing traffic[Comer, 19911. Internet provides two broad

types of services that can be used by any application program: connectionless package deliv-

ery service (User Datagram Protocol) and reliable stream transport service (Transmission

Control Protocol). TCPIIP protocols define the unit of data transmission, called a datagram,

and specify how to transmit datagrams on a particular network[Comer, 19911.

Electronic mail, file transfer and remote login are some of the popular and wide-

spread Internet application services. Unlike other underlying protocols, TCPlLP protocols

make these applications more reliable, because the machines at each end (sender and re-

ceiver) are involved in the communication directly[Comer, 19911.

In fact, TCPIIP has become one of the standard protocols at the TransportINetwork

layer in the OSI seven layer model. The relation between TCP/IP and OSI Open System

Interconnection reference model is shown in Table 2.1 [PC-NFS Programmer's Toolkit Manu-

al, 1987).

Table 2.1 OSI Seven Layer Model and TCPIIP Protocol

7 Application

G Presentation

5 Session

4 Transport

3 Network

2 Data Link

1 Physical

Remote Procedure Call (RPC) specifies a particular communication style between

client and server, which allows a client to call a procedure that a remote server executes. To

obtain a service, a client issues a request in the form of RF'C. RF'C is a paradigm in which a

function call, although appearing as a local call, actualiy results in a network request/reply

interaction [Ames, 199 11. Program-number, procedure-number and version-number are

used to identify the service that the client desires. The server registers its services with the

operating system using these numbers, and the client passes these numbers as parameters

when making a RPC call. Figure 2.1 shows what actually happens when a client makes a

RPC call[PC-NFS Programmer's Toolkit Manual, 19871. Several RPC protocols have been

designed. The one used in our system is based on Sun Microsystems RPC.

p T - I pZE.1
r l

-1
EZI
171 bcl

IP (internetwork)

piEz-1 I Z l
l-izEzq

Client
Machine A

client
program

Serve
Machine B

I
I

service!
I daemon1
I
I

Figure 2.1 Network Communication Mechanism with the Remote Procedure Call

I
I I
I r
I
I

I

I I

I receive
I I

I I request
I

I

I ,, I I

I

I I

I I
I

I a

I I

I

I I

I I
I

I I

I
I
I

I I

I
I

I send
I I

I
I
I reply

External Data Representation (XDR) specifies standard representations for basic

data types, structures and unions. Before data is sent to the network, it is translated from the

local host's representation to the standard representation(this process is called encoding);

and when it arrives at the receiving host, it is translated into the data representation that

receiving site uses(this process is called decoding) [PC-NFS Programmer's Toolkit Manual,

19871. Constructor primitives are the services provided by XDR for encoding and decoding,

which allow programmers to translate basic data types as well as user defined complex data

types. XDR is important because it guarantees that data will be interpreted correctly in a

heterogeneous environment. RPC uses XDR to translate input and output data.

call service

execute
service

return answer ,
1

L receive I

I t

I
I answer I

I
I I
I

1 I
I I

As shown in Table 2.1, the 051 seven layer model, NFS is at the top application layer.

NFS (Network File System) is a facility for sharing resources, including files and printers,

among network users [PC-NFS Programmer's Toolkit Manual, 19871. SUN'S W C and XDR

have been developed and used during the process of implementing SUN'S PC-NFS. In W S ,

file systems can be mounted from remote machines, and its location is transparent to the

users. In our Applied Science Microlab, most of the PC software packages are stored on the

server machine, as mentioned in the Introduction. Using PC-NFS, each PC can mount that

portion of a filesystem, and read or write it as if it were a local disk.

The X Window System is a network-transparent window system that was designed at

MIT in conjunction with DEC. The X Window System Protocol describes the precise seman-

tics of the XI1 protocol specification, that is the exact behavior of X[X Protocol, 19881. One

important difference between X and many other window systems is that X does not define

any particular user interface style. X provides a flexible set of primitive window operations,

and a device-independent layer that serves as a base for a variety of interface styles.

The architecture of the X Window System is based on a client-server model. A

single process, known as the server, running on a workstation, is responsible for all input

and output devices, including keyboard, mouse, and display. Any application that uses the

facilities provided by the X server is known as a client. A client communicates with the X

server via a network connection using an asynchronous byte-stream protocol[Xlib Library,

19881. X supports many network protocols, such as TCPiIP and DECnet.

Xlib is a low level C subroutine library that application programmers use to interface

with X Window System and to write X-based programs[Xlib Library, 19881.

The next section describes the overall design of NLMS.

3. Design of the Existing Network License Management System

3.1 Software Modules

The NLMS system is designed based upon the client-server architecture and it can

operate on any operating system that supports the Remote Procedure Call, XDR and TCP/IP

protocols[Troy, 19911. For example, the software has been tested on IBM RISC/G000

(AIX), NeXT (Mach), and DEC VAX (Ultrix), and for PCs, Sun PC-NFS (clients only).

PC DOS

PC DOS
a packag

check oug
a packa -

1" query ~icensd

I PC DOS

PC DOS

pctime

Figure 3.1 The architecture of the NLMS system

Figure 3.1 shows the architecture of the NLMS. As can seen, all of the client pro-

grams running on lllNIX or PCs send their requests through the network to the server and the

server processes each request and sends back a reply.

The programs that made up NLMS prior to my project were:

libraria -- server program that runs on UNZX only. It monitors the license informa-

tion, counts and tracks the packages being used, and processes the requests

from client program "libmaint", "check", or "pctime."

libmaint -- client program that can run on both UNIX and PCs. It is the manage-

ment portion of the client program, including functions such as query

nodes, query license, query time, reset the database, shutdown server pro-

gram "libraria", restart the server, etc.

check -- client program that runs on UNIX and PCs. It is used by a computer

node to check out a software package, or check in the software package

running on that node.

pctime -- client program runs on PCs. Its purpose is to set the PC's clock to the

time of server. This program is used in the program "Sign-in" as well.

3.2 Operation of NLMS

The complete user interface to the existing K M S is described in the users' guide

"Librarian, A Multi-User License Manager" [Troy, 19911. This section presents an overview

of the operation of the existing system.

The NLMS server, which is called "libraria", is a program that maintains a database

which stores each software package's name and the number of copies purchased. For each

software package, the "libraria" keeps track of every computer node which is using each

software package. This server program runs as a daemon (background process) on the

server, waiting to receive requests from client machines on the network, which are typically

PCs but could be a processor on the file server as well. When a request arrives, the server

processes the message, and sends back the result. The type of requests include:

1. "check in" or "check out" a software package from client program "check",

2. query the time and date from "pctime",

3. query the usage of a particular software package,

4. query the status of a client machine,

5 . change the number of licensed copies of a software package,

6. restart the server program.

Before using a software package, the user needs to obtain permission from the K M S

server by sending a request "check out". Upon receiving a request from a software user, the

server checks the database to either reject the request, if the number of users using the

software has already reached the maximum number of copies licensed; or grant the request,

if the number of users is fewer than the number of copies of the software licensed. When a

computer node ceases using a software package, it will inform the NLMS server by sending a

message "check in", and the server will update the software usage information accordingly.

The NLMS server also has many provisions for the management of the network facil-

ity. In addition to obtaining the software usage information of the network, an authorized

network manager is able to maintain and monitor the network license configuration by send-

ing appropriate requests to the W M S server.

An important fact to note is that all of the NLMS programs, except for the server

(libraria), can be compiled to ru11 on either the PC-DOS clients or the UNIX server. To

program the MS-DOS programs, a library of networking functions is required. SUN PC-

NI;S Programn~er's toolkit is a library of C functions used to support RPC-based clients[PC-

NFS Programmer's Toolkit Manual, 19871. It provides a relatively easy way to write distrib-

uted applications. The AIX operating system, as well as other versions of UNIX such as

Ultrix from DEC and Mach from NeXT, comes standard with the RPC library.

The NLMS server "libraria" generates a log, or audit trail, for every transaction that

it processed. The names of these files are of the format Month-Date-Weekday.audit. For

instance, the audit file for July 4, 1992 is named "Jul-04-Sat.audit."

The audit log shows the time, the client request, the PP address of the client node

issuing the request, and the package or node (if applicable) involved. Here are some sample

lines stored in an audit file.

01:00:12 SET-MAX 000.000.000.000 Automenu 0

01.00.12 SET-MAX 000.000.000.000 lotus 35

01.00.12 SET-MAX 000.000.000.000 wp51 4 0

00.00.12 SET-MAX 000.000.000.000 qc 25

09.12.45 CHECK-OUT 134.053.002.051 wp51

09.24.34 CHECK-OUT 134.053.002.056 qc

10.12.41 QTIME 134.053.002.162

11.09.23 CHECK-IN 134.053.002.056 qc

11.09.23 CHECK-OUT 134.053.002.056 Automenu

19.12.41 QPACKAGE 134.053.002.067 lotus

19.12.41 QNODE 134.053.002.230 134.053.002.056

2 1.09.23 CHECK-IN 134.053.002.051 wp51

If a package is SET-MAX to 0, it means that there is no license limit on it.

In the existing system, it is very inconvenient for the network manager to invoke a

query or maintenance command using the old libmaint program. In order for the manager

to check the usage of a specific software package, one needs to issue a query using the

precise name of the software package, as it is stored in the software license data file. Any

misspelling of the software package name results in an error message or incorrect response.

For example, the following command checks the usage of Microsoft Quick C:

libmaint apsrisc query package qc

If qc had been spelled as quickC or QC, the command would fail.

It is even more difficult to query a computer node status, since the user has to remem-

ber the exact internet address of the machine on the network. For instance, command:

libmaint apsrisc query node 134.5 3.3.5 6

checks the status of the machine whose internet address is 134.53.3.56. Even with excep-

tional memory, a person might find it difficult to remember more than 10 such machine

addresses.

My major goal is to design a user-friendly interface for the program "libmaint."

Menus and Dialog boxes are used to improve the quality of the user interface. The manager

only needs to select an appropriate entry on the display menu to execute a desired query

and, hence, is free from remembering the software packages' names and machine address-

es. X Windows for the UNIX version and Microsoft Windows for the PC-DOS version of

"libmaint" are chosen to implement the Menus and Dialog boxes.

The second major goal is to implement functions to produce management reports

that will aid the Applied Science Microlab manager in monitoring software usage and in

making future software purchase decisions.

4. Requirements for the User Interface and Management Reports

4.1 General Requirements

To determine the requirements for the improved user interface for the management

portion of NLMS and for the management reports, I interviewed the original designer of the

NLMS, Mr. D. Troy; the microlab manager, Ms. S. Baker; and the department chair Dr. A.

Sanders. The following list summarizes their suggestions:

I. The NLMS should continue to run on either DOS or UNIX machines.

2. The maintenance portion should have a menu-driven and window-based user

interface.

3. The management reports should be implemented. The reports should provide the

information on the maximum number of copies of software packages being used

concurrently; the maximum times each package has been checked out during a

day; and the accumulative length of time each package has been in use during a

day as well.

4. The time interval of the usage reports should be flexible and should have daily,

weekly, monthly or semester time frames.

5. The report should take a reasonable amount of time to produce.

4.2 User Interface

User interface has now been recognized as a critically important part of system de-

sign. In order to implement a user-friendly interface for the system, I researched some

guidelines to good interactive system design. The key goals in user-interface design are to

increase the speed of learning, increase the speed of use, and reduce the error rate[Foley,

19901. It is recommended that the interface present an easy way for the user to understand

how to accomplish what he or she wants and the interface be consistent throughout the

program[Brown, 19891. What you see is what you get is fundamental to interactive graph-

ics [Foley, 19901.

Following these good interface principles, menus and dialog boxes are introduced to

improve user friendliness. Menus allow the user to browse the functions the system pro-

vides; and since no typing is involved, the possibility of error occurrence is eliminated.

Dialog boxes for input and output enable the system interface to be consistent. It was

determined that the main menu should have the following choices: "Query", "Mainte-

nance", "Report", "Special" and "Help."

Network License Management System

Query Maintenance Report Special Help

-
Figure 4.1 Main Window with top level menu

A corresponding pull down menu with detailed options will be displayed for each

entry selected. They are shown in the following figures.

Network License Management System

Package.. . I 1
Query

Node.. .

Users

Maintenance Report Special Help

License

Figure 4.2 When "Query" is selected

Figure 4.3 When "Maintenance" is selected

Network License Management System

Figure 4.4 When "Report" is selected

Query

Network License Management System

Maintenance

Check in

Check out.. .

Remove node..

Set Max ...

Query Maintenance Report

Figure 4.5 When "Special" is selected

Report Special Help

Special

Restart

Shutdown

Quit

Help

Network License Management System

Query Maintenance Report Special Help

Help

This is a popped up dialog box. It gives a
brief introduction to the NLMS, and a help
message.

Figure 4.6 When "Help" is selected

There exist two types of menu selections. If a selection not ending with ". . ." such as

"Users" under "Query" is clicked, the corresponding function is executed, and the result is

displayed on a popup dialog box. If a selection ending with "..." such as "Node ..." under

"Query" is clicked, a dialog box will be popped up for further user input. Only after suffi-

cient input is provided, can the desired function be executed.

For example, on the popped up dialog box corresponding to "Query Node", a list of

nodes is displayed for the user's choice. This is shown in Figure 4.7. Buttons "APPLY",

"CANCEL" and "HELP" are placed at the bottom of the dialog box. A scroll bar is pro-

vided if the list is longer than can be display at one time. The user can click the "CANCEL"

button to return to the previous main menu window; or click "HELP" for available help; or

select an item from the list and click "APPLY" to query the status of the selected node. The

result is then presented to the user, as shown in Figure 4.8.

Network License Management System

Query Maintenance Report Special Help

Query Node Selection

Node Address Node Name

134.053.003.085

134.053.003.1 12

134.053.003.116

134.053.003.136

134.053.003.200

134.053.003.230

134.053.003.231

134.053.003.232

134.053.032.001

134.053.032.002

Figure 4.7 When "Node ..." Under "Query" is selected

Network License Management System

Query Maintenance Report Special Help

Query Node Result

134.053.003.161 (graphlab 85): wp5.1

Figure 4.8 Query Node Result

This interface provides a hierarchical interaction between the program and the user,

and since it is WYSIWYG (What you see is what you get), the interface is quite intuitive and

is very convenient to use.

In this new interface environment, the mouse has become the most important input

device. All the functions of the system can be invoked by moving the mouse, pointing to the

desired item, and clicking the mouse to select. An item can be a menu item, a selection item

or a control button.

The above windowing interface was expected to be implemented on the PC-DOS

operating system and the UNlX operating system. Because of different windowing systems

available on DOS and UNIX, the interface programs are different for these two versions.

4.3 Software Usage Reports

The usage reports should give the management people an overview of the frequency

and duration of use of each software package. It should help people to understand how often

and how long the software packages are used by the lab users. For example, in the morning,

the lab manager may desire to have a report on the previous day to know if any package had

been used at a level near its license limitation. That information can be shown by the

maximum number of packages being checked out concurrently compared to the number of

packages licensed. The lab manager may also desire to know how much each package has

been used, which can be shown by the total times each package has been checked out (re-

gardless of concurrency) and the total length of time in minutes or in hours that each pack-

age has been used.

Similarly, the reports over a week, a month, or a semester can tell which packages

are popular, and which were rarely touched during that week, month or semester.

According to the above requirements, the reports have five columns. The first one

lists the names of software packages, the second tells how many licensed copies of the

packages are owned by our microlab, the third shows the maximum number of copies of the

package that were used concurrently during the day, the fourth shows the total times the

package was checked out during the day, and the last tells the total time in minutes that the

package was in use.

From the figures shown in these reports, the rnicrolab manager can easily tell if a

package has been used to its maximum capacity frequently, and hence, to purchase more

copies when upgrading it, or to reduce the number of copies, if a package was rarely used

over a long period of time.

By providing different time intervals for reporting, the manager may observe a usage

pattern and thus enable him or her to make some arrangement of lab users' schedules to

further increase the lab utilization.

5 . Microsoft Windows Implementation

5.1 Interface Description

Microsoft Windows 3.0 is the windowing interface development tool we chose to use

for the PC-DOS implementation. It is a popular product for persona1 computers and is the

dominate windowing system for PC-DOS based systems. MS Windows provides a rnulti-

tasking graphical-based windowing environment and a consistent appearance and com-

mand structure[Petzold, 19901 which makes it easy for the users to learn and use the appli-

cations.

The design of the MS Windows program consists of the screens shown in Section 4.2

User Interface, Figure 4.1 through Figure 4.8.

5.2 Programming with MS Windows

Windows has the reputation of being difficult for programmers. The approach to

construct a window programs is quite different from a conventional, non-GUI program, and

new concepts such as graphical devices, event or message-handling, and object-oriented

programming have to be learned and digested[Petzold, 19901.

Programming Windows is especially difficult for beginners. MS-Windows Software

Development Kit (SDK) provides a library of C functions that can be used to build a win-

dows application[Microsoft Windows Software Development Kit, Reference, 19901. It has more

than five hundred functions and is overwhelming.

Another difficulty is that everything in Windows is interconnected [Petzold, 19901. If

you want to draw anything on the video display, you need a "handle to a device context." To

get that, you need a "handle to a window." To have that, you must create a window and be

prepared to receive "messages" to the window. To receive and process messages, you need

a "window procedure." That is why even a program which only prints "Hello World" has to

have all these components and is quite lengthy in its code.

Windows is started as a normal application program running under DOS. After it is

loaded, it shares the responsibilities with the operating system for managing the hardware

resources of the computer and scheduling processing power among applications[Microsoft

Windows Software Development Kit, Guide to Programming, 19901. Since Windows provides a

multitasking environment, more than one program can run under Windows concurrently.

Most of the time, these programs sit passively awaiting the user input, such as mouse move-

ment, mouse click, or key stroke. Therefore, Windows programs must be event-driven.

Unlike conventional programs that only make calls to the operating system to perform cer-

tain tasks, the operating system and Windows call and inform the application program of

events so that the application can respond to the input events[Petzold. 19901. For example,

when a user resizes a window, Windows sends a niessage to the program indicating the new

window size. Then the program can adjust the contents of its window to reflect the new size.

This is implemented by message passing and handling. Thus, a large portion of the program

is the code to process the messages.

As we know, it is quite typical that there are multiple programs running under Win-

dows, each with window(s) and menu bars or dialog boxes, etc. In MS Windows, all these

entities are treated as objects. Windows are rectangular objects on the screen, which receive

user input from the keyboard or mouse and display graphical output on its surface. An

application window usually contains the program's title bar, menu, sizing border, and per-

haps some scroll bars. Dialog boxes are additional windows which may contain several

additional "child" windows. These child windows take the form of push buttons, radio

buttons, check boxes, text entry fields, list boxes, or scroll bars. These windows are seen as

objects by the users and are programmed as objects by the programmers as well.

Every window in a Windows program has an associated window procedure. This

window procedure is a function that can be either in the program itself or in a dynamic link

library. Windows sends a message to a window by calling the window procedure. The

window procedure does some processing based on the message and then returns control to

Windows[Microsofl Windows Software Development Kit, Guide to Programming, 19901.

In order to make the programming job easier and reuse the code of the window

procedure, windows are grouped into classes. Every window class has a data structure, its

"resources", to define its appearance, and a window procedure to process messages. The

use of a window class allows multiple windows to be based on the same window class, and

hence, use the same window procedure. In addition, MS Windows provides a rich set of

predefined window classes such as menus, dialog boxes, buttons and other commonly used

window classes that programmers can use. Thus, you only write window procedures for the

windows that are created by your program and based on new window classes to fulfill your

application's specific needs. Minimally, a window program needs to have one window pro-

cedure for the main window it creates.

5.3 N S Windows Implementation

My program consists of WinMain(), WinProc() and other Dialogbox window proce-

dures to invoke all the functionality of the client side of the NLMS. WinMain() is the entry

point of the program. It specifies the name, the window procedure, the icon, the cursor and

other characteristics of the window class by filling out the window class structure

WNJJCLASS. Then it registers the window class with Windows and creates the top window

of my program based on that window class. After calling some functions, the newly created

window is displayed on the output device, it enters a "while loop" until the program is called

to quit. It is the "while loop" that receives messages and dispatches them to the correspond-

ing window procedures that actually process the messages.

WndProc() responds to some of the messages, such as the ones that indicate a menu

selection or window resizing or window movement, and ignores other messages by passing

those messages back to Windows and letting Windows handle them using default proce-

dures. For example, part of the response to Windowcreate (received when the main win-

dow is created) is to obtain the starting point of all the other window procedures for later

references. All the functionality of the NLMS client program is grouped into menu selec-

tions. A unique integer is assigned to each menu selection so that the program can identify

each menu selection. The response that handles the reaction to menu selection is either to

invoke a dialog box to prompt and get more information from the user or to issue a remote

procedure call to the server and then display the result in a dialog box. There is one window

procedure for each dialog box.

5.4 Incompatibility between MS Windows and SUN PC-NFS

The implementation of the MS Windows interface could not be completed because of

an incompatibility between MS Windows and SUN PC-NFS. It turned out that as soon as

our client code would issue an RPC call, the windows system would freeze up and no longer

respond to user input. We consulted SUN, and were informed that this is due to a conflict in

the way that PC-NFS and MS Windows both attempt to take over the PC's clock interrupts.

After consultation with my thesis advisor, we decided that the programming effort to get

around this problem was beyond the scope of my project, and we thus abandoned further

development of the MS Windows implementation. However, I have done enough program-

ming with MS Windows to be able to make comparisons between it and X Windows.

6. X Windows Implementation

6.1 X Windows System

The X Windows system is an industry-standard, device-independent and distributed

software system[Young, 1990). The device-independent feature of X Windows system pro-

vides a convenient and portable programming environment which allows programmers to

concentrate primarily on his/her application design instead of worrying about portability

issues among different machines.

This feature is achieved through its particular client-server architecture. The server

process is responsible for both the input and output hardware and shields all the device-de-

pendent operations. The client may be any application that uses the services provided by the

X server. More than one client can be supported by a single X server. Therefore, the X

window system is essentially a distributed system and hence it is necessary to have a X

window manager to control the sharing of X window resources among multiple users. The X

window manager controls the positions of the windows on the screen, and allows the user to

move a window, resize a window or switch among windows, etc. It also processes all the

requests sent by all the clients and this generally leads to more efficient utilization of the

various computer resources.

Furthermore, the X server and the client do not need to be on the same machine

provided that the display is a X terminal. For example, I once logged onto a SUN worksta-

tion at Ohio State University, telneted to our FUSC/6000 machine, started the progran~ and it

ran perfectly. In this case, the processing is taking place on our RISC/6000 and the output is

displayed on the SUN station. Amazingly, it does not require recompilation to have the

interface displayed across the network. I also noticed that the interface components (menus,

dialog box, borders, arrows, etc.) had a different look because the display was running a

different window manager.

6.2 Programming with X Windows

Although the X protocol is defined at the very low level of network packets and

byte-streams, application programmers generally make use of higher level library functions

that provide an interface to the base window system. The most widely used low-level inter-

face to X is the C language library known as Xlib. Xlib defines an extensive set of functions

that provide complete access and control over the display, windows, and input devices.

Based on Xlib, toolkits have been built to provide more convenient ways of programming.

Examples of toolkits are Interviews (Stanford University), Andrew (Carnegie Mellon), Xray

(Hewlett Packard) , etc[Young , 19901.

The toolkit I used is a standard toolkit known as the X Toolkit, which consists of two

parts: a layer known as the Xt Intrinsics and a set of user interface components known as

widgets. The Xt Intrinsics supports many different widget sets, including OSF/Motif, Open

Look and Athena. OSFIMotif 1.0 comes with the IBM RISC/6000 AIX and is the widget set I

chose to use. This layered architecture of an X windows system provides portability and

flexibility. Figure 6.1 is the application programmer's view of the X Windows sys-

tem[Young, 19901.

Application

I Network Connect ion

Figure 6.1 The layers of X Windows System from Application Programmer's View

6.3 X Windows Implementatiol~

Applications with a windowing user interface may contain a large while loop, which

dispatches all the events. For example:

while (TRUE) do

get next event;

case event of

pushed "help" button: HelpProcessProcedure () ;

. . .

end case

end while

This sort of loop is called "busy waiting." It is not a desirable feature of a system,

since it wastes the precious computer resources, In X Windows/Motif, the Callback function

implementation provides an alternative to the "busy waiting" event-processing mechanism,

which is an interrupt-driven or event-driven mechanism[OSFIMotif Programmer's Guide,

19901. The system requires an application to register in advance all the actions that will be

taken to respond to each event. Therefore a large part of the program is chained event

processing procedures to handle user input. A convenient function is available to register a

callback function[OSF/Motif Programmer's References, 19901.

XtAddCallback(button, XrnNactiveOK, Menucallback, QNODE);

The above line is a statement in my program after "button," a widget of type BUTTON, is

created to represent an option "query node" under the top menu "Query." The XtAddCall-

back function specifies that when this button is clicked (XmNactiveOK), a procedure Menu-

Callback() is invoked and executed, and QNODE is an integer passed to Menucallback()

as a piece of client data. The Menucallback() procedure creates a selection dialog box

displaying all the nodes for the user to select. The callback function for this selection dialog

box is Cal lPC(). It is in the Cal lPC() procedure that the remote procedure call is sent

after it determines which node is being selected by the user. From a programmer's perspec-

tive, it is truly interrupt-driven.

As we can see, in addition to saving the computer resources, the interrupt-driven

feature of the X windows system makes an application easier to write soon after you get used

to it.

7. Management Reports

7.1 Types of Reports

There are two important requirements that need to be addressed for the statistical

reports. One is the time interval for the report. It should be flexible and should not require

too much typing to specify. So Mrs. Baker and I decided to have different options, such as

daily, weekly, monthly and semester reports. A daily report produces the collective infor-

mation of usage for any specified day. Weekly, monthly and semester reports give the

corresponding statistical report over the specified week, month or semester, respectively.

The second requirement concerns the content of the reports. It should contain rele-

vant information for management. We determined four types of data to support: the num-

ber of copies licensed, the maximum copies in use concurrently, the total number of times a

package was used during a day, and the total time length a package was in use during a day.

The last data is necessary because Mrs. Baker suggested that some packages are checked

back in right after being checked out, which causes the total times a package has bee11

checked out to misrepresent the usage. Having this report, the lab manager knows what

packages have been used heavily and frequently hit maximum capacity, and what packages

have rarely been used by students. This will provide a piece of key information to help in

making future purchase plans.

7.2 Implementation

The audit file generated every day records each request from all the clients in the

time sequence as it happens during that day. It looks like:

00.00.01 SEX-MAX 000.000.000.000qc 25

09.01.23 CHECK-OUT 134.053.003.056 wp5 1

It shows at time 00.00.01 the package Quick C was set to have 25 licensed copies and at

09.01.23 client node 134.053.003.056, one of the PCs, checked out Wordperfect 5.1. The

file for a typical school day has 4000 to 6000 such lines.

Since the file is so large, it would take a long time to produce a report if the audit file

were read in and analyzed at the time a report was requested. For example, a monthly or

semester report requires 30 or more than 100 such files to be scanned. Also, if a report is

requested more than once for a day, the reading and analysis process for that file is repeated

completely.

In order to prevent the scenario that a user has to wait a few minutes to get the report,

I took advantage of UNIX's multitasking capabilities. After midnight, the server forks

another process, and the newly created process accumulates usage information from that

day's audit file.

The algorithm is very simple. At the beginning, an array:

struct package-rec

{ char package[l6] ;

int max-copy ; I* # of copies licensed * I

int concur-copy; I* max # of copies used concurrently *I

int times-checkedout; I* max # of times being checked out *I

int amount-time-in-use; I* total time in seconds a package in use *I

} package-info [MAX-PACKAGES] ;

is initialized. Then the process scans every line of the audit file. The "SET-MAX" is used

to set the value of "max-copy" for each package to get the number of license. During of the

process of scanning, only "CHECK-OUT" and "CHECK-IN" are read into memory be-

cause they are the only information related to lab usage. A sort function is then used to

group all the "CHECK-OUT" and "CHECK - IN" information by the client nodes. So for

each node, we are able to generate repeated pairs of "check out a package at one time, and

check in that package at a later time." The difference in time between the consecutive pair

of "check out" and "check in" is assumed to be the time that package has been in use. This

accumulates to the total time in seconds that package has been in use. At the same time,

concur-copy and times-checkedout is also computed.

This way, a daily usage report is generated and stored in a file for each day. The

report file is named as Month-Day-Weekday.report. For instance, Aug-03-Mon.report is

the report file name for August third. Thus when a report is called on, only these small

summary data files (each contains less than 100 lines) have to be read in and the report can

be ready in seconds. An example of the report is shown in Appendix 1.

8. Bugs Discovered and Corrected

In the course of the project, a few bugs were discovered in the old NLMS program in

our Microlab. First, the original design of "check", reversed the intuitive meaning of "in"

and "out". "Check in" was used when a package was to be requested, and "check out" was

used when the user was done with the package. This use of "in" and "out" was confusing,

and had to be reversed.

Secondly, since the communication between the client and the NLMS server is im-

plemented via the mechanism of User Datagram Protocol (UDP), and since the maximum

length of data communicating between the client and the K M S server is 1024 bytes in

UDP[PC-NFS Programmer's Toolkit Manucrl, 19871, a client query, when issued from a PC

and requires communication data longer than 1024 bytes, would fail. Query nodes and

query license are two functions whose returned data are longer than 1024 bytes. Therefore,

these two functions behave abnormally in the old NLMS when they were invoked from a PC.

In order for the communication data between the client and the NLMS server to accommo-

date more than 1024 bytes long, a different transport protocol is needed. The more reliable

and powerful transport protocol TCP is used as the underlying protocol of RPC. Therefore,

the network manager can execute the query nodes and query license with the desired result.

To recover from a server failure, the K M S server maintains an audit file on a daily

basis to record all the software usage information. When restarting the NLMS server "li-

braira" after a crash, the audit file is used to restore the network state back to the one before

the failure[Troy, 19911. The old program failed to read in all the information from the audit

file correctly, and thus, the restored state did not reflect the correct software usage in the

network. Furthermore, the amount of information kept in the audit files was insufficient to

generate the statistical reports. The above limitations and bugs were corrected as a part of

my project.

9. Comparison of Programming in Microsoft Windows and X Windows

MS Windows and X WindowslMotif are similar at the high conceptual level and

different at the detailed programming level.

9.1 Concepts

They both use an object-oriented approach. Although programmers can use their

conventional procedure-oriented language interface, the application program needs to be

centered around the concepts of objects because all the interface components are objects.

Both systems are event-driven and significant amount of code is required to process the user

input events.

I felt that it was very difficult for me to get to a level where I felt comfortable in

writing X Window programs, partially because I had to learn X Windows/Motif on my own

and I did not have good books on the topic at that time. Another reason is that no debug

tools were available. Quite often, a small mistake in the program caused the windows in my

program to disappear with no information about the error. It was thus very time consuming

to find errors and made me less likely to experiment.

9.2 Programming

At the coding level, programming MS Windows is more tedious than programming X

WindowsiMotif. One reason is that Motif is built on top of X lib and Xt Intrinsics and thus

provides a rich set of high level functions to assist with the implementation of the interface.

Another reason is that it assumes a "window manager" is running at the client workstation to

help manage some of the hardware resource, especially the X terminal. The X window

manager handles what is actually displayed on the screen taking into account the layout and

overlapping of the windows. In MS Windows, the application program has the responsibility

of repainting the screen when the window moved to another position, resized, or some por-

tion of your window became visible because other windows were moved away.

The logic or steps of writing programs in Motif is quite straight-forward. You have a

pattern to follow: create an interface component by creating a widget of suitable class,

specify its parent widget, define its appearance using some of its resources, and define its

behavior using the callback function(s). A Widget is the object; the call back function is the

procedure to handle the user input.

While in MS Windows, the flow of control is not clear by looking at the code because

messages can be generated from window function calls. In order to have a workable window

program, one needs to follow the program structure recommended by Microsoft. For exam-

ple, after the main window is created, you need to have two statements:

Showwindow(. . .);

Updatewindow(. . .) ;

What they do is to send to the window procedure a message WM-PAINT requiring the

application program to paint the newly created window. If these two lines had been missing

in your program, you could not get your window on the monitor at all. In the window

procedure, part of its code in the big event loop responds to this message:

case WM-PAINT:

hdc=BeginPaint (. . .) ;

GetClientRect (. . .) ;

DrawText (. . .) ;

EndPaint (. . .) ;

return 0;

/ * other case blocks * /

This part of the code is to repaint the content of the window when receiving the message

WM - PAINT, which arrives at the time of window creation(ShowWindow() procedure call)

or later on when the window needs to be repainted.

I personally prefer X Windows/Motif programming environment. If I am going to

develop a user interface and I have a choice of either MS Windows and X WindowsIMotif, I

would choose X Windows/Motif.

10. Conclusion

10.1 Interactive Design Tools

After completing the programming, I have done some research on the tools that can

make windows programming easier. If the only tools available to develop a user interface

are library functions, the time required to learn, code, and test is a big concern, and pro-

gramming becomes very tedious. Visual design tools are being developed to boost the

productivity of user interface design and implementation under Microsoft Windows. The

simplest one is the Dialog box Editor, which lets a user position and size buttons and other

controls within a dialog box. The Editor generates resource script statements and can be

used in conjunction with the source code [Microsoft Windows Sofiware Development Kit, Guide

to Programming, 19901. More sophisticated tools provide a visual development environment

(VDE), which allows users to prototype and design all kinds of interface objects interactive-

ly, and generates source code that can be modified and compiled[Petzold, 19921. But the

logic control part of the program still needs to be coded using a programming language and

sometimes it can get more complicated in the W E because the VDE is less flexible. Even

so, these tools appear to take some of the pain out of interface design and generally they

save some development time [Petzold, 19921.

There are some commercial OSF/Motif GUI builders available, similar to VDE. One

is called Interactive Design Tools that allow a user to specify the interface components and

generate corresponding source code. For example, TeleUSE from Telesoft claims to be a

full-featured User Interface Management System that prototypes, designs, and implements

GUIs using an object-oriented methodology[Mogan, 19921. It is reported that the develop

time using these tools to build interfaces can be cut by fifty to eighty percent compared to

directly using Motif function calls.

Since I do not have first hand experience with these tools, I can only assume that they

would help out with the tedious part of development, and still need coding to produce the

flow of control and to put all the interface components together.

10.2 Improvements

The usage reports can be improved further. Right now, the reports only present all

the figures to show the actual usage of all the software packages owned by the lab. If we can

define the criteria for high usage rate (above 90% or 95% of license limitation) and low

usage rate (below 50% of license limitation), the reports can flag the packages whose usage

falls into these two categories, in addition to providing those usage statistics. Thus the

reports tvould provide information as opposed to just data.

User interface design is a on-going process. The new interface is designed based

upon the prototype and current requirements. As users continuing using the system, they

may come up with new ideas and new requirements, which can be incorporated and result in

a better design for the user.

The reasons that I chose this project are that I wanted to do some developmental work

in the UNIX environment; I wanted to understand more about network programming, espe-

cially client-server models of the network; I wanted to learn a way to write distributed

applications; and I wanted to learn how to design and develop applications in the two most

popular windowing environments, namely Microsoft Windows and X WindowsiMotif. I feel

that by doing this program, my knowledge has been broadened, and my learning skills and

my programming skills have been improved greatly.

References

1. Ames, C., Overview of RPC, unpublished report for Distributed Processing and Net-

working, Systems Analysis, Miami University, 1991

2. Brain, M., Motif tutorials, Version 1.3, NetNews (comp.windows.x.motif), 1990

3. Brown, J. & Cunningham, S., Programming the User Interface, Wiley, 1989

4. Comer, D. E., Internetworking with TCPIIP, Vol 1, Prentice Hall, 1991

5 . Cypser, R. J., Commiinications for Cooperating Systems OSI, SNA, and TCPIIP, Addison-

Wesley, 1991

6. Foley, J., van Dam, A., Feiner, S. & Hughes J., Computer Graphics - Principles and Pra-

citce, Addison-Wesley, 1990

7. Hogan, T., TeleUSE, UNIX Preview, Vol. 10, No. 4, pp 8., April 1992

8. Petzold, C., Programming Windows, The Microsoft Giiide to Writing App/icatio~s for Win-

dows 3, Microsoft Press, 1990

9. Petzold, C., The Visual Development Environment: More than Just a Pretty Face? PC

Magazine, Vol 11, No 11, pp. 195 - 204, June 1992

10. Sommerville, J., Software Engineering, Addison Wesley, 1989

11. Troy, D. A., Librarian, A Multi-User License Manager, Miami University, Systems Ana-

lysis Department Technical Report 1992-0012, 1991

12. Young, D. A., The X Window System - Programming and Applications with Xt, OSFIMotif

Edition, Prentice Hall, 1990

13. Microsoft Windows Software Development Kit, Guide to Programming, Microsoft Press, 1990

14. Microsoj? Windows Software Development Kit, Reference, Vol. 1, Microsoft Press, 1990

15. OSFIMotifProgrammerS Guide, Revision 1.0, Open Software Foundation, Prentice Hall,

1990

16. OSFIMotif Programmer's References, Revision 1.0, Open Software Foundation, Prentice

Hall, 1990

17. PC-NFS Programmer's Toolkit Manual, Sun Microsystems, April 1987

18. X Protocol, Ultrix Worksystem Software, Programming Volume 5 , Digital Equipment

Corporation, 1988

19. Xlib Library, Ultrix Worksystem Software, Programming Volume 4, Digital Equipment

Corporation, 1988

Appendix 1 An Example of Management Reports

Network License Management System

Query Maintenance Report Special Help

Package Usage for 04/29/92

Package licensed concurently checked/day used(in minutes)/day

nortonutil 2

Appendix 2 Source Code Listings

1. libraria .h

2. 1ibraria.c

3. xface.c

...

/* */ (2 Include F i l e : L1BRARXA.U f!
;; This header has a l l t he predefined constants , s t ruc tu res , and ; ;
/* t r a n s l a t i o n rou t ines used by LIBnARIA, CHECK, PCTIME, XFACE and LIBWLINT*/
/* */
(: Eight t r a n s l a t i o n rou t ines a r e present : A, */

- I

x&-string16 - al lows t h e encoding and decoding o f s t r i n g s whose */ :: l e n g t h does not exceed 1 5 charac te r s (a s i n node number, package */
/* narcs). */
/* x& d a t e - al lows t h e encoding and decoding of MDST of t h e tm */
/* t i m e s t r u c t u r e found i n i t ime.h>. */
/+ x&-software-block - al lows t h e encoding and decoding o f package */

s t r u c t u r e s . This is used f o r t h e passing of complete package i n f o */
/* /* dur ing quer i e s . */
/I xQT_node block - allows t h e encoding and decoding o f node */
/* s t ruZtu res . This i s used f o r t h e pasaing of complete node in fo * I
/* dur ing quer i e s . * i $: %%node a r ray - al lows t h e complete pasaing of a nods a r ray

,"7<Zr.+ l i * P \ :$ < - - - - . -- - - - - , . >* xdr Backawe a r rav - allows t h e complete Passing. o f a package a r ray * I - - - . .
)* .---f;at>e;n-APsiI~ and LIBMILINT. - .j
/* xdr usage block - al lows t h s encoding and decoding o f r epor t */
/* -s t rucEures. This is used f o r t h e passing of aompleta r epor t i n f o */
/* dur ing r sques ta . */
/* xdr usage a r ray - al lows t h e complete passing of a usage a r r a y */
/* -betsreljn APSLBB and LIBMILINT. */

+define BSD

i inc lude <t ime .h>

tde f i n e LICENSE DB "software. lab"
tds f i n e ERRoRLO~BMS " l i cense .errq '

Wef ine WC ERROR 1
$define MAX-ERRORS 10
(define ID@ MACBXNE "automenu"
#define MAX tiACKAGgS 150
#define MAX-CLIENTS 150
&&-fins SOFTLIB 550000001

/* User-available funct ions */
#define NULL-PROC 0
M e f i n e CREM I N 1
id i f in , CHEM:OUT 2
Ide f ine READ

/* Maintenance-level funct ions */
$define REMOVE 16
+define QNODE 17
+define WACXAGE 18
+define QUSSRS 19

*define QNODSS 2 1
#define QLICENSE 22

/* A3miniatrat ive-level funct ions */
/def ine SET-MAX 128

I #define SAUTDOWN 129
#define RESTART 130
$define CLEANUP 131

/* Report-related funct ions */
4defFbe DAILY 256
Ildefine WEEKLY 257
t de f ine MONTELY 258
/define SEMESTER 259

cha r weekdayl7) I#]-("Sun","Monn " " "Wed" "Thu","Fri","Sat")i
char day [31] [31- (t7~137 , "02","03":"%lhlS, b05", "bes2, "07" , "08","09","10",

"11","12" "13" "14" "15","16","1," "18", nlgn, "ZO", , ? , ,t22t5,"23n,n24n - 2 5 ~ -26,t rt27w:n28sr, s*29w, -30--, v * j l " > ;
9 , .

7T%."..>% "ma"", . , May","Jun"r"Jul"r"A~g","Sep","Oct", char month[lZI 141-{"Jan","Feb","W","Apr" "" , "".. ,'
i n t f i r s t day e f month[121-(3,6,0,3,5,1,3,6,2,4,0,2j;
i n t no~o~ay~[l~]-(31,29,31,30,31,30,31,31,30,31,30,31);

/* * /
/* The fol lowing two s t r u c t u r e s a r e t h e bu i ld ing blocks f o r APSLIB: */
/* SOFTWARE BLOCK and NODE BLOCK. An a r r a y of SOFTWAns BLOCK contains a l l */
/* know software d a t a i n Ehe l i b r a r i a n server , and an z r a y o f NODE-BLOCK */
/* oontains a l l cu r ren t node infonoat ion. */

a t r u c t SOFTWARE-BLOCK

char softwaregackage (161 ;
shor t i n t t o t a l coprples;
s h o r t i n t copiez-in-use;

1;

s t r u c t NODE-BLOCK
f

char node address [l61 i
cha r soft i iazegackage [l6J;
s t r u c t SOF'SW~BLOCK *software-in-use;

1;

s t r u c t USAGE-BLOCK
i

char s o f t w a r e ~ a c k a g e 1161 ;
shor t i n t coples;
shor t i n t concurrent;
shor t i n t checked;
i n t time-used;

11

s t m c t DATE '
i n t mday, mon, year, wday;

1;
...
/* */
/* There a r e seve ra l g loba l v s r i a b l e s ueed by a l l APSLIB r e l a t e d programs. */
/* They include: */
/* */
/* software-l is t is an a r r a y o f MAX-PACKAGES e l s w n t a composed o f */
/* SOFTWARE BLOCK. */
/+ numbsr-of3ackagea con ta ins t h e number of SOFTWARE-BLOCKS i n use. */
/* */

/* client list is an array of MAX-CLIENTS elements composed of */
I* NODE BEOCK. */

numGr-of-clients contains the number of NODE-BWCKs in use. 2;

struct SOFTWARE B W C K software list[MAX PACKAGES];
struct NODE-BLOCK client-list [MAXICLIENT$ I ;
struct uSAQL-BWCK usag<list 1W-PAMAGESI ;
int number of ~ackaoes-1;
int nmobar-ofitienid -0;
int in uea3je iiwnber of ckagas-0;
int nu~er-~ii-usag*-- f l
..
/* */
I* The following six x& routines are six of eight fundamental */
/* translation routines used by APSLXB (the others being XDR-INT and */
/* XDR-STRING) .
I*

*/ * /

xdr strin 16 (xdrsp,xdr-data)
-XDR qxdrsp;
char *xdr-data; '
if (Ixdr string(xdrsp, cxdr-data, 16)) return (0) ;
return (T);

1

x&-mydate (xdrsp, xdr-data)
W R *xdrsp;
stmct DATE *xdr-data;

if (Ixdr int(xdrap hxdr data->mday)) return(0): /* 1-31 day of month */
if (txdr-int (x&sp: &xdrdrdata->man)) return (0) ; /* 1-12 month */
if (lxdr-int (xdrsp, hxdr-data->year)) retucn(0); /* 0- year - 1900 */
if (Ixdr-int(x&sp,&x&-data-%day)) raturn(0); /* 0-6 day of week */
return (lT;

xdr-date (xdrap, xdr-data)
XDR *x&sp;
stmct tm *xdr-data;

t
if (Ixdr int(xdrap,&x&-ata->tm sec 1) return(0); /* 0-59 seconds */
if (lx&-ht(x&ap,&xdr_data->tm>n)) return(0); /* 0-59 minutea */
if (lxdr-int (xdrsp, &xdr-data->tm hour)) return (0) ; /* 0-23 hour */
if (lxdr-int(xdrsp,&xdr-data->tmzmday)) return(0) ; /* 1-31 day of month */
if (Ixdr-int(xdrsp,&xdr data->tm mon 1) returnn(0); /* 0-11 month */
if (lxdcint (xdrsp, &.*'data->tm'-yeyear)) return(0) ; /* 0- year - 1900 */
if (Ixdr int(xdrsp bxdr data->tm wday)) raturn(0); /* 0-6 day of week */
if (lxdr-ht(~drs~:&xdr~data->tm~~day)) return(0); /* 0-365 day of year */
return (lT:

f

xdr-software block(x&sp,xdr-data)
W R *xdrFp;
struct SOFT=-BLOCK *xdr-data;

ohar *stringgointer 1:
stringgohter-l-x&zdatil->aoftwam~ackaga;

if (lxdr_string (xdrsp, &stringgointer-l,l6)) return (0) ;

if (Ixdr ahort (xdrsp sxdr data->total copies 1) return(0);
if (Ixdr-short (xdrap: hxdrxata->copie:-in-use)) return(0) ;
return (IT;

)

x&-node block (xdrsp, xdr-data)
xDn rxdrsp;
stmot NODE-BWCX *x&-data:

ohar *string pointer l,*string pointer 28
string_point<r-lldr-data->nodz address;
stringpintcr 2a&-data->soft%regackage;
if (Ix r atrin<(xdrsl, &atrim Pointer 1.16)) raturn (0) ;
if (fxdr-strin@(xdrsp, bstrinG-pointer-2,16)) return (0) ;
return (17;

-
>

xdr node arcay(xdrap,xdr-data)
-xDn rxdr.p;
8 t ~ C t NODE-BWCK *x&-data;

xdr package-array(xdrsp,xdrdata)
-XDR *xdrap;
struct SOFTWARB-BLOCK *Xdr-data;

I

if (txcir_uray(x&sp,x& data,hnumber ofgackages,MAX PACKAGES,
sizeof(stfuct SOFT~~BLOCK),X~~-softke-block)) return(0):

return (1) ;
)

xdr usage block (xdrsp, xdr-data)
-xDn *Zdrsp;
struct USAGE-BLOCK *x+data;

I
char *string_pointer 1;
stringqointer-l-x&zdata->aoftmre_pnckage;

if (Ixdr atring(xdrsp,&atringgointer 1 16) return(0) ;
if (~xdr-short (xdrs~. data->coDi<sr)) return (0) ;
if (lxdr-ebort (xdrsp, &xdrbrdata->concurrent)) return (0) l
if (Ix&-short (xdcsp, sxdr-data->checkad)) return (0) ;
if (lxdr-int (xdrsp, &xdr>ta->time-used)) return (0) ;
rsturn (IT;

1

x& usage-array (x&sp, xdr-data)
- ~ D R *xdrSp;
struct USAGE-BLOCK *Xdr_data:

I

if (Ix&-array(x&tip xdr data &in usage number ofgackages,MAX PACKRGES,
eizeok(stkct ~~sA~E-BwCX), xdr-Tisage-block)) refurn (0) ;

-turn (1) :
)

Program: L35RARIA.C *i
*/

Purpose: NIMS se rve r program */
*/

Por t History: This program runs on NeXT, DEC MicroVax 11, and */
I M RS/SOOO */

*/
Purpose: This i s t h e Applied Science software l i b r a r i a n . It accepts */

r eques t s from microcomputer-based c l i e n t s , and r e t u r n s t h e */
appropr ia t e r e spmses . Requests a r e a s follows: */ */
RPC request ac t ion ___________ .. * /

* /
SHUTDOWN This funct ion performs a con t ro l l ad shutdown */

of t h e l i b r a r i a n se rve r . ~ l l f i l e s a r e */
c losed and a l l sockst connections a r e t o r n */
down. *I

*/
RESTART This funct ion r e - i n i t i a l i z e s a l l r e l even t d a t a */

StNCturea (c l i e n t l i s t m d software l i s t a r e */
zeroed) and t h e s i z e agresment f i l e Tsoftvare. */
l ab) i s re-read. */

*/
CHECK-OUT The client-PC i s request ing t o check ou t */

(gain possession of a copy) a software */
package. I f t h e number of copies i n use i s */
l e s s than t h e s i t e agreement maximum f o r t h e */
package, t h e l i b r a r i a n r e tu rns a zero t o t h e */
cliant-PC, ind ica t ing t h a t it can use t h e */
package. I f t h e maximum number of copies a r e */
i n use, a non-zero i s returnad. */

* /
CHECK-IN The client-PC i s s i g n a l l i n g t h a t it has */

f in i shed us ing a software package, and t h e */
number of copies i n use f o r t h a t package i s */
decremented. The d e f a u l t package IDLE MACHINE */
is then checked i n . In the even; of t c o */
consacvtive CHECK-oms, an automatic CHECK-IN */
i s implied. */

*/
WOVE Occasionally a node w i l l die (aa i n a hardware */

f a i l u r e) without r e l eas ing a soi tware package. */
This funct ion removes a node from th& data- */
base and decrements the t o t a l usage on t h e */
software it was using a t t h e t ime of death. * /

* /
SET-MAX I n t h s event t h a t t h e ao f txa re l i b r a r i a n i s *>

running, and t h e systam admin i s t r a to r wishes */
t o ohanoe t h e s i t e aareement f i l e , two opt ions */
e x i s t -*SHUTDOWN the-system and e d i t t h e f i l e , */
o r i aaus a SET-MAX and have the f i l e r ewr i t t en * /
automatical ly. SET MAX w i l l f a i l i f t h e new */
s i t e requirement i a l e s s than t h e number of */
copiea i n use. */ * /

QNODE Given a node number, th i a funct ion r e t u r n s t h e */
package being used on t h a t node. It i s */
convenient when rrpnitoring a group o f PCa. */

* /
QPACKRGZ This query r e t u r n s the number of cop ies i n use */

f o r a given software package a s we l l a s t h e */
s i t e agreerrsnt r e s t r i c t i o n . */

*/
QUSERS This query r e t u r n s the number of a c t i v e and * /

QNODES

QLICENSE

DAILY

WEEKLY

MONTHLY

SISMBSTER

,**.****************I

i d l e nodes r e g i s t e r e d i n the network. I d l e */
nodes a r e determined by checking t h e usage of * /
AutoManu. * /

* /
one of t h e n i c e f ea tu res of a c e n t r a l i z e d
se rve r i s t h e a b i l i t y t o coordinate several
aspects - such a s a network t ime. This
funct ion re tu rns t h e time of day t o t h e
client-PC.

This query re tu rns every node address us ing
t h e se rve r and t h e package c u r r e n t l y being
executed.

This query r a t u r n s every software package i n
t h e l i b r a r i a n database with t h e maximum
allowable packags usage (the s i t e l i cense
agreement) and t h e ac tua l number o f cop ies i n
use.

This request produces a usags r epor t f o r a sps-*/
o i f i e d &y. - * /
This request produces a usage r e p o r t f o r a ape-*/
c i f i e d week. */
This request produces a usage repor t f o r a spa-*/
c i f i e d monty . */
This request producee a usage r e p o r t f o r a spa-*/
c i f i e d semester *I ..

/ *
/* There a r e seve ra l g loba l va r i ab les used by t h e r e s t of t h e program. *i
/* They include: */
,& f /
j ; aud i t f i l e is t h e f i l e containing t h e l ibrar ian-generated aud i t , and */
/* r r r o r 2 e g con ta ins t h e l ibrar ian-generated e r r o r messages. "/

*/ :: s t a r t i n g da te contains t h e tiroe-dependent aud i t f i l e nsme, Every * /
/* time an G d i t i s generated, s t a r t i n g da te is compared t o t h e system * /

date. I f they do no match, a new a u a t t r a i l i a c r e a t e d and */ $: star t ing-date i s updated. */
/* */
/* days i n se rv ice contains t h e number of days t h a t t h e se rve r has been */
/* running-without shutdown o r oraah. Special th ings muat occur on t h e */ 4: ze ros th day - t h e system must be r e s t a r t e d . */

I
;; number of system e r r o r s contains t h e number of non-fatal system * /

errors-thZt havficourrsd s ince system s t a r t . I f t h i s number */ (t exceeds MAX-ERRORS, t h e system i s terminated. */
*/

i n t number of system e r ro ra ;
i n t days i i i sijrvios-r;
FILE **audi€ f i l e *error-log;
cha r a t a r t i n g $ te l l11 ;
char a u d i t fiTe-name t2011
i n t c h i l h ~ i d - 0;

/* Pmcedure "open-error-log" */
/* */
/* This procedure opens the error log file ("apslib.errors"). If an error */
/* during this procedure, we have one valid option - terminate the program. */
/* Thie should be the first procedure called by this program.
,I 3

open-error-log (t
(

if ((error-log-fopen (BRRORLOGNM, "w"))-NULL)
1

printf("\nPATAL ERROR: Unable to writs error log file.\n");
exit (1) ;

..
/* */
/* Procsdure "system-error"
,* */ *,
j* Thie prooedure, given a pointer to an error message, printa the time and *>
/* the error message in the error log file and increments the number of */
/* overall system errors. /

*/

system error(err0r measage)
cha? *error-meszage;

I
time t time of error;
ohar-error-Zea'iiage-time 1211 ;

time(6time of error);
strncpy (eri;or-mssage time,ctime (&time-of-error) ,201 :
error messaqe-time[20T-'\O':

f'flush(error Togjr
- - - - -

numbsr of syztem errors++;
if (n ~ e ~ - o f - a y ~ t e m _ s r r e r s - ~ - E ~ ~ o R S) exit (1) ;

f

..
/*
(: Procedure "initialize-software-list"

*/
*/ - ,

I " - 1
/* Thie procedure initiali5se all MAX PACKBGES software list entries. The */
/* software package name is sat to nuT1, the total copi% for that package */
/* is set to zero, and the copies in use for the package is set to zero.
/* :(
i* Software li%3t[Ol always is set to contain "AUtoMenun, the equivalent of *>
/* a lab PC-in an idle state. */

*/

initialize-software-list 0

int counter;
for (counter-0; counteriMAX-PACKAGES; counter++)

' * (softxcare list[countar] .8oftwareqackage)-*\Or;
software list[countsr].total copies-0;
a~ftw~e~listliatcounter].copie~~in~uee-0;

t

..
/* */
/* Procedure "initialize-client-list" */
/* * /
/* This pr~oedure Pnitializes all MAX CLI6NTS client list entries. The node */
/* addxess for each client list is sef to 000.000.00'6.000, and the software * /
/* in use is set to software-listto] ("AutoMenu"). */

*/ ..

initialize-client-list 0
i

int counter;
for (counter-0; counteriMAXiMAXCLIENTs; counter++)

I

strcpy Iclient-list [counter] .node-address, "000.000.000.COO") :
9trcpy (client list [counter] .softwaregackage, " " I ;
client-1istlci;untarI .softwars in-use- &software-list [Ol; , -

/* This function, given a package name and an addition flag, returns an
/* integer corresponding to its location in software list. If the parkage
I* can not be found, and the addition flag is TRUS, Zn attempt is made to
/* add th8 package name into the software list. If addition is attempted,
/* but all array elemsnts are in uas, a -T is returned (indicating that the
/* the client-PC will remain idle), and an error log is generated. ,*

int find aoftwareqackage(pa0kage-name,addgackage)
char-*package nam;
in t addpck%ge;

I
int software location-0;
int software-found-FALSE;
while ((aoftZme-locaCion<numberCof~ackages) & & fsoftmre-found--FALSE)) '

if (strcmp(software Ilst [software locationj .
s o f t w a r ~ k a g e , p a & x g e name)!-07 software-location++;
else so twara-found-TRUE?

t

software found-TRUE.
number o? ackages+b
strapy7so&mre listisoftrrare-locafionl . eoftwarepckags,

package iiame) ;
software list[?oftware location].total copies-0;
softw~~list~softwars~location~.copie~in~use-0;

)

if ((software found-FALSE) & & (addjackage-TRUE))
system-e'iror("software-list array limit reached.") ;

return (aoftmre-location) ;
1

int findjackage in-usageliat (package-name,addgackage)
char *packaglj name;
int addpckxge;

1

int software location-0:
int software-found-FALSE;
while ((softZare location<in usage number-ofpckages)

&6 (softw&e-found-~~S~))-
t

if (strcmp(usage list[softxare location].
softwareflckage~package nam)T-0) eoftwme-location++:
else so ware-found-ZRUE?

1

in usageInumber ofgackages++;
atzcpy (usage li~tfsoftlwre~locbttionl .software.

mckaze name) ;
package,

usage l'lstls~ffware location1 .copies-0;
usage-liet[software~locationl.concurrent-0;
usaoe-listrscftware~10c~tionl .checkad-0s

i f ((software-found-FALSE)) sof trare locatiorh- -1;
if ((software found--FALSE1 66 (add package-TRUE) 1

system-error ("software-list array limit reached.") ;

return (software-lacation) ;
1
...

/* */
/* Function " find-node address" */
/ * */
/* This function, given a node addreas and an addition flaq, returns an */
/* integer corresponding to its location in software list. If the node */
/* can not ba found, and the addition flaq is ZRUE, Zn attempt is made to * /
/* add the node address into the client lrst. If addition is attempted, */
/* but all array elements are in use, a--1 i s returned (indicating that the */
/* client-PC will remsin idle), and an error log is generated. */

*/

int find ncde address (node-address, add-node)
ch&*nodf addrerrs;
int add-n%a;

int node location-0;
int nodeIfound-FALSE;

while ((node-location<number-of-clients) &6 (node-found--FALSE))

{
if (straap(c1ient listlnode location1 .node-address,

node addreas)T-0) node-Tocation++;
else nod;-found-TRUE;

)

if ((node found--FALSE) 66 (number-of-clients<WLXWLXCLTENTS) 1
if (Zddnode--TRUE)

node found-TRUE>
numb% of clients++;
strcpyTclient list[node location] .node addrssa node address);
strcpy (clientliat [node-location] . soft~regacka~e, fDLE MACEINE) ;
client list [ncde locatiZn1 .software-in-use- 6aoftwara-list I01 ;
softvaTeelist [o]Tcopies-in-use++;

1

if ((node found=-FALSE)) node location- -1;
if ((node-found--FALSE) $6. (axd node-TXUE))

ayate%-error("o1ient-llst aFray limit reachad.");

return (node-location) ;
1

...
/* */
/* Function "read-softuare-configuration"
,* */

* I

/* This procedure attempts to read in the software configuration file * ;
/* ("LICENSE DB") and set the maximum number of usable aopies for each */
/* software +&cage. In the event that the file is not present, or the file */
/* is corrupt, a system error measage is flaggad and the function is */
/* terminated with a return value of 1. If the file is successfully read, */
/* 0 is Eeturned.
,& :<
int read-aoftmre-configuration 0
t

FILE *configuration file;
int total copies,Sxit condition, elements-read, software location;
char 1ong_fiackage~name~8O],80ftwara~ckage116],audit~d~scription[601;

syatem error("L1CENSE-DB is not present. Unlimited usage granted.");
retum71) ;

elements read-0;
while (!%of (configuration-file))

I

elemnts-read-facanf (configuration file "%Zd%s",
&total copies, longga&age:name) ;

if (elements-read-F)
I

stm~y~softnwe~ckage,longgackage~nan,l5~;
eoftwaregackage (151-' \O' ;
sprintf(audit description,"000.000.000.000 $-I58 53dn,
softaarejaokZge total copies) .
generate audit ("5~2-MAX" ,auditIdasoription) ;
softarare~locotion-

find softraregackage(softwaregackage,TRUE);
if (aoftarare iocrtionl- -1)

software~Tist[eoftware~laoation].total~ccpies-total~copis.;
1

{
system errer("Unab1e to read LICENSE-DB configuration.");
return71) ;

f
fcloae(configuration-file);
return (0) ;

1

..
/* */
/* Funotion " r s w r i t a o f t w u e - c o n f i g u r a t i o n "
l* :(
i* If the system adminisitrator opts to take the safe approach to updating *>
/* the LICENSE DB contigyration file via SET MAX this procedure is celled */
/* to rewrite Ehs new software conflouration-to kiak. If the file can not */
/* be rewritten we return a value of-one, and if it can, are return a value */
/* zero. If the £unction fails, we proceed onward, hoping that the */
/* administrator does not issue a RISSTART comaand (which will force a * /
/* re-reading of the file). ,- */

t,

...

int rewrite-software-configucation()

FILE *configuration-file;
int counter;

if ((configuration-file-fopsn f"temp.lab", "w"))--NULL)
(

aystm error("L1CENSE-DB configuration can not be rewritten.");
returnTl) ;

for (counter-O;counter<number of$ackagear;ceunter+C)
fprintf(c0nfiguration fiIs Ib2d %a\n"

software list~counker~ .total booies.
software-list icountsri .softwX~e~~ack.aae) ;

iclose(configuration file) i A -
if (rename (" ~ ~ ~ ~ . ~ ~ ~ ~ O " , L I C E N S E ~ D B) - - -1)

1
system errorf"L1CENSE-DB configuration can not be rewritten.");
returnT1) ;

..
/* */
/* Function "regstr" */
/* */
/* Passed the addresses of a node address and a package name this routine */
/* attempts to register that node-for use of the requesfed pkogram. If the */
/* node is still clinging to another package, that package is released, and */
/* its current usage is decreased. If the node is new, or the software is '/
/* not present in the "LICENSE DB" file, there is the possibility that * /
/* either client list or softw%re list is filled to capacity. In that case, */
/* a two is retu'ined to the calliiig routine. If the requested package has */
/* the maximum amount of copies in use, one is returned. If the requested */
/* package is already registered, a negative one is returned. If the */
/* package can ka registered, the package's usage is incremented, and a zero */
/* is returned. */

*/

int regatr (node addresa,package-name, caller, oopies-in-use)
char *node zddress;
char *~ackXae name:
int cilleri -
int *copies-in-use1

I
int software location-0:
int node locztion-0;
char a~dit~deacriptien [a01 ;

struct SOFTWARE-BLOCK *software-to check-in;
struct SOFTWARE-BLOCK *software-to~check-out)

software location-find softwaregackagelpackage-name,TRUE) ;
if (aoftsare-location-=-I) return (2) ;

node location-find node addresli (node-addreas,ZliUE):
if (iiode-location-=-1) Feturn (2) ;

software to check out = ssoftwsre list[=oftware location];
software~to~check~in - cliant~liZt[node~loaatiinl.aoftware~in~use;

if ((software list [software location] .total copies) >0)
if (softiiare list[acftkra 1or-ationI.t~tal copies --

softrar<list[softrare-location] .cepiaZ in use) return(1);
if (srrarp(client~list[node-lo~tionl.aoftmes-p~ck~ge, " ") I- 0)
f

if (caller - CBBCK-OUT I I caller -- CBECK-IN)
I

sprintf (audit description, "6-15s %-156"r
node ~ddress,software to check in->softwaregackage);

gsnarate-aud~t("~~~-~~",auditt~escri~tion);

(software to check out->copies in use)++;
"copies iZ u b - sSftware to cIiecli out->copies in use;
strcovtaliGt list rnode licafionl .?oftware DacEao;.

else.return(-1);
return (0);

f

...

/* */
/* Funotion "set-max"
I +

* /
* I

>* Given a software info block, and a package addition flag, this routine * j
/* reset6 the site license raaximum for the package. If the packags is new, */
I* and the package array is filled, a negative one is returned. If the site */
/* license maximum is successfully reset, a zero is returned, and if the */
/* present number of copies in use for tha package exwed the new maximum, */
/+ a ene is returned and tbe package information is left unchanged. */

* /

int set max(software info,add ackage)
striict SOFTWARE BLOCK *sof;ware-info:
int addgackage7

(

int software-location,library-reply;

software-location-£ ind_softwarsjackage (software info->softwarejackage,
add ackzge);

if (software-location--1) library-reply- -$
else

1
library reply-0;
if ((soitware list[#oftware 1ocationl.copies in use<-

software-info->total cZpi0.u) (I (softwse info->total-copies-0))
softwar<list[softwaEe location].total coFies-

software~info->total-copissi
else library-reply-1;

return (library-reply) ;
}

..
/* */
/* aunction "remove-node" */
/* */
/* In the event that a machine is powered-dom while still technically */
/* possessing a copy of a given software package, the library administrator */
/* can issue a remove node commnd to check out the software aaeociatsd with */
/* a given node. The-software data associated with that node (aka, the */
/+ number of copies in use) is updated, and the node is completely removed */
/* from the client list. If the node is successfully removed from the clisnt*/
/* list, a zero is returned. If the specified node does not exist, a one is * /
/* returned. * /

* / ..

int remOM node (node address)
char *iiode-address;

(
int ipl,ipZ,ip3,ipP;
int node location;
int counfer,library reply;
char audit-description [40] ;

secanf (node address, "%d.%d.%d. %d", hipl, bip2, hip), sip4) ;
sprintf(node-address,"%03d.%03d.%03d.%O3d",ipl, ipZ,ip3,ip4);
node 1ocatioGfind node address (node-address, FALSZ) ;
if (iiode-locationl= -1)-
1

if (atrcmp(c1ient-list [node-location] .aoftwarejackage, " " t I - 0)
(

(client list [node location] .software in use->copies-in-use)--;
sprintT(audit dezcription,"%-15s %-i5sW,

node Zdd.resa,cliwt list [node location] . softwarejackage) ;
generate-audit ("CHECK-IN", *Edit-description) i

)
for (counter-node location: (countercnumbar of clients-1) ; counter++)

client lisf[counter+o]-client-liat[ZoGter+l];
number of clikts--;
libmar?-riiply-0;

)
else library reply-1;
return (librzry-reply) ;

1

/ * Fmction "restart-system" */

/* */
/* sometimes the library administrator needa to completely restart the * /
/* server (as in the case of a power outage taking dawn a bulk of client */
/* machines. This routine initializes the software list, the client list, */
/* and returns the result of reading the software configuration (a zero */
I* indicates a success, and a one indicates a read error. * /
/* */
..

int restart-system0

(
initialize software list():
initialize-client list 0 ;
return(rsa3-softwzre-conriguration 0) ;

1

..
I* */ /* function "read-library-image" */
I* * /
/* In the event of a system crash, we can try to re-read cur own audit file */
/* to rebuild out internal database. If the audit file is there, and we are */
/* able to read it (and execute its contents), a FALSE is returned by this */
/* function (indicating that we do not need to restart the system f m m * /
/* scratch. If the audit file isn't there, or it is wrmpted, or the last */
/* entry in the audit file is a SHUTUOWN, M need to return a TRUE (to force */
(3 system re-initialization) . :!

int read-library-image ()

(
char audit entry1801;
char audit-time[9],client comand[91 ,client-addre88tl61,

packa;je_name [l6] ,nod; address [l6] ;
int total copies copies 'l, use,library-reply;
struct SOFT+?- B ~ C K eofEwaFe info:
int system-resfart; -
initialize software list();
initialize-client list 0 ;
a stem resfart-F&E;
&la ?lfeof(audit-file))

i
fscanf (audit fils "%ald",package name,&copies in uae);
library-repl~-reg:tr(client addrzse ackage-~G~~READ,

hcopieii_in-use;?

fsoanf(audit file "%s$d",package name,btotal copies) i
strcpy(softlriire &fo ,soft~rega~kage,packag~-name) ;
software info.tZta1 copies-total copies;
l i b r a r y ~ ~ e p l y - s s t ~ ~ x ~ h s o i t w a ~ ~ ~ n f o , T R i

I

fs-f (audit-file, "%.",node-addrass) ;

library-reply-remow-node(node-address);
1

if (etrcmp (client-command, "srtUTD0WNn)--0)
1

initialize software list (1 ;
Initialize~clisnt-lyst O ;

I
if (strcmp (client connaand, "mECK IN")--0)

facanf (audit-file,"%a",~ackfiqe name) ;
if (stscmp (client~command, "&ACKA~B~)--O)

fscanf(audit file,"%s",package name);
if (strcmp(client-command,"aElODE"1L=O)

facanf (audiffile, "&",node-address) ;
1

if (strcmp(c1isnt command,"SBUTDOUN")-0) system-restart-TRUE;
return (system-resFart) ;

I

..
/* * /
/* Procedure "save-library-image"
,* :<

I ^

/* When a day change is detected, and a new audit file has been opened, we * j
/* need to save the current status of the librarian. The current state is */
/* defined by tba current site requirements and the nodas/packages in use. */
/* These are all output to the audit file; in the event of a librarian */
/* failure, its current state oan be regenerated for the day by re-reading */
/* its own audit trail - even if "LICENSE-DB" was destroyed. */
/* /

save-library-image (1
1

int counter;
tima t library image time;
char-current-the [$IT

time(h1ibrary image time);
strncpy (wrrelit tim:, (otime(h1ibrary-image-time)+11) '8) ;
current-tim [8]=' \0 ;

for (counter-0;~ounteZinumber~of ackages;countar++)
fprintf (audit file "$-8s a - 5 s a-15s %-15s +3d\nm,

currGt tik, "SET-MAX", "000.000.000.000",
softwar=-list [counter] . softwarezackage,
software-list[counterl.total-coprew);

for (counter-0;oounteZinumbsr of cliente;counter++)
rprintf(audit file "%-8s'-%-TOa a-15s %-I55 63d\n",

currGt t i L "CEKCX OUT"
client Tiet[bounterf.nod; address,
client-1istfcounterI.soft~are in use->softwaregackage,
client~list[counter].software~in~use->copie~Bin~use~;

1

...

/* * /
/* Procedure "opn-audit-file"
/* :$
/* This procedure opens the audit file. The audit file name is in the * ;
/* format day mon dd.audit. Likewise starting date is set to the format */
/* day mon ddT 1f. an error is detcctkd while attempting to open the audit */

/* file, an error message is generatad, and the server dies. * /
*/

<
time t starting audit time;
int Xudit file -resanf;
int syateiii-redrt ;
number of system errors-0;
audit Ziliigreseiit-muE;
eysteiii restaft-FALSE;
time(hZtartin audit time).
strncpy(start?iig datz ct~rne(&starting audit time)+O 10);
atrncpy (audit fiTe name:ctime (hwtartlng~audittime) +4 : 7) ;
audit file na%[ll;'\O' ;
starting-dfite [lo]-'\Or;

strncat (audit file name, ctims (&starting-audit-timet ,3) ;
strat (audit rile iiame, ".audit9') ;
audit file nijoe[3T-' ';
audit-filGame[6]-'-';
if (aiidit-File-nams[?l--' ') audit-file-namef41-'0';

if ((audit-file-fopen (audit-file-name, "r")) I-NULL)
(

if (days-in-service--0)

system reatart-read-library-im~ge();
fclose7audit-file) ;

1
else system-error("Exiating audit file detected. Ignored");

I
else audit filegresent-FALSE;
if ((audit-fils-fopsntaudit file name,"an)) --NULL)

ayste% error ("unable tZ ope5 audit file. ") ;
if ((audit-Zilegresent-F~9E) hh (days in service--0)) system-restart-TRUE;
if (system rsstart--TRUE) restart-systemT);-
days-m-sa=ice++;

f

void get nextday(dat8)
struct D m B *&ate;

int dd, mm, wday;

dd - date->&y:
rrm - date->mn;
wday - data->Yday;
dd ++;
if (dd > no-of-daysfma-11)
i

wday ++;
if (wday - 7)
wday - 0;

date-zmday - dd;
date->man - mm;
date->w&y - why;

)

void get filename ffilenams, date)
char *fiTename;
s t ~ c t DATE *date;

int dd, mm, wday;

dd - date->May;
mo - date->man;
wday - date-zwday;
strcpy (filename, month[mnrll) ;
filename 131 - ' ' ;
filenameL4i - 'TO';
rtrcat (filename, day [dd-111;
filenamelsl - ' ' 8
filenaroe[?I - 'TO';
strcat (filename weekday lwdayl) ;
filenamstlol - '\o';

int oneday report (filsnarm)
char *filsiiame;
(
FILE *report file;
char package-name(161;
int elements-read, total-copies, concurrent, checked, tima-used;
int software~location;

while (Ifeof (report file)) (
elements-read-lecanf(report file "8s ad ad td %d\n", package name,

&total-cooiks. &concurrent. &checked. &fime used) :
if (elements read-5) t - *

-
pzckage namell51-'\a':
softwaS location-

-£ ind ackage in usagelist (package-name, TRUE) ;
if (software Zcationf- 91) f

usage lisi[software 1ocationl.copiea - total copies;
if (c¤t > usXge list[aoftware 1ooatioiiI.concurr~t)

naaoa lietleoftwac~locationl.con~urrent - concurrent:
if (chgcEed >'usage-li~t [softwaL location] .checked)

usage listlaoftware location].Zhecked - checked;
if (tineeused > usage Tist[eoftware location] .time used)

u s a g a l i s t [s o f t w a r ~ l o o a t i o n] .tGe-used - time-Esed;
I

) else if (elements readl-EOF) (
system-error("unab1e to read LICENSE-DB configuration.");
return?l) ;

1
1
fclosefreport-file);
return (0) ;

f

get-report (type, date)
int type;
stmct DATE *date;
f
char filename I181 ;
int i;

switch (type)

case WEEKLY:
for (i - 0; i < 7 ; i++)

Jet filen;uoeIfilename, date);
onshy-report (filename) ;
7et_nsxtday(date):

1
break;

case MONTBLY:
for (i - 0; i < no-~f~~ayaIdate->mon -11; i++)
c
get-filename (filename, date) ;
oneday-report (filename) ;
get-naxtday(date);

1

case sa&srw+l:
case SBMESTER+S :
for (i - 0; i c 120; i++)

get filename(filsname, date];
onshy report (filename) ;
get-nextdayfdate):

\
break;

case SEMESTW+Z :
for (i - 0; i < 100; i++)

get filename (filaname, date);
meady report (f ilenarne) ;
get _nextday (date) ;

break;
1

)

..
I* */
/* Procedure "generate-audit"
,* :$, .-
/* This procedure, given a node number and an action string, places an audit */
/* item in the audit file. If Ole current date is no longer valid (we have */
I* been ~nning for more than a day), the current date is updated, the */
/+ output file is closed, and a new output file is generated. '*

*/ * /
/* The format of the audit file typically is as follows: *i
/* (time) (action) (node) (action parametere) /* -------- -------- --------------- --------------------------------- * /

* /
/* 00:00:00 XTION 000.000.000.000 */
/* */
/* Variations do exist, hexsver.
,& :(

generate audittaudit action audit description)
ohsr %uditactioii, *audik-desc~iption;

t

time t present audit time:
&rcurrent-t3ma [9]~present-date [lll ;

time(&preeent-audit-time) :
strncpy fpreaent date, ctime(hpre8mt audit time) 10) '
strncpy (current-time, (ctims (hpresent~audit~timtime) ill) : 8) ;
present date rloT-'\O' ;

fcloee(audit file):
ii (childgiZ 1- 0) wait 0 ;

if ((childgid - fork0) -- 0)
exec1 ("gtan report", audit-f ile-name, 0) ;

open audit f iTe () ;
saveIlibrafy-image (1 ;

fprintf(audit-file,"%-8s %-LO8 %s\n",current time audit action,
audi€-deabripti~n> ;

f flush (audit-f ile) ;
)

.

/* */
/* Funotion "get-client-address"
,*

*/
* I

j* This function returns a sixteen character internet nods address given a *;
/* client SVCXPRT tranap pointer. m e node-address is in -the f o m t of */
/. "000.000.000.000\0". */

* / ..

get-client address(transp,node-address)
registzr SvCwRT *tranep;
char *node-address; ,
char internet addreas141 ;
bcapy(&transp=>xp-raddr.sin addr, internet address,4);
sprintf (node-address,"103u.i03u .%03u .%03uw,

(internet addrssrs 101 & Dxff) ,
(internetxaddressll] h Oxff),
(internet addrees[ZI & Oxff),
(internatIaddress 131 h Oxff)):

)

..

/* * /
/* Function "get-client-arguments" */
I* /
/* This function, given a SVCWRT transp pointer, an xdrproc t pointer to */
/* the xdr handling routine, and a pointer to the return argiiments, attempts */
/* an avc-getargs. If the get fails, an error is generated and logged. */

*/ ...

int get client arguments (transp, xdr-routine, returngarameters)
register #CXPRT *transp;
xdrproc t xdr routine;
char *r7iturn_fjarameters;

1
system-error("Unab1e to get RPC arguments.");
return (RPC--OR) ;

1

return (0) i
1

...
/* */
/* Function "sendclient-reply" * /
/* */
/* This function, given an SVCXPRT transp pointer, an xdrproc t pointer to */
/* the xdr handling routine, and a pointer to the return arguiients, attempts */
/* a svc sendreply. In the event that the sendreply can nat oocur, an error */
(1 messaFe is generated and logged. :<
send client reply (transp,xdr routine, library-reply)

-regiatZr S W W R T *trans&-
r h r o c t xdr routine:
int' *liEracY-Zepry~

(
if (svc-sendreply(transp,xdr_routine,library-rsply)--O~

(
system error("Unab1e to send RPC rsply.")~
return7

.

/* * /
/* Proceduiure "rpc-serrice" */
/* /
/ * This is the heart of the A e S librarian. Once svc Rln receives an RPC */
/* request, all essential information is passed to tfiis routine for further */
I* processing. We first g ~ t the client addreas of the rpc-originator, and */
/* then one huge case statament to handle the various RPC procedure numbers. */
/* There are three ways to exit this routine: via an error while getting RPC */
/* arguments, via the SBUTDOW cornnand (which exits the program ~mplately), */
/* and via normal ternination of an ReC procedure. Errors during the sending*/
/* of client repliea are not handled specially; since they are the last */
/* reutine called before returning to eve-an, ws merely record their rasult * /
/* and continue. */

/

rpa_service (rqscp, cranspl
register strvct svc req *rqstp;
~cgister SVCXPRT 'tFansp;

i
struct sockaddr in client addr;
int copies-in iise,lihrary-raply,counter;
int node looaEion+,aoftwam-location-ci
int ipl,ipZ,ip3,ip4:

char client node 1161 :
char nods aadress[161,package-namel161;
char audiE-description 14 01 1
char *node data;

stact tm *server time;
atruct DATE: repofi date;
stact SOFTWARPJ-BL'~CK software-info;

get client address (tranap,client-node) ;
s w i m (rqstp-2rqgroc)

case SHUTDOWN :
I
if (get-client arguments (tranap, xdr void,NULL) --ReC-ERRCR) return;
generate a u d i t 7 " ~ R U T ~ ~ ' , c l i e n t - n o a s) ;
fcloae (azdit file)
fcloae (error-lo=> t i

send ciient reply (transp, xdr-int, 61ibrary-reply) ;
svc. ZsstroyTtransp) ;
exiE(0);

I

case RESTART:
f

if (get client axguments (transp, xdr void, NULL) --WC-ERROR) return;
generat= auditT"RESTRRT",client nod:) ;
library ieply-restart system0;-
send cli-t-reply(traiisp,xdr_int,hl~rary-reply);
retuk;

I

case CHECK-IN :

if (get client arguments (transp,xdr void, NULL) -WC ERROR) return;
IibraryIreply-iagstr(c1ient node,ID& MAcHINE,CHECK~IN,

kc011ieZ in use) ;-

sprintf(audit description,"%-15s %-158 %3d",
client no& IDLE MACRIM3 copies in use);

generateaEdit (k ~ ~ ~ & - ~ ~ ~ " , a;dit-de;cr~~tion) :

send client-reply (transp, xdr-int, hlibrary-reply) 7
retuin;

I

case CILGCK-OUT:

' if (get client argumente(transp,x&-stringl6,package-namt--
WC-=OR)-return:

libraryreplyregstr(c1isnt ncde,package~nema,C~CK-OUT, - 6copieZ in use); -

eprintf(audit deaoription,"%~l5Z b-15s %3d",
clienF node.packaus name,oopies in use);

if (library-refily-0i - - - - -
generate audit("CBECK OUT" audit description);

send-client-%ply (transp,?&-iAt, 6liErary-reply) ;
return;

1

case REMOVE:

if (get client arguments (tranap, xdr_stringl6,node-addresal--
WC-ERROR) -re turn ;

library-reply-remove-node (node addrese) ;
sprintflaudit description,"%-1% 6-15s",client-node,node-address);
if (library rzply-0)

generat=-audit ("REMOVE", audit-description) ;

send client-reply(trmsp,x&-int,hlibrary-reply);
retuEn;

1

case SET-MAX:
t

if (get client argumnts(transp,xdc-software-block,&software-info)
:- RPC FmOR) return;

sprintf(audit-description,"%-15s %-15s 83dV,client node,
soft~afe~info.software~a~kage,softvare~inf~.total~copias);

library reply-sat max(6software-info,rr\UE);
if (lib%az-y-reply=-0) '

library reply-remits software configuration();
generat<-audit ("SXT-W, auditzdescription) ;

send-client-reply(transp,xdr-int,&libraryeply);
return:

1

case QNODE:

if (get client-argumente(transp,xdr-stringl6,node-addrea8)--
RPC-ERROR) return:

= s c a n t (-node address, "%d.%d.ld.%d", sipl.6ip2.sip3.6ip41;
sprintf (node-address, "%03d.303d.303d.\03d", ipl, ip2, ip3, ip41 ;
sprintf (audif description, "%-15s 8-15s",client-node, node-addrsasl ;
generate audif("QNOD~", audit description) ;
node locZtion-find node-ad&=sa(node-addrea~,FALSE):
if (:ode location 12-1) strcpy (package name,

clieiit listfnode locationj .softw& in use->softwarepcXage);
else etrcpji(package iiame, "Node not in uze .=) ;
send-client-reply (tEanap,xdr_stringl6,package-name) ;
return;

QPACKAGB :

if (get client-argumente(transp,xdr-stringl6,node-addrsas)--
vv"--DnE.l ,...+,..-,. .
= - b " .-.*.-, --.-+..,

= s c a n t (-node address, "%d.%d.ld.%d", sipl.6ip2.sip3.6ip41;
sprintf (node-address, "%03d.303d.303d.\03d", ipl, ip2, ip3, ip4) ;
sorintf(audif description."%-15s 8-15s".client nodeonode addrsasl;
g;\nsrate audif("QN0~?3",audit description); - -
node locZtion-find node ad&=sa(node addreaa,FALSE);
if (:ode location 12-1) ztrcpy (packag< name,

clieiit listfnode locationl .softw& in use->software aackaue);

if (get client ~guments(trassp,xdr_stringl6,paokage-name)--
WC-ERROR)-return;

sprintffaudit description,"%-156)r-15s",client node,
packs+ namej ;

-
generate audit ("QPACKAGE", audit-description) ;
softwarclocation-find acftwaz-egackagetpackage-nama,FALSE);
if (softkre-locationi=-l)

I

software info .tTtal copies- - 4 -

saftware lis~lsoftware-locationl.tota1-copies;
software info.c~pies in use-

n~ftwar~istTsoitwacs_locati.n].copies-in-use;

else
t

strcpy(software info.softwaregackage,"Not in use.");
software iofo.t';ital wpies-0;
softwarezinfo .copie?-in-use-0;

case QUSWS:

if (get-client-arguments (transp, xdr-void,NULL) -WC-ERRURt return;

generate audit("~USERS",client node);
software-info.softwme packageT01-'\0';
software-info.tota1 co=ies-n;mbsr of clients;
software-info.copiei in use-soft6re-list [OI .copies-in use;
send clikt-reply (tr&sF,x&-sottwarz-block, &software-Info) ;
retuzn;

t

case QTIblE: ,
if (get client argumsnta (transp, xdr-void, NULL) --RPC-ERROR) return;
time(&Grrcnt fime);
generate audif("QTIh3E" client node);
server time-localtime (;curran€ time);
send-cTient-reply (tramp, xdz-Gta, serrar-time) ;
return;

1

case QNODES:
(
if (get clisnt argumgnts(transp & void,NULL)--RPC-ERROR) zeturn;
generatij audit?QNODESU client Agde~;
node datz-clieint liat [o! .node Iiddress;
send3lient-repl?(transp, xdr-iiode-array, &node-data) ;
return;

1

case QLICBNSE:
(
if (get client arguments (transp, xdr void, NULL) -RPC-ERROR) return;
generatij auditT"QLICENSE",client no&);
node dat-software liat [O] .softw?jre~ackaga;
send-client-reply (fransp, xd+qackage-array, &node-data) ;
retuzn;

1

case DAILY:

(int i;
if (get client-arguments (tranap, x&-mydate, hreport-date) --RPC-ERROR)

rettirn;
get-report (DAILY, &report-data) ;

node data-usage list[OJ .softwaregackage;
send-client-repfy (transp, x&-usage-array, &node-data) ;
retuin;

1

case WEEKLY:
(
int i;
if (get client-arguments (tranrp, xdr-mydate, &report-date) --RPC-ERROR)

retiirn;
get-report (WEEKLY, &report-date) ;

node data-usage list[O] .softwarejackage;
send-client-repfy (transp, xdr_usage-array, hnode-data) ;
retufn;

t
caae MONTRLY:

i
int i;
if (get client-arguments (transp, xdr-mydate, &report-date)-=RPC-ERROR)

retiirn:
get-reportfMONTRLY, &report-date);

node data-usage list[ol .software~ackage;
send-client-repfy ftransp, xdr-usage-array, enode-data) ;
retuzn;

caae BEMESTER+l:
case SKMeSTER+2 :
case SEMESTER+3:

I

int i;
if (get-client-argument~(transp,xdr-mydate,&report-date)--RPC-ERROR)

return;
get-reportlrqatp->reproc, &report-date);

nods datawsage list [O] .softwarsJackage;
sendIclient-raply(transp, xdr-usage-array, &node-data) ;
return;

1
default:

4
avcerr noproc(transp);
return?

1

..
/* */
/* procsdure "main" * /
I* * /
i* This routine o w n s the error log file, onens the audit file, and then */
/* attempts to &ate a tcp cennecfion. I< it fails in oreating the tcp */
/ * connection, the program terminates. It then registers itself as an RPC * /
/* server, and goes into an infinite loop, waiting for RPC responses to * /
/* arrive. * /

main 0

' register SVCXPRT *transpi

open error log 0 ;
open-audit-file () ;
if tTtrana~svctcp-create (RPC-RNYSOCK,BUFSIZ,BUFSIZ))--NULL)

system error ("tlxlabls to create TCP aervsr .") i
exit(4;

if iTsvc-register (transp, (u long) SOPTLIB,
(u-long) SOPTVKRS,
r&-service, IPPROTO-TCP) ,

system srror("Unab1e to register service.");
exit (17;

1

if (fork()) exit (0) 1 /* run a* daemon */
close (0) ;
close (1) ;
close(2);
setpgrpo; / * detach from process group */

s t a t i c char scos id [] - " @ (t) l i c e n s e . c July, 92";
/*
* COMPONENT-NAME: Xll

* Pmgram: XEACE.C

* x Windows/Motif intsrfafacs f o r KLMS managemsnt port ion,

*/

/*---
** lnclude F i l e s
*/
$define fd-set

t i nc lude <errno .h>
?include <sys/typew.h>
(include <sys / s t a t .h>
%include <Xll/X.h>-
?include <Xll/Xlib.h>
t inc luds <Xll/Xatom.h>
dinclude < X l l / I n t r i n s i c
t inc lude <Xll /Shel l .h>
#include <Xll/Core.hz

$include <Xm/Xm.h>
einalude <Xm/Liat .h>
dinclude <Xm/CascadeB.h>
i inc lude <Xm/DialogS .h>
#include <Xm/BulletinB.h>
t inc lude <Xrn/MainW.h>
ilinolude <Xm/MessegeB,h>
t inc lude <Xm/PushB.h>
(inolude <Xm/RouColumn .h>
$include <Xm/SslectioB .h>

/*---
** Global Variables
*/
adsfine MAX-COPIES 200

#define ABOUT
#define JZBLP

#define QUIT
#define DIALOG RgLF
$define DIALOG-CANCEL
ldef ine DIALOG-OK

+define SUCCESS 0
ldrfine WRONGFORMAT 1

XmStringCharSet charset - XmSTRING DEFAULT-CEDRSET;
/*-used to rat up &Strings */

static int no-nodes;
static char Nodes [MAX CLIENTS] 13.51 ;
static ohar ~harNodes~istlMAX CLIBNTSl1301;

static int nogackages ;
static char s m ~ackacre[l61;
atatic char ~Ihr~ackageci~am? [MAX PACKRGESJ 1161 ;
static char CharPackageaList [MAX-PACKAGES1 [20] ;
Xmstring PackagesListIMAX PAcKAGHSI ;
&String PaokagesName [MAXZPACKAFESI ;

etatic char CharLicenseList[MAX PACKAGES] [24];
Xmstring ~icenseListlMnx~~ACXRGflSI;

static ohac CharUeageList [MAX PACKAGES] [lS] ;
Xmstring U ~ ~ ~ ~ L ~ ~ ~ [W U (- P A C K A G ~ S] ;

static ohar CharQNodasLiet[MAX CLIENTS1 1331;
XmString Q N ~ ~ ~ ~ L ~ ~ ~ I M A X _ C L I E N T ~ I ;

char Error [128] ;
char server [I - "apsrisc";
static void DialogAcceptCB (lidget, caddr-t, caddr-t);

int date dissct(str, ddp, mnp, yyp, weekdayp)
c h e *rfr;
int *ddp, *map, *yyp, *vsekdayp;

(
char strlC31;
int temp;

strncpy(str1, atr, 2) ;
.trl[sI - ' \o';
*mmp = atoi (strl);

if (** <- 0 I I *ddp <- 0 I I *YYP <- 0)
return WRONGFOBWXTJ

temp =

return SUCCESS;
t

int month-disect(str, ddp, mmp, yyp, weekdayp)
char *str;
int *ddp, *mp, *yyp, *weekdayp;

char strl L31;
int temp;

*ddp = 1;

stmopy tstrl, *ti?, 2);
strl[3] - '\Or;
*mmp - atoi (strlt ;
str +- 3:
atzncpy(str1, str, 2);
strl[3] - '\Or;
*yyp - atoi (strlf ;

*weakdayp - first-day-crf_month[*mmp-11;
return SUCCESS;

t

/*---
** ReadLocalNodea
** Read in nodes list and their names.
*/
int ReadLocnlNodes 0

' FILE *nodefile;
int i, j;
dhar addlist [l5] , namelist[lO] ;
if ((nodefile - £own (NODHILE, "r")) - NULL) {

printf ("csn't open nodeslist.dat\n");
.~it(l) ;

i - 0 ;
while (facanf(nodefile, "as $s", addlist, namelist) - 2) {

sprintf (Nodesfi], "C-14#\0" addlist) i
sprintf(Cha~NodesLiat [i] , "i-14s 'b-14s\0", addlist, nuoalist) ;

for (j-0; j<i; j*+) I
NedesList(j] - (Xmstring) XmStringCreatsLtcR (

CharNodssList l j l , charset);
~odeeLietli1 - NULL;
return i;

>

/*---
** Getpackages
t* Make a RPC aall to get the list of packages for later display.
* I

int counter, library function, librarian-raault;
char package name [l6T, total-copieesl[3];
char *node-dzta;

library function - QLICINSE;
node daZa-software list [Ol .softwaregackaget
ca1l-m (server, lil6rary function, xdr void,NULL,

for (counter -O;counter<number-o£~aokages ;co~++~
I
aprintf(CharPackageaNme[~eunter], "%s\O",

software 1ist~counterl.softwareqackaga);
sPrintf(CharPa'EkagesList[oountsr], "a-15s %3d\OX,

softtrare list [counter] . softwareJackage,
soft~rare~list~counter].tetal~copiaa);

I
PackagssList[number-of~aokagesl - NULL;

" I
wid DestreyCB (w, client-data, call-data)
Widget W ;
caddr t client data;
addrzt call-&tap

Widyet pp;
switch ((int) clisnt-data)
1
case DESTROYl:

XtDestroyWidgst (w) ;
break;

case DESTROYZ:
pp = XtParent (w) ;
XtDeQtroyWidget (w) ;
XtDeatroyWidget (pp);
break;

void CallRPC (w, client-data, call data)
Widget W; /*- widget id */
caddx t client data; /* data from application */
caddrxt call-d?ita; /* data from wrdget class */

void CallRPC (w, client-data,
Widget W;
caddx t client data; /* dati from application */
caddrxt call-d?ita; /* data from wrdget class */

register int ae: /* arg count
lug altlO1; /* arg list
char magtlSO1;
Widget mrrgD, kid;
Widget Q Nodes Result dialog;
Widget Q-~ioan& ~t's~Tt dialog;
Widget Qzusage-Rxsult-dialog;

int i, counter, library-function, librarian-result:
char package nam I161 ;
char *node&;

struct tm Server time;
struct SOFTW~-ELOCK package-info;

library-function - (int)client-data;
ewitoh (library-function)
I ease QNODE:
cb - (XmSelact ionBoxCal lbackSt~ct *loall data; -
i - 0;
while (I (XmstringCompare(o&>Mlue, Node5Listtil)))

i++;
call~rpc(~ervsr,library~~unction,xdr_stringl6,Nodestil~

xdr atringl6, package-name) i
sprintf(m~g,"~ode Number : %s\nsoFtware Package: %s\n\08',

Nodestil , package-name) 1
ac - 0;
XtSetlug(alIac1, XmNautoUnmanage, FALSE); ac++:
XtSetRrg(alIacJ,XmNmessageString, X m S t r i n g C r ~ a t e L t o R (m ~ ~ g , charaet));
ac++:

" Query " Node - Raault ", al, ac);
XtAddCallback(msrgD, XmNokCallback, DestroyCB, DESTROYl);
XtAddCallback(msgD, XmNhelpCallback, DialogAccsptCB, DIALOG-RELP);
kid - XmSt'lectiOnBox6etChild(msqD, WIALOG CANCEL BUTTON);
break;

case QPACKAGE:
cb - fXmselecti0nBoxCalIbackSt~ct *)call-data;
i - 0;
while (I (xmstringcorapizr. (cb->value, PackagssNamelil))

iu. -. . ,
call-rpc(sarver library function x& stringl6,CharPackaqeaNemelil,

x& softwk=e- bloc^, spackag&ini?o) ;
sprintf (mzg,

"software Package: %s\nCopies Availabls: %Zd\nCopies in Use : %2d\n\O",
package info.software~ackaqe, package-info.tota1-wpiss,
packags~info.copiee-in-use);

ac - 0:

XtSetArg fa1 [acJ, XmNautoUnmanage, FALSE) ; ac++;
X t S e t R r o l a l l a c l , ~ ~ ~ s a ~ e S t r i n q , ~ r n s t r i n g ~ r ~ ~ t e ~ t o ~ (~ ~ g , charset)); - -
ac++;
msgD - XrnCreateMaaaageDialog(w,

" Query Package Result ", al, ac);
XtAddCallback(msgD, XmNokCallback, DeatroyCB, DESTROYl);
XtAddCallback(msgD, XmNhelpCallbaok, DialogAcceptCB, DIALOG EELP);
kid - XmSelectionBoxGetChiId(msgD, X~DIALOG-CANCEL-BUTTON);-
xtUmageChild(kid) ;
XtManageChild (msgD) ;
break;

case CBECK IN:
call-rpc7aarver, library-funotion,x& void,NULL,

xdr int,sllbrarian-result%
sprintf (mag, "~~irarian Result is %d\n\Of', librarian_teeult) ;
ab - 0;
, " : ~ $ % ~ 1 9 " : ~ ~ ~ ,] : ~ N " % : ~ ~ ~ % ? ~ ~ : ~ ~ ~ k g % ~ ~ C e L t o n (mag, charset)
ac++;
msgD - XmCreateMeasageDialog(~(, " Check In Result ", al, ac);
xtAddCallback(magD, XmNokCallback, DeatroyCB, DESTROYl);
xtAddCallback(mngD, XmNhelpCallback, DialogAcoeptCB, DIALOG XELPfi
kid - XmSelectionBcxGetChild(magll, XI~DIALOG-CANCEL-BUTTON~;-
xtUnmanageChild(kid) ;
XtManageChild (msgD) ;
break;

case CHECK OUT:
cb - t&rledio~3oxCallbackSt~ct *)call data: -
i - 0;
while (I (Xmstrinqcompare (cb->value, PackagesName iil)))

i+
call-rpc(berver, library function, xdr stringl6,ChacPackage~Name iil ,

x& int hlibEarian resultT.
sprintf (meq, "~ibrakian Result-is %d\n\0", librarian-result) ;
a & - 0 ; -

-

XtSetArg(al[ac], XmNautoUnmanage, FALSE); ac++;
XtSetArg(al[acl,XmNmessageString, XmStringCreateLtoR(msg, charaet));
ac++;
msgD - XmCreateMessageDialog(v, " Check Out Result ", al,
XtAddCallbaok(megD, XmNokCallback, DestroyCB, DESTROY?);
XtAddCallback(megD, XmNhelpCallback, DialogAcoeptCB, DIALOG
kid - XmSelectionBoxGetChild(msgD, XmDIALOG-CANCEL-BUTTON);
XtUnmanageChild(kid) ;
XtManagaChild (msgD) ;
break;

case QTIME:
call-rpcjserver, library function,x&-void,NULL,

x d r date, &server-th) ;
sprinti (iimsg,

"Currant date is %3s %02d-%OZd-%04d\nCurrent time is %OZd:%02d:%02d.OO\n\O",
weekday [server time. tm-wdayl,
server time. tm-mon+l,
server-time . tm-mday
server-time. tmljreark1900,
aervar-time . tm hour,
servar-time . tm-min
serverItime. tm~secj ;

ac - 0;
XtSetArg(al[ac], XmNautoUnmanage, FALSE); ao++;
XtSetArg(al[ao] ,XmNmensageString, XmStringCreateLtoR(msq, charset)) ;
ac++;
mego - XmcreateMeesageDialog(XWarent(w), " Query Time Result " I

al, ac) ;

XtAddCallback(msgD, XmNokCallback, DestroyCB, DESTROYl);
XtAddCallback(msgD, XmNhelpCallback, DialogAcceptCB, DIALOG XELP);
kid - XmSeleotionBoXGetChiId(m~aD, XmDIALOG CANCEL BUTTON);-
~t~anags6hild (msgD) ;
brsak;

case QUSERS:
call-rpc(server, library function,x&-void,NULL, x&-software-block,

&package-infor;
sprintf (msg,

"Machines Regi~tered:%Jd\nWchines in Use:%3d'mWchines Idle: %3d\n\On,
package info.tota1 copies, paekage-info.total-copias-packag~fo.copies-in-user
packaga~Fnfo.wpie~-in-use);

ac - 0;
XtSetArg(al[ac], XmNautoUnrnanage, FALSE); a?,++;
XtSetArg(al[ac],XrnNmessageString, XmStringCreateLtoR(msgr charset));
ac++;
msgD - XmCreateMesaagsDialog(XtParant(w),'~ Query Uaers Result ",

at .r,. - - r - - , ,
xtAddCallback(msgD, XmNokCallback, DestroyCB, DESTROY1);

xwsnageehild (msgD) ;
break;

cam(, QNODES:
nods data-olient list[O].node addreas;
callIrpc (semer,Tibrary-function, xdr_void,~u~~, xd~node-array,

hnode data) ;
librarian-rzault-0,

for (counter-O;countep<numbsr of clients;counter++)
aprintf (~har~~odse~istTcoUnter], "6-15s %-13s\07',

client list [counter] .node addrees,
client-list [counter] .softtiaregackage) ;

for (counter-0;count~snumber of clients;counter++)
QNodesLiet[counter] - %nSFringcreata~to~ (

Ch;*rQNodeaList[counter], charset);
QNodesList [number-of-clients1 - NULL;
ao - 0;
XtSetArg(al[ac], XmNautoUNaanage, FALSE); ac++;
XtSetArg(al[acl, XrnNlistLabelString, XmStringCreateLtoR(

"Machine Packages", charset)) ;
ac x;
XtSetArg(al[ac], XmNlistItems, QNodeaLiat); ac++;
XtSetRrg(al[ac], XmNlistItemCount, numbar-of-clients); ac++;
XtSetArg (a1 [ac] . XmNvisibleIteWount,

(XtArgVal) number of-olients); ac++;
XtsetArg(al[ac], Xm~list~isible~tem~ount, 16); rc++;

xtSetArq(al[ac], XmNselectionLsbelStrinq, NULL); ao++;
Q-Nodes-Result dialog - XmCreateSelectionDialog (xtparent (w) ,

Query Nodes Result ", al, ac);
XtAddCallback(Q-Nodes Result dialog, XmNokCallback, DestroyCB,

-DE~TROTZ);
XtAddCallbaok(Q-Nodss Result-dialog, XmNhelpCallback, DialogAccsptCB,

-0-6 EELP) ;
kid - X.LselectionBoxGetChilfl~-Nodes-Realt dialog,

X~D~~~;~G_CANCEL-BUTTON) ;
Xtunm8nageChild (kid) ;
kid - XmSelectio~oxGet~ild(Q~Nodss~R~sult~dialog,

XmDIALOG-SELECTION-LABEL) ;
XtUnmanageChild(kid);
kid - XmSelectionBoxGstChild(Q Nodas Result dialog,

&DIAL%-TEXT~;
XtUnmanageChild(kid) ;
XtMmageChildlQ-Nodes-Result-dialog) :

break;

case QLICENSE:
node data-software list [O] .eoftwslte ackags
call~.~rpc(sorvsr,liErary function,x&Pvoid,NhLL,

x&pckage array;bnode-data) 9-
librarian-result-F:

for (counter-O~counter<number ofgackages;counter+-I
sprintf (CharLicsnscList [coiinetsrl, " % - 1 5 s C3d C3d\0",

software list lcounterl .softwars oaskaoe.
software-list icounteri .total cogias, -

for (counter-O~counter<number ofgackages;counter+-I
sprintf (CharLicsnscList [coiinetsrl, " % - 1 5 s C3d C3d\0",

aoftwars list [counter] .software~askagh,
software-list [counter] .total copies
software-list [counter] .copieZ in us:) ;

for (counter-0;counta~number-ofgackages;c~un~er++)
LicenseLietfcounter] - (XmString) XmStringCreateLtoR

CharLicenseList [counter], oharset) ;
LicenseLiat [number-ofqackagas] - NULL;
ac - 0;
XtSetArg(al[ac], XmNautoUnmanage, FALSE); ac++;
XtSetArg(allac], XmNlistLabelString, XmStringCreatsLtoRf

"Packages Total Use", charaet));
ac ++;
XtSetArg(al[ac], XmNlistItems, LicenaaLi.9t); aC++;
XtSetRrg(allac1, XmNlistItemCount, number-ofpckages); aa++;
XtsetArg(al[ac], XmNvisibleItamCount,

(XtArgVal) number OQackages); ac++;
XtSetArg(altac], XmNlistVisibleite~ount, 16) ; ac++;

XtSetArg(al[ac], XmNsalectionLabelString, NULL); ac++;
Q-Licanse-Result-dialog - XmCreateSelectionDialog(XtParent[wJ,

" Query Licanae Rssult ", al, ac);
XtAddCallback(Q-License Result dialog, XmNokCallback, DestroyCB,

DESTROY 17;
XtAddCallback(Q-License-Result dialog, XmNhelpCellback,DialogAcceptCB,

DIALOG &LP) :
kid - ~ m ~ e l e c t i o n ~ o x ~ s t ~ h i l d ? ~ License Result dialog

X~DIALOGICANCEL:BUTTON~ ;
XtUnmanagaChild(kid);
kid - XmSelectiomoxGetChild(Q License Result dialog

%DIALOG-SE~CTTQN -6~) ;
XtUnmanageChild(kid);

- -
kid - XmSelectionBoxGetChild(Q License Result dialog,

%DIALOG-TEXT 1 ;-
XtU~aanageChild(kid) ;
XtManageChild(Q-Liaen~e-Re~ult_dialog);
break;

case RBMOVE:
cb - (X m S e l e ~ t i o n B o ~ C a l l b a c k S t ~ c t *)call-data;
i - 0;
while (I (XmStringCompare (&->value, NodesLisS [il)))

i++;
call-rpc(server,library funotion,xdr-stringl6, Nodeti[i],

xdr int, 6librarT.w result) ;
sprintf (msg7"~ibrarian ResZlt is %d\n",librarian-result) ;
ac - 0;
XtSetRrg(al[ac], XmNautoUnmanage, FALSE); ac++;

"Dat

e-. . ,
msgD - XmiCreateMeseageDialag(w,

" Remove Node Result ", el, act;
xtAddCallback(mgD, XmNokCallback, DestroyCB, DESTROYl) ;
XtAddCallbacktmsgD, XmNhelpCallback, DialogACceptCB, DIALOG EELP);
kid - XmselectionBo~etChild(magD, XmD1ALOG-CANCEL-BUTTON);-
XtUnmanageChild(kid);
XtManageChild (msgD) ;
bre%k;

case SET-=:
I
char *p?

cb - (XmSelect ionBoxCai lbackSt~ct *)call-data:
XmStringcetLtoR(cb->value, charsat, 6p) ;
i - ator (p) t
atropy(package info.softwaregackage, s-mgackage);
package info.tZta1 copies-i;
package-info .copieZ in use-0;
call-rp?i(server,lib'ia~ function,xdr_softwam-block, &package-info,

xdr int, 6librarXan result) ;
sprintf (msg;"Librarian bszlt is 6d\n", librarian-result) ;
ac - 0;
XtSetArg(al[ac], XmNautounmanage, FALSE); acC+;
XtSetArg(al[ac] ,XmNmessageString, XmStringCm3ateLtoR(msg, charset) t
-A. -- . ,
msgD - XmCreat&esaageDialog(XtParent (XtParent (XI),

" Set MAX Result ", al, ac);
XtAddCallbackfmagD, XmNokCallback, DsetmyCB, DESTROYZ);
XtAddCallback(magD, XmNhelpCallback, DialogAcceptCB, DIALOG-HELP);
kid - XmselectiomoxcetChild(m(igD, XmDIALOG-CANCEL-BUTTON);
XtUnmaoeChildlkidl :

break;
)

case DAILY:
I
char *p, titlsI501;
int dd, mm, yy, dateinputok, weekday;
stmot DATE report-date;

cb - (XmSe1ectio~oxCalU,ackst~ct *)calldata;
XmstringGetLtoR(cb->value, charaet, hp);
dateinputok - date diaect(p, hdd, em, &yy, &weekday);
if (dateinputok I--SUCCESS)
(
aprintf (mag,

has not been entered correctly\nPlease use the format of WM-DD-YY\O'
ac - 0;
XtSetArg(al[rrc], XmNautoUnmanage, FALSE); ac++;
XtSetArg (a1 [acl, XmNmseageString, IYmStringCraateLtoR(msgr charset)
ac++;
m#gD - ~reateErrorQialeq(XtPacant(;) ,

Warnrng , al, ac);
XtAddCallback(msgD, XtnNokCallback, DeetroyCB, DESTROYLI;
XtAddCallback(mgD, Whelpcallback, DialagAcceptCB, DIALOG-HELP);
kid - MssagsBoxCetChild(msgD, XmDIALOG-CANCEL-BUTTON);
XtUnmnnageChild(kid);
XtManageChild (msgD) ;
break;

3
report date.raday - dd;
reportI&te.mn - tm;

report date.year - yy;
report-&te.wday - weekday;
aprintt.(title, "Daily Uaags Report (for the day of I s) ", p);

call-qc(server,library function,x&-mydate,&report-date,
x& usage array,&iiode-data);

librarian~resulf -0;

for (counter-O;counter<in usage number of ackages;ocunt%r++)
aprintf(CharUsageList[coiinter]; "a-15; agd %14d 813d %19d\0",

usage list[wuntar].softw~eqaokage,
usage-list[counter],copies,
usaae-1i~tlcounterl.concurrent.

usa;je-listjcounterj .time used/60) ;
for (counter-0;counFeSin usage nu&er-o£qackages;countsr++l

UsaoeListrcounterl-- fxStrina)-xmstrinacraateLte~ (
C h i r ~ s a ~ e ~ i e t [counter] ; charset) ;

Usagelist [in-usage-numbar-ot~ackagea] - mLL;
xtsetAig(al[ac], XmNautoUnmanage, FALSE) ; ac++;
XtSetALg(a1 [acl, XmNlistLabelString, XmStringCreateLtoR(

"Package licenses conourrently checked/day used(in minutes) /dayn, charset)) ;
a0 ++;
XtSetArg(al[ac], XmNlistItema, UsageLiat); acN;
XtSetArg(al[ac] , XmNlistItemCount, in usage-number-of-packages) ; ao++;
XtSetAcg(allac1, XmNvisfbleIteWount,-

(XtArgV?l) in usage number of ackages); ac++;
XtsetArg(al[acl, XmNllstVisihleTtZmCount7 1%; a=++;

XtSetArg(al[acl, XmNselectionLabelString, NULL) ; a=++;
Q-Usage Result dialog - XmCrsateSelectionD1alog(XtParent(w),

title, aT, ac);

XtAddCallback(Q-Usage Result dialog, XmNokCallbaok, DestroyCB,
-D~sTRo~l)r

XtAddCallback(Q-Usage Result-dialog, XmNhelpCallback, DialogAm
-DIALOG HELP) ;

kid - X~~lsctionBoxGetChild?Q Usage Result dialog
~IAL~C-CANCEL-BUTT&) ;

XtUmanageChild(kid);
kid - XmsslactionBoxGetChild(Q Usage Result dialog

K~DIALEG-SELETTION-&L) ;
XtUnmanageChild (kid);
kid - XmSelectionBoxGetChild(Q Usage Result dialog,

Xmo1zir.w TEXTT;
XtUnmanageChild(kid);
XtManageChild(Q-UaageeRe9u1ttdialog);
break:
>

case WEHKLY:

char *p, title[501 ;
int dd, mm, yy, dateinputok, weekday;
struct DATE report-date;

cb - (XmselectionBoxCallbackSt~ot *)call-data;
XmStringOetLtoR(0b->value, charset, hp) ;
dateinputok - date disect (p, &dd, bmm, hyy, &weekday);
if (dateinputok I--SUCCESS)
(
sprintf (msg, -

'.Date has not been entered correctlv\n~lease use the format of MM-DD-YY\On);

warnha ", al, ac);
XtAddCallbaok(rwgD, xm~ok~ailback, DestroyCB, DESTROYl);
XtAddCallback(msgD, XmNholpCallback, DialogAcceptCB, DIALOG-RELP);
kid - XmM%ssageBoxGetChild(megD, XmoIALOG-CANCEL-BUTTON);
XtUnmanaaeChild Ikid);
xt~ana~einild (msgD) ;
break;

1
if (weekday 1- 1)

sprintf (mag
"weekly report requires to enter that Monday\nin the format of MM-DD-YY\O");

ac - 0;
XtsetArg(al[ac], XmNautoUnmanage, FALSE); ao++;
XtSetArg(al[acl,XmmassagsString, XmStringCreateLtoR(rnsg, charset));
=a++;
maaD - XmCreateErrorDialoa(XtParent(wl.

warning ", al, ac);
XtAddCallbaokimsgD, XmNokCallback, DestroyCB, DESTROYII;
XtAddCallhack(msgD, XmNhslpCallback, DialogAcceptCB, DIALOG-HELP);
kid - XmMesaaaeBoxGetChild(maaD. XmDIALM: CANCEL BUTTON);
~ t ~ a n a g e h i l d (msgDt ;
break;

1
report date.mday - dd;
report-date.mon - mm;
report1date.year - yy;
report date.wday - weekday;
sprintf(tit1.. "Daily Usage Report (over the week of %a) ", p);

call-rpc(sennr,library-function,x&-mydate,&raport-date,
x& usage array, &node-data) ;

librarian1resulf-0;

for (counter-O;oounter<in usage number of ackages;counter++)
sprintf(CharusageLiat[oo~ter]~ "(1-155 %& 514d 813d $19d\0",

usage liat[wunter].softw~agackage,
usage-list[counter].copies,
usaaelist fcounterl .concurrent,

us&-liatfcounterl .time ueed/60) ;
for (counter-0;counfercin usage number-of~ackages;oounterf+)

~saae~ietrcounterl-- t d t r i n a f - x m s t r i n a ~ r e a t e ~ t o R (-
~ b k u s a g e ~ i s t [counter] ; charsat) l

UsageList [in-usage-number-of~ackages] - NULL;
XtSetArg(al(ac1, XmNautoUnmanage, FALSE); ac++;
XtSetArg(al[acl, XmNlistLabelString, XmStringCraateLtoR(

"Package licenses conncurraintly cbecked/day uaed(in minutes) /day", chareet)) ;
ac ++;
XtSetArg(al[acl XmNlistItema UaageList); ac++;
XtsetArg(al[aol: ~m~liet~temC&unt, in-usage-n-er-of~ackageaf; ac++;
XtSetArg(altac1, XmNvisibleItemCount,

(XtArgvall in usage-number-of ackages); ac++;
XtSetAxg(al[acl, XmNlistV~siblsItr)mCount, 1%; ac++;

XtSstArg(al[aol, XmNaelectionLlbelstring, NULL); ac++;

Q-Usage Result dialog = ~reateSelectienDialog (XtParent (w) ,
title, aT, ac);

XtAddCallback(Q-Usage Reisult dialog, XmNokCallback, DestroyCB,
-DESTROYllr

XtAddCallback(Q_Usage ~esult-dihlog, XmNhelpCallback, Dia
-DIALOG-EELP) ;

kid - XmsslectionBoxGetChild?Q Usaga Result dialog
K~~IAL&-C?.N~EL-BUTT~N) ;

XtUnmanageChild(kid) ;
kid - Xmselectio~oxGstChild(Q usage Result dialog X ~ I A L ~ C ~ S E L E F T I O N ~ L A B E L) ;
XtUnmanageChild(kid) ;
kid - XmSelsction9oxGetchild(Q Usaga Result dialog,

%DIAL& TBXTT;
XtUnmanageChild(kid);

-
XtManageChild(Q-U_usage-R~)~ult-dia10g);
break;
1

char *p, titls[501;
int dd, mm, yy, dateinputok, weekday;
atruct DATE report-date;

cb - (XmSslect ionBoxCal lbackStNct *)call-data;
XmStringGetLtoR(&->value, charset, hp);
printf("input string is %s\nZ', p);
dateinputok - month-diaect(p, hdd, h m , Cyy, hweskday);
if (dateinputok I - SUCCESS)
I
sprintf (msg

"Date has not been Lntered correctly\nPlaase use the format o f W-YY\O");
ac - 0;
XtSetArg(al[acl, l(mNautoUnmanaga, FALSE): ac++;
XtSetArg (a1 [ac] , XmNmessageString, XmStringCreateLtoR (msg, charset)) ;
ac.++;
mtgD - mreateErrorDialbg(XtParent (w) ,

Warning ", al, ac);
XtAddCallback(msgD, XmNokCallback, DeatroyCB, DESTROYl);
XtAddCallback(msgD, XmNhelpCallback, DialogAcceptCB, DIAL%-EELP);
kid - XmmssagsBoxGetchild(msgD, XmDIALW-CANCEL-BUTTON);
XtUnmanageChild(kid);
XtManagechild (msgD) ;
break;

report date.mday = dd;
report~date.mon - m ;
report date.ysar - yy;
report-date.wday - weekday;
sprintF(title, "Daily Usage Report (over the month of %s) ", p);

call~rpc(server,library~f~nction,xdr_mydate,hreport~date,
xdr usage array'hnode-data);

librarian~ra*ulE-0;

for (counter=O;counter<in usage number of ackages;counter++)
sprintf(~har~aage~ist~co~nter1~ "%-is; 6$6 $146 %13d %19d\0",

uaaoe 1ietloounterl.softwaue ~acXaon.

for (counter=O;counter<in usage number ofqackages;counter++)
usagelist [counter]-= (XmString)-XmstringcreatsLto~ (

chacWsageList[counter], charset);
UsageList lin~usage~number~of~ackages] - NULL;
XtSetArg(al[acI, XmNaUtoUnmdnage, FALSE); a=++;
XtsetArg(al[acl, XmNlistLabelString, XmStringCreateLtoR(

"Package licenses concurrently checked/day used(in minutes) /day", charset)) ;
ac ++:
XtSetArg(al[acl, XmNlistItems, UsageLiat); act).;
XtSetArg(al[ac], XmNlistItemCount, in-usage-number-ofgackoges); ac++;
XtSetArg(al[acl, XmNvioibleItemCount,

(XtArgVal) in usage number of ackayas); acct;
XtSetArg(a1 lac], XmNlistVis3leItZmCoun~ 16;; ac++;

XtSetArg(al[acl, XmNaelectionLabslString, NULL); ac++;
Q-Usage Result dialog - XmCreateSelectionDialog(XtParent(w),

tTtle, aT, ac);

XtAddCallback(Q_Wsage-Result dialog, XmNokCallback, DestroyCB,
 DESTROY^ \ :

;leg, XmNhelpCallback, DialogAcceptCB,

I Result dialog
~NCEL-BUTT~N) ;

kid - ~&election~ox~etChild(Q Usage Raault dialog
%DZALW-SELEFTION~&KL) ;

XtUnmanageChild(kid) ;
kid = XmseleotiomoxGetCbild(Q Usage Result dialog,

%DIAL&-TEm;
XtUnmmageChild(kid) ;
XtMansgeChild(Q-Usage-Result-dialog);
break;

case SEMESTER:
I
char *p, titlef501;
int dd, m, yy, weekday, semester;
struct DATE report-date;

cb = (XmSelectionBoxCal~ackStNct *)call-data;
XmstringGetLtoR(0b->valu*, charset, hp);
semester - atoi(p):
if (semester 1- 1 hh semeater 1- 2 hh semeater 1- 3)

sprintf (msg,
"oatc has not been entered oorrectly\nPleasa enter 1 for Spring, or 2 for Summer, or 3 for Fali\O")i

ac - 0;
XtSetArg(al[ac], XmNautoUnmanage, FALSE); ac++;
XtSetArg(al[ac] , XmNmeeeagsString, XmStringCr%ateLtoR(msg, charaet)) ;
as++;
msgD - XrnCreategrrorDialog(XtPar.nt (w) ,

m m i n g ", al, ac);
XtAddCallback(msgD, XmNokCallback, DestroyCB, DESTROY1) ;
xtAddCallback(msgD, XmNhelpCallback, DialogAcceptCB, DIALOG-EELP);
kid - XmMessayeoxGetChild(magD, XmDSALW-CANCKL-BUTTON);
XtUnmanagechild(kid) ;
XtManagechild (msgD) ;
break;

)

switch (semester) (
case 1:

date disect("O1-15-92", hdd, b m , hyy, &weekday);
spriiitf (title, "Daily Usage Report (over Spring semester) ") ;
break;

case 2:
data disect("05-15-92", sdd, h m , hyy, &weekday);
~~riiitf (title, "Daily Usage Report (over S u m r sections) ") ;
break;

Case 3:
date diseot("09-01-92", &dd, b u m , hyy, &weekday);
spriiitf (title, "Daily Usage R4port (over Fall semester) ") ;

1

report date.mday - dd;
report-data.mon - m;
report-dato.yeac = yyi
reportzdate.wday - weekday;
call-rpc(server,library £unction+aamester,x&-mydate,hreport-date,

xdr usage array, hzode-data) ;
librari<resulf-0:

for (counter-O;counter<in usage number of ackages;countBr++)
sprint£ (CharUsage~iet[co&tsrl; "'b-l5Z iiiSqd 614d 813d %19d\0",

usage list[wunter] .softwars package,

for (counter-O;oo<nf~r<in uaage number-ofgackages;aountert+)
UsageList [countarl- (XI11String)-mStrinqCreateLtoR (

ChvUsarreList Icounterl , charset) ;
UsageList [in-~saga-nu&er-o~~acka~&] - NULL;
ao - 0;
XtSetArg(al[ac], XmNautoUnmanage, FALSE); re++;
XtSetArg(al[ac], XmNlistLabelStrlng, XmStringCreatsLtoRf

*,. A&.

"Package licenses conourrently chscked/day umed(in minutes) /day", charset)) ;
-* , , ,
XtSetilrg(al[ao], XmNlistItem, UrrageList); ao++;
XtSetArg(al[ac], XmNlistItexM2ount, in-usage-number-of~ackages); ac++;
XtSetArg(al[ac], XmNvi#ibleItexM2ount,

(XtArgVal) in usage number of ackages); a=++;
XtSetArg(al[ac], xmNlistVisible1t~mr:ount~ 15; ao++;
XtSetArg(al[ac], XmNselectionLabslString, NULL); ac++;
Q-usage Result dialog - XmCraateSelectionDialog(XtParentfw),

title, aT, act;

XtAddCallback(Q-Wag* Result dialog, XmNokCallback, DssfroyCB,
-DESTRO?~I) ;

XtAddCallback(a-Usa Result-dialog, XmEmelpCallbaok, DialogAcc.ptCB,
-DIALOG HELP) ;

kid - ~mSelectioll~ox~etChild~~ Usage Result dialog,
'X~DIAL~-CANC~L-BUTTON~ ;

XtUnmanageChild(kid) ;
kid - XmSalectionBoSetChild(Q usage Result dialog,

&DIALI%-SELEFTION_LABEL) ;
XtUnmanageChild(kidfi
kid - XmSelectionBoxGetChild(Q Usage Result dialog,

%~DIAL~G TEXTT:
xtunmanageChild(kid); -
~tMana~e~hild(~-Usage-Re~ult~dialog)i
break;
1

cage RESTART :
call-rpotserver, library £unction,x&-void,NULL,

xdr-int, &librarian-xesult) ;
~printf (msg, "Librarian Result is Id\n", librarian-result) i
ab - 0;
XtSatArg(al[ac], XmNautoUnmanage, FALSE); ao++;
XtSet&g(al[ac],~NmasageString, mStrinyCreateLtoR(msg

xt~anageEhild (rnsgD) ;
break;

case SHUTDOWN:
call rpc(se-r, library_function,xdr void,NULL, x&-void, NULL) ;
spriiitf (msg,"OK. The server program iias bean shutdoum.\n");
aE - O;
XtSetArg(al[ac], XmNautaUnmanage, FALSE); ac++:
XtSlt~g(al[ac],XmNmessageString, XmStringCreateLtoR(msgr charset));
ac++; /*XtParent (XtParent fvl) , */
msgD - XmCreataMesaageDialog(w,

" Shutdown Result ",al,ac);
XtAddCallback(msgD, XmNokCallback, DestroyCB, DESTROYZ);
XtAddCallback(msgD, XmNhelpCalLback, DialegAcceptCB, DIALOG-HELP);
kid - XmSelectionBoxOetChild(msqD, Xn3)IALOG-CANCEL-BUTTON);
XtUnmanageChild(kid);
XtManayeChild (msg0) ;
break;

/*---
** DialogCancelCB
*I Process callback from Dialog cancel actions.
*/
static void DialogCancelCB (w, client data, call-data)
Widget w ; /* wTdget id */
caddc t client data; /* data from application */
caddrIt call-dzta; /* data from widget clawe */
1

switch ((intfclient-data)
4
case DIALOG CANCEL:

XtVnGageChild (w) ;
case DIALOG WE:

/* noaction is necessage */
break;

default:
/ * a unknown client data was recievsd and

thew is no setuj; to handle thie */
fprintf (stdarr, "Warning: in cancel callback\n");
break;

f
f

/*---
** NoMatchCB ** Pxocess callback from dialog when no match.
*/
"Lid NoMatohCB (w, client-data, call-data)
Widget W ;
cad& t client data:
oad&zt calldXta;
f

Widget msgD, kid;
char msg1601;
register int ac;
=g 11 1101 ;

sprint£ (msg,"Check your typing or\nsalect one item\nfrom the list\OD);

--. , ,
msgD - XmCreatsErrorDialog(XtParent(wf,

Warning ", el, ac);
kid - XMe*sag&oxGetChild(mego, X~DI~LOG_CANCEL-BUTTONJ i
XtUnmanageChild (kid) ;
XtManageChild (msgD) ;

1

static void Getcopies (w, client data, call data)
Widget W; T* widget id * /
caddr t client data; /* data from application */
caddrIt call-dsta; /* data from widget class */
1

XmSele~tionBoXCalUackStNot *cb;
register int ac; /* acg count */
Arg a1 [lo1 ; I* arg list */
Widget Copies-select;
int i;

cb - (Xmselect ionBoaal lbackStmct *)call-data;
i - 0;
while (! (XmStringCompare (ob->value, PackagesLiet [il) f)

i x ;
strcpy(s-mgackage, CharPackag*sNama[ilt;

ac - 0;
XtsetArg(al[ac] , XmNmessageString, PackagaaList fil) ;
ac++;
XtSetWg(a1 [ac] , XmNselectionLabelString,

XmstringCreateLtoR("Set up New Total Copies:", charsat)) ;
ac++;
XtSetArg(a1 [ac] , XmNokLabelString,

XmstrinqCreateLtoR("Confirm", charset) 1;
ac++;
XtSstArg(al[ac], Xroluautounmanage, FALSE)!, a*++;
Copies-selsct - XmCraatePromptDialog(~, Total Copi-87 ",

el, ac);
XtAddCallback(Copies-select, XmNokCallback, CallRPC, SET-MAX) ;
XtAddCallback(Copia select, XWhelpcallback, DialogAooeptCB, DIALOG HELP1 ;
~tAddCallback(~o~ie~select, XmNcancslCallhask, DestroyCB, DESTROY^)^
XtManageChild(Copie~ae1ect) ;

/*---
** MenuCB
*I

r,
Proce.=a callback from FushButtons in FulldownMenus.

void ManuCB (w, client-data, call data)
Widget W ; /? widget id */
cad&-t client data; / * data Zrom application */
cad-t calldzta: /* data from widget class */

register int ac;
Ara altlO1;

/* arg count
/* a19 list

chir mSg[801;
Widget msgD;
Widget Q Node select;
Widset R-=ode-select;
wid& ~-~ack;iqe select;
widget C-0 Packaze select;
Widget S-M-~ackage~sslsct;
Widcre t DZtZ select>
wid&& nestzrt select;
Widget ~hutdo<sslect;
Widget kid;

switch ((int)climt-data)

' case QUIT:
(

exit (Of ;
break;

case QNODE:

no-nodes - RsrdLocalNodasO:
ac - 0;
XtSatArg(a1 [ac] , XmNlistLabelString, XmStringCraatcLtoR(

"Address Name",charset)) ;
ac ++;
XtSetArg(a1 [ac] , XmNokLabelString, XmStringCreateLtoR("ApE
ac ++;
XtSetArg(al[ac], XmNliatItems, NodesList); ac++;
XtSetArgial [ac], XmNliatItemCount no nodes) ; as++;
XtSetArg (a1 [ac], XmNvisible~temco~nt,-(XtArgVal) no-nodes)
XtSetArg(a1 [arc], XmNlistVisibleItemCount, 16) ; ac++;
XtSetArg(a1 [ac], XmNmuatMatch, True) ; ac++;
XtSetArg(al[ac], XmNautoUnmanage, FALSE); ec++;
Q-Node-a:lsct - XmCreateSelectionDialog(XtPaent (w) ,

Node Selection Box , al, ac);

y", charset

act+:

XtAddCallback(Q Nods-select, XmNokCallback, CallRPC, QNCDE) ;
~t~dd~allback(~- ode select XmNcancclCallback, DestroyCB, DESTROYlf;
~t~dd~allback(~~~ode~se1'dct~ XmNhelpCallbaok, DialogAcceptCB, DIALOG EELP);
XtAddCallback(Q~N0de-select, XmNnoMatchCallback, NoMatchCB, NOE~ATCB~T
XtManageChild(Q-Nods-selad);

break;
1

case QPACXAGE:

xtsetAr$(aljacj; XmNlietItemCount, nogackages); ac++;
XtSetArgCal [ac] , XmNvisibleItemCount, (XtKgVal) nogaakages) 7 acu;
XCSatlVolalfacl. XmNlistVisibleItemC~~ount. 16); ac++;

xtsetArg(a1 jacj , XmNautoUnmanage, FALSE) ; ac++;
Q-Package select - XmCreateSeleotionDialog(XtParent(w),

"- Packaoe Selection Box", al. ac);
XtAddCallbackiB Sackaae select. XmNokCallback, CallRPC, QPACKRGE);
~t~dd~allback(~~~acka~a~se1ect XmNcancelCallback, DestroyCB, DESTRf3Yl);
XtAddcallback(Q~~acka~~~selsot~ XmNhslpCallback, DialogAcceptCB, DIALOG-
XtAddCallbaek(Q-Package-select, XmNneMatehCallback, NoMatchCB, NOMATCR);

HELP:

XtManageCbild(Q~Package~s(t].ect);
break;

1

ac u ;
XtSetArg(al[ac], XmNokLabelString, XmStringCreateLtoR("Apply",charsetl~;
a0 ++;
XtsetKg(al[ac], XmNliatItems, PackagesName); ac++;
XtSetA+g(al fee], XmNlistItcmCount, no packages) ; ac++;
xtSetAra(allac1. XmNvisibleIternCount,-(XtArqVal) no packageel; ac++;

xtsetArg(a1 [ac] , XmNrnuetMatch, True) ; ac++;
Xt SerArglal lac], XmNautoUnmanage, FALSE) ; a=++;
c 0 Packaas select - XmCreatsSelectionDialoq(XtParent (w) , - - - Yackaqe selection Box ", al, ic);
XtAddCallback(C 6 Package select, XmNokCallback, CallRPC, CHECK OUT);
xt~ddcallback (~-0~P~~Ir1r1re~se1ect. XmNbelnCallback. D ~ a l o a A a c e ~ t ~ . DIAMG RELP) ;
XcAddCellback(C

XtManageChild(C-0-Package-select);
break:

came REMOVE:
I

no-nodes - ReadLocalNodes();
ac - 0;
XtSstArg(al[~c], XmNlistLabelStrlng, XmStringCreateLtoR(

"Address Name",chacset)):

XtSetArg(al[ac], XmNlistItema, NodesList); ac++;
xtSetArg(al[ac], XmNlistItemCount, no-nodes); ac++;
YtsatAmlal lac1 . XmNvisibleItemCount. (XtAruVal) no nodes) ; ac++;
xtsetAr$(al iacj, XmNokLabelString,

XmstringCreateLtoR("Confirrn", charset)); ac++;
xtsetArg(a1 [ac], XmNmustMatch, True) ; ac++:
XtSetArg(a1 lac], XmNautoUnmanage, FALSE) ; ac++;
R-Nods-select - XmCreateSelectionDia10g(XtP~ent(W~,

" N o A a Salartion Box ". el. acl :

x;~dd~~;lbacki~~tlode~seleat; XmiloancelCalLback, DestroyCB, DESIROYl);
XtAddCallback(P Node select, XmllhelpCallbaok. DialogAcceptCB, LALOG HELP);
xt~ddCallback(R~Node~9elect, XmllnoMatchCallback, NoMatchCB, N O M A T C R) ~

XtManageChild(R-Node-select);
break;

I

case SET-MW:
i

nopckages - Getpackages 0 :
ec - 0:
XtSetArglal lac], XmNlistLabalString, XrnStringCreateLtoR(

"Packages Total",charset));
ac ++;
xtsatArg(a1 lac], XmNlistIterns, PackagesList) ; ac++;

XtSetArg(a1 [acl , XmNlistVisibleItemCount, 16) ; ac++;
xtSetArg(a1 lac], XmNmusfMatch, True) ; ac++i
XtSstArg(a1 [ac], XmNautoUnmanage, FALSE) ac++;
S-M-Package select - XmCreateSelectionDialog(XtParent(w),

" Fackage Selection Box ", al, ac);
XtAddCallback(S M Package select XmNokCallback, GetCopies, RWIOVE):
xt~ddcallback(S-~~packa~a~select~ XmNcaneelCallback, DestroyCB,

 DESTROY^);
XtAddCallback(S M Package select, XmNhelpCallback, DialogAcceptCB,

-DTA&~G-R~EP) ;
XtAddCallback(S-M-Paekageese1cct, mnoMatchCallback,NoMatchCB,NOMATCR);

XtManageChild(S-M-Package-selectti
break;

1

cass DAILY:

ac - 0;
XtSetArg(al[acl, XmN~eleotionLabelString,
XmstringCreateLtoR("Enter the date correctly (M-OD-YY)", charset));

ao++;
XtsetArg(a1 [ac], XmNokLabelString,

XmstringCreataLtoR("Confirm", charsetl) ;
ac++;
XtsetArgIal lac], XmNautounmanage, FALSE) ; ac++;
Date-select - XmCreatePromptDialoglw,

" Specify Which Day? ", al, ac):
mAddcallback(Date select, XmNokCallback, CallReC, DAILY);
xtAddcallback(Data~select, XmNcancelCallback, DestroyCB, DESTROYI);
xtAddcallback(Date~~elect, XmNhelpCallback, DialogAcceptCB, DIALOG-RELP);
XtManageChild(Date-select);

break;
)

cass WEEKLY:

ac - 0;
XtSetArg(a1 [acl, XmNselectionLabelString,
XmStringCreateLtoR("Entar that MONDAY correctly (MM-DD-YY)", charset));

ac++;
XtSstArg (a1 facl , XmNokLabelString,

XmstrinsCreatsLtoR("Confim", charset) I
a=++;
XtSetArg (a1 [ac] , XmNauteUnmanage, FALSE) I ac++;
Date select - XmcreatePromtDialoa~x.
- - qr Specify Which keek? - ", al, act;
XtAddCallbaek(Data select, XmNokCallback, CallRPC, WQXLY):
XtAddcallbackIDate-mlect, XmNcancelCallback, DestroyCB, DESTROYl);
xt~ddcallhack(~ate~select, XmNhelpCallback, DialogAcceptCB, DIALOG-R6LPli
XtManageChild(Dete-select):

break;

case MONTHLY:

XtsetArg(a1 [a01 , XmNaelectionlnbelString,
XmStrinaCrsatsLtoR("sntar the month correctly (MM-YY)", charset));

ao++;
XtSetArg (a1 lac], XmNokLabelString,

XmStringCmateLtoR("ConfiIm", charaet)) ;
ac++;
XtSetAr (a1 lac], XmNautoUnmmage, FALSE) 1 ac++;
once-sekot - ~createPromptDiaiog(w,

" specify Which Month? ", al, ac);
XtAddCallback(Date select, Xmmkcallback, CallRPC, MONTEILY);
xt~ddcallback(~ate>elect, XmNcancelCallback, DestroyCB, DESTROYI);
XtAddCallback(Date select XmNhelpCallback, DialogAoceptCB, DIALOG-HELP);
~tMma~echild(~ate~~electi;

break;
t

case SEWESTER:
(

ao - 0;
XtSetArg(al[ac], XmNselectionLabelString,
XmstringCreateLtoR("Which semester?\nEnter 1 for Spring, 2 for Sumner, 3 for Pall", charset));
ac++;
XtSetArg(a1 [acl, XmNokLabelString,

XmstringCraateLtoR("Confirm", charset));
ac++;
XtsetArg(a1 Lac1 , XmNautoUnmanage, EALSE) ; ac++;
Date-select - XmCreatePromptDialog(w,

" Specify Which Semester? ", al, ao);
XtAddCallbaok(Date select XmNokCallback, CallRPC, SGMESTER);
xt~ddcallback(~ate-select: XmNoancelCmllback, DeatroyCB, DBSTROYI);
xt~ddCaIlback(Date-select, XmNhelpCallback, DialogAcceptCB, DIALOG-IiELP);
xtManageChild(Date~se1ect~:

break;

case RESTART:
(

strcpy(meg, "Are you sure you want to\nreatart the server program?");
ao - 0;
X t S e t ~ g (a l [a c] , ~ ~ s s a g e s t r i n g , X m S t r i n g C r a a t e L t o R (m a g , charset));
ac ++;
XtsetArg(a1 lac], XmNokLabelString,

XmstringCreateLtoR("Confirmmrn,charset) 1;
ac ++I
XtSetArg(al[ac], XmNautounmmage, FALSE); ac++;
Restart-select - XmCreateQuestionDialog(XtParent(w),

" Attention ", al, ac);
XtAddCallbaok(Restsrt select, XmNokCallback, CallReC, RESTART);
xt~ddcallback(~estart~select, XmNcancelCallback, DestroyCB, DESTROY1);
xtAddCallback(Restart-select, XmNhelpCallback, DialogAcceptCB, DIALOG-IiELP):
XtManageChild(Rsstart-select);

break;
f

case SHUTDOWX: ,
strcpylmeg, "Are you sure you Want to\ntenainate the server program?\nif so,\nyou have to restart the se~er\nmanually!");
*" - n. -- ",
~tsetArg(al[ac],~~esaageString,XmStringCreateLtoR~mag, charaet));
ac ++;
XtSetArg(a1 lac], XmNokLabelString,

XmStringCreateLtoR("Confirm",charaetf);

ac ++;
XtSetArg(allao1, XmNautoUmanage, FALSE); ao++;
shutdown-select - XmCreatsQueationDialog(XtParent(w),

" Attention ' I , al, ac);
XtAddCallback(Shutdom select, XmNokCallback, cillRP~, SHUTDOWN);
xt~ddcallback(Shutdown~~eleot, XmNcancelCallback, DestroyCB, DESTROYl);
xt~ddcallback(Shutdewn~8elect. XmNhalpCallback, DialogAcceptCB, DIALOG-HELP);
~ t ~ a n a g e ~ h i l d (S h u t & m ~ ~ e l e c t f ;

break;

case ~ L P :

(spcintf(msg,"This is a X Window interface for Libmaint\n\O");
ac - 0;
XtSetArg (allacl, XmNmeasagestring, XmStringCreateLtoR(msg, charset)) ;

" Help Box ", al, ac);
XtAddCallback(msgD, XmNokCallbaok, DestroyCB, DESTROYI);
XtAddCallback(msgD, XmNcancelCallbaok, DeatroyCB, DESTROYl);
XtAddCallback(magD, XmNhelpCallback, DialogAcceptCB, DIALS-BELP);
XtManageChild (msgD) ;

default:
/* unknown client data was recieved and

there ia no sefup to handle this */
fprintf(stderr, "Warning: in menu callback\n"f;

/*---
** DialogAcoaptCB
*e Process callback from Dialog actions.
* /
akatic void DialogAccsptCB (w, client data, call-data)
Widget W ; /* widget id */
caddr t client data; / * date from application */
caddrIt calldZta; /* data from widget class */
1

register int ac;
Arg al[lOl;
char msg[80l i
Widget megD, kid;

/* arg count
/* arg list

switch ((intfclient-data)
(
case DIALOG-OK:

4
XtUnmanageChild(w) j

break;

case DIALOG-HELP:
(
sprintf(msg,"Sorryl Ralp is not available at this tim\n\O");

--. , ,
msgD - XmCreateMessageDialog(XtParent (XtParent (w)) ,

'* Eel0 Box ". al, ac);
xtAddcallba&k(msgD, XmNokCallback, DestroyCB, DESTROYl);
XtAddCallback(msgD, XmNhslpCallbeck, DestroyCB, DESTROY1);
kid - XmSelectionBoxGetChild~m~gD, XmDIALOD-CANCEL-BUTTON);
XtUnmao~Childlkid) :

break;
)

default:
/ * unknown callback type */
fprintf (stderr, "Warning: in accept callback\n"t;
break;

)

/*--
** CreateMenuBar ** Create MenuBar in Mainwindow
*/
static Widget CreateMenuBar (parent)
Widget parent;
t

Widget menu-bar; I* RowColum
Widget m n u g m e ; /* RowColum
Widget caacade; /* CascadeButton
Widgee button; /* PushButton

r l I101; /* arg list
gzister int ao; /* acg count

/* Create MenuArea.
*/
ac - 0;
menu-bar = XmCreateMenuBar (parent, "menu-bar", al, act;

/* Create "Optionsn PulldounMenu.
*/
ac - 0;
menugane - XmCreatePulldownMsnu [menu-bar, "menugane", al, ac);
ac = 0;
XtSetArg(a1 [ac] , XmNlabelString,

mStringCreateLtoR("Node. . .", charset)); a=++?
XtSetArg(al[ac], XmNmnemonic, 'N'); ac++;
button - XmCreatePushButton (mnugane, "QNODE", al, aC):
XtAddCallback [button, XmNactitivatsCallback, MsnuCB, QNODE);
XtManageChild (button);

ac - 0;
XtSetArg(a1 facl, XmNlPbelString,

XmStringCreateLtoR("Package.. .", charset) t i ac++:
xtsetArg(a1 [acl, XmNmnermnic, 'P') ; ac++;
button - XnCreatmPushButton (menugane, "WACKAGE", al, ac);
XtAddCallback (button, XmNactivateCallback, MenuCB, PACKAGE);
XtMansgsChild (button);

. -
button ~'Xm6re;tepushButton (manu-e, "QTIME", al, ac);
XtAddCallback (button, XmNactrvatsCallbaok, CallRPC, QTIME);
XtManagoChild (button) ;

xtset&g(al Iacl, XmNlabelString,
XmstringcreateLtoR("Ueere", charset)) ; a c u ;

XtSetArg(a1 lac], XmNmnemonic, ' 0') ; ac++;
button - XmCraatePushButton (menugene, ''QuSERsXq, al, ac);
XtAddCallback (button, XmNactivateCallback, CallRPC, QUSWS);
XtManageChild (button);

xtsetGg (a1 [acl, XmNlabelString,
mstr ingCreateLtoR("NOdeS", charset)); ac*;

XtsetArg(a1 [acl, XmNmnemanic, ' 5 ') ; ac++;
button - XmCreatWushButton (natnugane, "QNODES", al, ac);
XtAddCallback (button, XmNactivateCallback, CallRPC, QNODES);
XtManageChild (button)?

ac = 0;
xtsetArg(altac1, XmNlabelString,

ums+riaocrestaLtoRr"Liccnseee. charaet)) ; act+; .- ---- > - - -
XtsetArg(a1 [no], XmNmnemonic, '5') ; act+;
button - XmCreatePushButton (menugane, "QLICENSE", al, ac);
XtAddCallback (button, XmNactivateCallback, CallRPC, QLICENSE);
XtManageChild (button) 9

ac - 0;
XtsetArg (a1 [ac] , XmNsubMenuTd, menugane) ; ac++;
XtSetArg(a1 [acl, XmNlabelString,

~ f i t r i n o C r e a t e L t o R 1 " ~ e r v ", charset)); aC++; . . .-
XtSetArg (a1 [a~], =XmNmnemonic, -'Q'j 7 ac++;
caacada - XmCreateCascadeButton (menu-bar, "Query", al, ac):
XtManageChild (cascade) i

Create "Options" PulldownMenu.

ac - 0;
menugane - XmCreatePulldownMenu (menu-bar, "menugane", al, ac);
ac - 0;
xtsetAcg(a1 [ac], XmNlabelString,

XmStringCreateltoR("Check In", charset)): a'=++:
XtSetRrg (a1 [acl , XmNmnemonio, ' I') ; ac++;
button = XmCraatePU6hButton (mcnugane, "Check In", al, ac) ;
XtAddCallback (button, XmNactivateCallback, CallReC, CREM-m);
XtManageChild (button);

;~set&g(al [acl, XmNlabelString.
XmStringCseateLtoR("Check out.. .", chareet)) ; ac++i

XtSetArg (a1 [ac], XmNmnemonic, ' 0') ; ao++;
button - XmCreatePUshButton (menugane, "check out", al, ac);
XtAddCallback (button. XmNactivatlsCallback, MenUCB, CEECK OUT);

ac - 0;
XtSetAcg(a1 [ac], mlabelstring,

XmStringCreateLtoR("Remcve Node.. .", charset)) ; act+;
XtSetArg(a1 [ac], Xmmnemonio, 'R') ; act+;
button - XmCreatePushButton (menugane, "Remve Node", al, ac) ;
XtAddCallback (button, XmNactivateCallbnck, MenuCB, REMOVE);
XtManageChild (button) ;

ac - 0;
XtsetArg(a1 [ac], Xmlabelstring,

XmStringCreateLtoR("Sst Max.. .", charset)) ; ac++;
XtSetArg(al[ac], XmNmemonic, ' 5 ') ; act+;
hutton - XmCreatePushButton (menugane, "set Max", al, ac) ;
XtAddCallback (button, XmNactivateCallback, ManuCB, SET-MAX);
XtManageChild (button);

ac = 0;
Xtsetug (a1 [ac] , XmNsubMenuId, menuqane) ; ac++;
XtSetArg(a1 [ac], XmNlabelString,

XmStsingCreateLtoR("Mlintain ", charset)
XtsetArg(a1 [ac], XmNmnemonic, 'M') ; ac++;
cascad.~- XmCreateCa8cadeBUtton (menu-bar, "Maintain",
XtManageChild (cascade) ;

' Create "Options" PulldownMenu.

ac - 0;
m e n u y e - XmCreatePulldownMenu (menu-bar, "menugane", al, ac);

ac - 0;
XtsatArg(al[acl, XmNlabelString,

xmstrincrCreateLtoR~"Dai1v.. .". charset) ; ac++;
xtsetArg(~1 [aii, '~mNmnemonic, 'D' ; ac++;
button - XmCreatePushButton (menugane, "Daily", al, ac);
XtAddCallback (button, XmNactivatsCallback, MaouCB, DAILY);
XtManageChild (button) ;

ac = 0 ;
XtSetArg (a1 [ac], XmNlabelString,

XmStringCreateLt~("Week1y.. .", charset)) ; acu;
XtSetArg(a1 lac], XmNmnemonic, 'W') ; a=++;
button - XmCreatePushButton (menugane, "weekly", al, ac);
XtAddCallback (button, XmNactivateCallback, MenuCB, WEEKLY);
XtManageChild (button) ;

no - 0;
XtSetArg(a1 [a01 , XmNlabelString,

XmstringcreateLtoR("Month1y.. .", charset) 1 ; ac++;
XtSetArg(al[acl, XmNmnermnic, 'M') ; act+;
button - XmCreatePUshButton (menu_pane, "Manthly", al, ac);
XtAddCallback (button, XmNactivateCallback, MenuCB, MONTiiLY);
XtManageChild (button);

ac - 0:
XtSstArg(a1 [ac] , XmNlabelString.

XmStrinflreateLtoR("seme~(ter.. .", chareet)) ; ac++;
XtSetug(a1 [ac] , XmNmnemonio, 'S') ; ac++;
button - XmCrsatePushButton (menupne, "Semester", al, ac);
XtAddCallbaok (button. XmNactivateCallback, MenuCB, SEMGSTER);
xtManagsChild (button) ;

ac - 0;
XtSetArg (a1 [acl , XmNsubMenuId, menugane) ; act+;
XtSetArg(al[ac], XmNlabelString,

XmstringCreateLtoR ("Report ", charaet) ; acu;
xtsetArg(al[ac], XmNmnemnic, 'R'); acu;
cascade- XmCreateCascadeButton (menu-bar, "Report", al, ac);
XtManageChild (cascade) ;

/* create "OptionsTi PulldownMenu.
*/
ac - 0;
mesu>e - XmCreataPulldownMenu (menu-bar, "menu-pane", al, act;

XtSetArg(a1 [acl, dXmNmsmonic, 'R'); ac++;
button - XmCreatePushButton (menugane, "Restart", al, ac) ;
XtAddCallback (button, XmNaotivateCallback, MenuCB, RESTART);
XtManageChild (button) ;

ao - 0;
XtsetArg(a1 [ac], XmNlabelString,

XmStrinoCrsateLt~R(~Sbutdown". charset)); lo++;
xtsetArq(al~rol, *xmNmef~~nio, Sr) ; act+;
button - XmCreatePushButton (menugane "Shutdown", al, ac);
XtAddCallback (button, Xm~aotivate~all~ack, MsnuCB, SBUTDOWN);
XtManageChild (button) ;

ac - 0;
XtSetArg(a1 [acl , XmNlabelString,

XmstringCreateLtoR("~it", charaet)) ac++;
xtset&rg(al [ao] , -mnemonic, Q') ; ac*;

button - XmCreatePushButton (menu-e, "Quit", al, ac) ;
XtAddCallback (button, XmNactivatsCallback, MenuCB, QUIT);
XtManageChild (button);

a0 - 0;
xtsetwg (al lac] ~m~subMenuId, menuJane) i ac++i
xtsetArg(a1 [ac], 'xm~labelstring,

mstringcreateLtoR("Sp'cFal ", charset)) ; ac++i
xtsetarg (a1 [ac] , Xm2Zmnemonic, ' S' I aC"i
casoade- XmCreateCascadeButton (wnu-bar, "Special", al, ac);
XtManageChild (cascade) 7

/* create "Help" button.
* /

ac - 0 ; - XmCreataCasoadeButton (menu bar, "Help", all ac) i
xt~ddcallback (cascade, xm~activateCaflback, MenuCB, AELP) I
XtManageChild (cascade) i

ac - 0;
XtsetArg (a1 lac], XmNmenuHelpWidgst, cascade) ; acu:

XtsetValuea (menu-bar, al, ac);

1 return (menu-b=f ;

i* main
A%% Initialize toolkit.
*t create Mainwindow and subwidgets.
** ~ ~ a l i z ~ toplevel widgets.
** PrOCe8S events.

"bid main (argot argv)
unsigned int argc;
char **argv; .-

*display; Display */
(Display

widget
:: ~FlicatianShell */

app-sheflr Mam~indow mamwm, "/
Widget

=nu-bar: /* mwcolumn */
Widget

a1[101; /* arg list * /
Eiiater int aci /* arg count */

/* counter */ mgister int ii

/* Initialize toolkit and open display
*/
xt~o~lkitlnitialize 0 i
display - XtOpenDisplay (NULL, NULL, arV[Ol, "mdemoe",

NULL, 0, hargc, argv):
if (Idisplay)
(

XtWarning ("license: can't open display, exiting.. .") ;
exit (01;

I

/ create Applicationshell.
* /
app-shell - XtAppCreateShell (argv[OI, "XMdemosZ',

applicationShellWidgetClass, display, NULL, 0);

/* create Mainwindow.
*/
ao = 0'
XtSet&g (a.1 [ac] , Xm~shadowThicknsss, 0) i ac++;
,inwin .. xmcreate~ainwind~w (app-shell, "main", air ac) 1
xtMenagsChild (mainwin) i

/* create MsnuBar in Mainwindow.

*/ ,nu bar - CreateMenUBar (mainwin) i
xtMGagechild (menu-bar);

/* ~ ~ ~ l i ~ c toplevel widgets.
* /
xt~salirnewidget (app-shell) i

/* process events.
*/
XtMainLoop i

1

/* Proc@dure "call-rpc" * / ,- * / , -
/* Given an RPC number, the addresses of the XDR input and output routines, */
/* and the ad&asses of the XDR return parameters, this procedure calla the */
/* a+andard RPC interface and returns the client status. If an error */ , - - - -- - . - (2 occurs, the W C error is displayed and the program terminates. */

*/

call-rpc (server, library-function, inproc, in,outproc, out)
o h m *server;
int library-function;
xdrproc t mpioc, outproc;
char *is, *out;

inaroc . in.
ouEproc; out);

if (client-status)

clntgerrno (client-status) ;
printf ("\n"):
exit(-1) 1

1

callrpctcp(host, prognum, procnum, vw?anum, inproc, in, OutproQ, out)
long prognum, procnum, versnum;
char *host, *in. *out;
xdrprac-t inpmc, outproc; ,
atruct sookaddr in server-addr;
int sorket - W? ANYSOCK;
rnum clnt stat cTnt stat;
struct hoztent *hp;-
register CLLENT *client;
strvct timaval total-timeout;

ethostbyname (host)) ly NULL) {
if (gintf (stdsrr, "can't get ad& for '%s'\n", host);

exit (-1);

Lopy (hp-zh-addr, (oaddr t) haerver-addr.sin-addr, hp->h-length);
server addr .sin family --=-INET;
server-addr.sin-
if ((cTient - o%tr&-c%ate (&server-addr, prognum, versnum,
haacket, BUFSIZ, B ~ s I z)) -- NULL) (
perror ("rpctcp_create") ;
exit (-1) ;

I total tirne0ut.t.v sec - 2 0 :

total-time0ut.t~-use0 - 0;
clnt-Ztat - clnt~call(client, procnurn,

mproc, in, outproc, out, total-timeout);
clnt destroy (client) ;
retu= (int)olnt-Etati

)

