
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

Degree-constrained Minimum Latency

Trees are APX-Hard

Bo Brinkman∗ Michael Helmick†

∗Miami University, brinkmwj@muohio.edu
†

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/76

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-2008-002

Degree-constrained Minimum Latency Trees are
APX-Hard

Bo Brinkman and Michael T. Helmick

Degree-constrained Minimum Latency Trees are APX-Hard

Bo Brinkman and Michael T. Helmick
Miami University

Abstract
When transmitting data from a single source to many recipients, it is often desirable to use some

recipients of the stream to re-broadcast the stream to other users. In such multicast systems each client
may be used as a server, serving up to B other clients.

Formally, we will take a set X of clients, along with a distance function d that specifies the latency
(in the host network) between each pair of clients in X . Our goal will be to produce a directed spanning
tree of X , rooted at some specified root ∈ X , with out-degree bounded by B, and minimizing the sum
of the latencies from root to every point in X .

In addition to being motivated by current experimental algorithms work, the problem also interpolates
naturally between the traveling repairman problem (when B = 1) and single source shortest paths (when
B = n− 1). The former problem is APX-complete (in metric spaces) and the latter is in P . We explore
the hardness of the problem for other values of B. In particular, we show that the problem remains
APX-Hard at least up to B = C

√
n for some universal constant C when the host space is a general

semi-metric.

1 Introduction
We consider multicasting, the process of partitioning server access by using participants in the transmission
as relay points for other participants. This implicitly creates a directed, rooted spanning tree as an overlay
on the original network. Data transmissions are sent from the root to its direct children, who then retransmit
to their children, repeating until all clients have been reached. This alleviates the demand required for a
large amount of subscribers to receive information directly from the origin server.

Multicasting ability is built into the Internet Protocol (IP) specification as described by Deering
[7]. However, IP multicasting has not seen widespread adoption, and research attention has focused
on application level multicasting [6, 8, 9, 5]. Application-level multicasting uses unicast, point-to-point,
messages to power multicast delivery from within a particular application or application framework.

There are several properties, or measures of efficiency, that are desirable for multicast systems of this
type:

1. Each client should have bounded out-degree. This is because an individual client may be quite limited
in computational power or bandwidth.

2. The total latency experienced by the whole network should be small (in some sense).
3. The congestion incurred in the host network should be small (because of limitations in the capacity of

network routers).

In this paper we will focus only on the first two items. The problem of finding bounded degree spanning
trees with low total latency is already a difficult computational problem. In addition, it naturally interpolates
between two well-studied problems: The traveling repairman problem and the single source shortest path
problem.

Throughout this paper we will consider the problem of constructing an overlay network built on top of
some host network. In order to get meaningful results, we focus on the case where the latencies between
hosts form a semi-metric.

DEFINITION 1. (SEMI-METRIC) A function d : X → [0,∞) (where X is a set) such that

1. ∀x, y ∈ X , d(x, y) = d(y, x)
2. ∀x, y ∈ X , d(x, y) ≥ 0. The fact that it is possible for x 6= y to have d(x, y) = 0 is the reason that d

is not a metric.
3. ∀x, y, z ∈ X, d(x, z) + d(z, y) ≥ d(x, y)

It is valid for any node to connect “directly” to any other node using the underlying host network. The
latency experienced by an edge (x, y) is just d(x, y). Note that, in general, latencies in a real network tend
to vary over time, and need not be symmetric. Even for this very simplistic model of network latencies,
however, we are able to get some inapproximability results. Inspired by Helmick and Annexstein [12], we
define:

DEFINITION 2. (B-MLTREE) Given a finite semi-metric space M = (X, d), where all distances integers
represented by at most c1n

c2 bits, and a designated source point root ∈ X , find a directed spanning-tree T
of X which:

• Is rooted at root

• Has out-degree ≤ B

• Minimizes
∑

x∈X dT (root, x), where dT is the shortest-path distance in the tree T .

Note that the restriction to distances that are polynomially representable integers only strengthens our result.
1-MLTREE corresponds to the traveling repairman problem, which is also known as the minimum

latency problem (MLP) or the minimum latency tour problem (MLT). It is well known that 1-MLTREE

is APX-Complete, a fact that follows from the proof of Papadimitriou and Yannakakis [15] that TSP is
APX-Complete when all distances are one or two.

We explore the complexity of B-MLTREE for larger values of B. In particular, even poly-log
dependence on n in the degree might be acceptable in many applications. For this reason we are interested
in algorithms and hardness results for all B, not just B = Θ(1).

1.1 Previous work The B-MLTREE problem incorporates elements of single source shortest paths,
minimum latency tours, and bounded-degree spanning trees.

The largest body of work on this class of problems is on 1-MLTREE. The first polynomial-time
approximation algorithm for the minimum latency problem was given by Blum et al [4]. They point out
that the APX-Hardness of finding a minimum latency tour follows from the APX-Hardness of TSP, and they
give a poly-time algorithm based on TSP approximators. The approximation was subsequently improved by
Goemans and Kleinberg [10] and Archer and Williamson [1].

Arora and Karakostas [2] also considered the problem of creating approximation schemes for the MLP.
Because the problem is APX-Hard, it is unlikely that a poly-time approximation scheme exists: Instead,
they provide (1 + ε)-approximation algorithms with time roughly nO(lg n/ε).

Of course, at the other end of the spectrum, (n − 1)-MLTREE may be solved trivially in polynomial
time by building a star with all points directly connected to the root.

Outside of the theoretical community there has been a significant amount of work to develop heuristic
algorithms for B-MLTREE. For example, Banerjee et al [3] give an algorithm (called OMNI) that works
well in practice, and also gives a (log n)-approximation for 2-MLTREE. Helmick and Annexstein [12],
borrowing ideas from the minimum-diameter spanning tree algorithm of Könemann et al [13], improve on
OMNI by making better use of clusters of multicast clients.

Some recent advances in bounded-degree network design problems may provide insight as to where to
go next. Goemans [11] gave a multi-criteria formulation of the degree-bounded minimum spanning tree
problem. He showed that, rather than finding a sub-optimal degree B tree, he could instead find a tree with

2

Figure 1: A
√

n×
√

n `1 grid with a 1-MLTREE and 2-MLTREE

weight as good as the optimal degree B tree, but with degree B+2. This was then improved and simplified by
Mohit Singh et al [16, 14]. These authors, in various combinations, were able to reduce the degree to B+1,
and also develop bi-criteria approximation algorithms of this type for other network construction problems.

1.2 Choice of latency objective We should take a moment to scrutinize our choice of latency objective.
Different clients will experience different amounts of latency, and it is not completely clear how the “latency”
of the whole network should be computed, based on the latencies of individual clients. Various authors have
tried to minimize:

1. The total (or average) latency over all nodes in the tree.
2. The maximum latency experienced by any single node, which is related to the diameter.
3. The maximum multiplicative factor increase in latency for a single node.

We focus on the total latency summed over all nodes in the tree, which allows us to make the link to traveling
repairman directly. This is a relaxation of the third option, minimizing the maximum “stretch” incurred by
any single node, and several of our algorithms actually do minimize the maximum stretch.

The second choice is more “fair” than the first, because it bars one from building a network that
excessively penalizes one user in order to benefit others just a little bit. For the specific case of multicasting
at the application level, however, this characterization of the problem misses some important cases. For
example, if there are a few clients that are very far away from the rest, the algorithm does not have to do
anything very useful.

1.3 Our results In this tech report, we show that B-MLTREE remains APX-Hard on semi-metrics as
long as B < C

√
n, for some universal constant C.

2 2-MLTREE is NP-Complete
Though it is fairly well known that 1-MLTREE does not admit a PTAS unless P = NP , it does not follow
that B-MLTREE is hard for all other values of B. As we have seen, for B close to n it can be solved exactly
in polynomial time. On the other hand, it is also not clear whether or not 2-MLTREE even has a constant
approximation. As B grows, the algorithm becomes more powerful, because it has a wider set of allowable
out-degrees. At the same time, the optimal latency can also improve very rapidly as the allowed degree
goes up, putting the optimal latency farther out of reach. For example, consider points in the `1 plane. For
the metric depicted in Figure 1, the optimal latency degree 1 tree (which is also a MST of the metric) has
total latency roughly n2. The degree 2 tree pictured has total latency roughly n3/2, which is optimal (up to
constant factors) for all B ≥ 2. Therefore, even an optimal solution for B-MLTREE might be very far from
optimal for (B + 1)-MLTREE.

A priori, it is not clear how the hardness of approximation depends on B. In what follows we establish
that the problem stays NP-Complete (and also APX-Hard) even for quite large B. B-MLTree is clearly in
NP for all values of B.

3

root

d1 d2 dn

0 0

0 0 0 0

1 1 1

 1 1 1

 1

0 0
17 + 13q

nodes
counting bi.

All edge
lengths 0xi

di

fi gi bi

xi

15 + 7q total nodes
(counting xi and lij),

all distance 0

xi

li1 li2 li8

0 0 0 A binary tree
with q nodes
(including cm),
all distances 0

A binary tree
with q nodes

(including ci), all
distances 0

ci = xj ∨ xl ∨ xm

ljk'llk

cm = xj ∨ xk ∨ 0

ljk''

1 1 1

Figure 2: Top, decider, distributor and clause constructions

As a warm up, we will prove that 2-MLTREE is NP-Hard. Our proof of APX-Hardness will follow from
this same reduction, after a bit of extra accounting. We reduce from MAX-3-SAT(13). Recall that MAX-3-
SAT(13) is the problem of maximizing the number of satisfied clauses in a 3-CNF where each variable can
occur (negated or not) in at most 13 clauses.

THEOREM 2.1. MAX − 3− SAT (13) ≤P 2-MLTREE

In proving this theorem, we develop a fairly simple direct reduction from MAX-3-SAT(13). In contrast,
the result of Papadimitriou and Yannakakis [15] proving that TSP with distances one and two is APX-Hard
is really a reduction from a form of MAX-3-SAT to HAMILTONIAN PATH. The fact that 1-MLTREE is
also APX-Hard is a corollary of their result, and does not follow from our reduction.

First, to simplify our construction, let us assume that there are no trivially satisfied clauses. If there are,
we will just delete them, and keep a count of how many such clauses were removed. Also remove all clauses
of the form (0 ∨ 0 ∨ 0).

Given a 3-CNF(13) representation of a boolean formula, we will build a graph, and show that its
minimum latency achievable by a degree 2 tree depends exactly on the maximum number of satisfiable
clauses.

In what follows, every edge has length 0, unless otherwise noted. Let the variables of the boolean
formula be called x1 up to xn. The construction of the graph proceeds as follows:

1. Create a defined root node
2. Create a balanced binary tree rooted at root with exactly n children, labeled di, where each di is

associated with the variable xi. All edges in this sub-tree have length 0, except that the in-coming
edges for each di have length 1. (See Figure 2)

3. For each di, add a “decider” widget rooted at di (See Figure 2). Note that q, which also appears in the
clauses (below), is a constant that will be selected later to tune the proof.

4. For each node labeled xi or xi, add a distributor widget. These are balanced binary trees with 8 leaves.
If the root is xi, the leaves are labeled li1 up to li8. If the root is xi, they are labeled li1 up to li8. Since
each variable appears at most 13 times, these 8 nodes will be sufficient to connect the variable to its
clauses. (See Figure 2)

5. For each clause j, add a new node labeled cj . If a clause j contains a term xi, add an edge from lik to
cj , for some k such that lik does not yet have two children. If it contains a term xi, add an edge from
lik′ . Note again that q will be chosen later to tune the proof.

For a particular boolean formula F (after the pre-processing above), let us call this graph G(F).
In order to get a truth assignment from a spanning tree of this graph, we will look at the latency of nodes

in the sub-tree rooted at xi. If xi has latency 2 (which is the minimum possible), then the variable xi will be
considered to be true. Otherwise, consider the variable xi to be false.

4

(n− 1)× 0 (Inner nodes of “top”)
n× 1 (di nodes)

n(49 + 27q)× 2 (Fi, Gi, and Bi)
mq × 3 (Clauses)

Figure 3: Minimum latency without degree con-
straints

(n− 1)× 0 (Inner nodes of “top”)
n× 1 (di nodes)

n(33 + 20q)× 2 (Bi and either Fi or Gi)
n(16 + 7q)× 3 (Fi or Gi)

sq × 3 (Satisfied clauses)
(m− s)q × 4 (Unsatisfied clauses)

Figure 4: Latency of the proposed tree

The body of the proof has been moved to an appendix due to space considerations, but, in order to give
some intuition, we will describe what a degree-2 minimum latency tree must look like in this graph. Let Fi

denote the set of nodes with distance 0 to fi in G(F), and similarly for Gi, Bi, and Cj .

LEMMA 2.1. Let T be any minimum latency degree-2 spanning tree of such a graph G(F). Then:

1. T must include a binary tree on the nodes of “top,” with the di being the leaves
2. For each node di, one of its children must be a member of Bi, and the other a node from either Fi or

Gi. If it is a node of Fi that is the child of di, then some node in Fi takes a node from Gi as one of its
children. The case where a node of Gi is the child of di is symmetric.

3. All nodes in Bi have the same latency as bi. The same is also true for Fi and fi, Gi and gi, and Cj

and cj .
4. For each Cj , the incoming edge to Cj must come from some Fi or Gi such that xi (negated or not)

appears in clause j.

The proof of this lemma is a fairly standard application of case analysis and induction. Refer to the Appendix
for details.

Now we will prove some useful facts about the graph G(F), and about the proposed degree-2 tree. Let
m denote the number of clauses, and let s denote the number of clauses satisfied by T . In Figure 3 we
calculate the minimum latency of any spanning tree of G(F), and in Figure 4 we calculate the latency of
the tree proposed in Lemma 2.1. Notice that the total latency incurred by our degree-2 solution, over the
necessary minimum, is just n(16 + 7q) + (m− s)q.

The following lemma is a corollary of Lemma 2.1.

LEMMA 2.2. A 3-CNF(13) formula F has an assignment that satisfies at least s clauses if and only if the
graph G(F) has a degree-2 spanning tree with latency at most 115n + 61qn + 4mq − sq.

Proof. If we have an assignment that satisfies s clauses, we can use it to pick a tree with the required latency.
In our description of the “proposed” structure of the optimal tree, just choose whether Fi or Gi should be
served by di based on whether or not xi is set to true. For each clause cj , choose its parent to be whichever
of its terms has lowest latency. It is easy to see that this leads to the guaranteed latency.

If we have an optimal spanning tree, it can also be used to construct an assignment that satisfies at least
s clauses. Lemma 2.1 shows that for each xi, exactly one of Fi and Gi has latency 2. If we set xi to true if
and only if some node of Fi has latency 2, then this assignment must satisfy at least s clauses, because this
is the only way that the latency of a cj node can be decreased to 3 in a latency optimal tree.

3 2-MLTREE is APX-Hard
In the previous section, we proved that if the total latency of the optimal degree-2 spanning tree of G(F) is
≤ 115n + 61nq + 4mq− sq, then there is an assignment that satisfies at least s clauses of F . The existence

5

(1 + ε)(115n + 61nq + 4mq − sq) = 115n + 61nq + 4mq − tq

(ε)(115n + 61nq + 4mq)− (1 + ε)sq = −tq

(1 + ε)− (ε)((115n/sq) + 61n/s + 4m/s) = t/s

1 + ε− (ε)(690/q + 366 + 8) ≤ t/s

1− 375ε ≤ t/s

Figure 5: Derivation of approximation ratio for proposed MAX-3SAT(13) algorithm.

of a polynomial-time approximation scheme (PTAS) for 2-MLTREE also implies the existence of a PTAS
for MAX-3-SAT(13). In other words,

THEOREM 3.1. MAX-3-SAT(13) ≤PTAS 2-MLTREE

Consider any (1 + ε)-approximation for 2-MLTREE. It is still true that if we have a latency L =
115n + 61nq + 4mq − tq spanning tree, we know that there is an assignment that satisfies at least t clauses
of F . In Figure 5 we solve for t in the case that we have a (1 + ε)-approximation algorithm for 2-MLTREE.
In the fourth line we use the fact that m/s ≥ 2 and that n ≤ 3m.

The fact that at least half the clauses must be satisfied is well known: Just take each variable, one at a
time. Look at all remaining clauses where it appears, and decide whether or not to set it to true based on
which value satisfies the most clauses. Then throw away all of the clauses that contained that variable, and
continue with the next variable. This guarantees that we satisfy at least half of the clauses. In the last line
we chose q = 690 just to drive down the final constant: It is not particularly significant, and could be set to
any constant ≥ 1.

Given a degree 2 spanning tree T of G(F) that has latency within a (1+ε) factor of optimal, we construct
the satisfying assignment for the xi essentially by following the fix-ups given in the proof of Lemma 2.1, in
the Appendix. In the proof we describe how to convert any spanning tree T into one that has all points in
Fi having the same latency as fi and all points in Gi having the same latency as gi. We also describe how
to transform the graph so that exactly one of Fi and Gi has latency = 2. All these transformations can be
applied without increasing latency, and in polynomial time. As a result, we can convert T into a new tree T ′

such that for each i exactly one of Fi and Gi has latency 2. If it is Fi, then xi is set to true. If it is Gi, then
xi is set to false. This is guaranteed to satisfy at least t = (1 − 375ε)s clauses of the formula F , or else a
latency of 115n + 61nq + 4mq − tq would not have been possible.

Hence, if a (1 + ε)-approximation exists for 2-MLTREE, then a (1 − 375ε)-approximation exists for
MAX 3-SAT(13). This cannot happen unless P = NP .

3.1 Extensions to higher B Every part of this construction generalizes to the case of B > 2. The
construction for “top” is mostly unchanged. The only problem is that the number of available out-going
edges from top will be (B − 1)p + 1, where p is the number of nodes in the top. It is quite possible that
the number of variables in the formula cannot be written in such a form, resulting in some di that do not
correspond to a variable. These di still must have their associated decider widgets attached in order for the
construction to work. The number of such “useless” deciders is at most B − 2. Because B < n, this only
changes the coefficient of ε in the approximation factor, and the result still holds.

The other main difference is that each di will now have B + 1 children, and B − 1 of them will have a
sub-tree of 17 + 13q nodes, like bi in the original construction.

Notice that we cannot take this construction too far. The total number of vertices in the graph is
Θ((n + B)B + m). In other words, where N = |V |, there is some constant c > 0 such that (c

√
N)-

6

B Hardness Best approximation algorithm
1 APX-Hard (Corollary of [15]) O(1) [4, 10, 1]
2 to Θ(

√
n) APX-Hard (This paper) O(dlogB ne) [3, 12]

n1/c, c < 2 ? O(1) ([3, 12])
n− 1 P 1 (Star graph)

Table 1: Table of known results about B-MLTREE on general semi-metrics.

MLTREE is APX-Hard. Beyond this point our proof no longer shows anything. We conclude this section
with a summary of known results for B-MLTREE in general semi-metrics, which is presented in Table 1.

4 Conclusion and open problems
In this tech report we have given the first inapproximability results for the problem of building bounded
degree low latency spanning trees. We have shown that this problem is unlikely to admit polynomial time
approximation schemes, at least for practically useful degree bounds. Given our results, however, there are a
number of directions of research that might still greatly benefit practitioners that must build multicast trees.
Let us conclude with some specific problems that might be of practical use, even though B-MLTREE is
APX-Hard in general:

1. Either give a poly-time constant-factor approximation for c-MLTREE (for some fixed constant c ≥ 2),
or prove that such an algorithm cannot exist, assuming P 6= NP .

2. Given that there are most likely no poly-time approximation schemes for constant B, is it possible
to give a Goemans-style [11, 16, 14] bi-criteria approximation, where the output tree has degree
αB + β and total latency at most (1 + ε)OPT (B)? Notice that our result does not preclude this
possibility, because even increasing the allowed degree by 1 can change the minimum latency by a
factor polynomial in n.

3. Are there any reasonably realistic network models that admit polynomial time solutions, or polyno-
mial time approximation schemes?

References

[1] Aaron Archer and David P. Williamson. Faster approximation algorithms for the minimum latency problem. In
SODA ’03: Proceedings of the fourteenth annual ACM-SIAM Symposium on Discrete Algorithms, pages 88–96,
Philadelphia, PA, USA, 2003. Society for Industrial and Applied Mathematics.

[2] Sanjeev Arora and George Karakostas. Approximation schemes for minimum latency problems. In STOC ’99:
Proceedings of the thirty-first annual ACM Symposium on Theory of Computing, pages 688–693, New York, NY,
USA, 1999. ACM Press.

[3] S. Banerjee, C. Komareddy, K. Kar, B. Bhattacharjee, and S. Khuller. Construction of an efficient overlay
multicast infrastructure for real-time applications. In Proceedings of the 22nd Annual Joint Conference of the
IEEE Computer and Communications Societies, pages 1521–1531, 2003.

[4] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan. The minimum latency
problem. In STOC ’94: Proceedings of the twenty-sixth annual ACM Symposium on Theory of Computing,
pages 163–171, New York, NY, USA, 1994. ACM Press.

[5] M. Castro, P. Druschel, A-M. Kermarrec, and A. Rowstron. Scribe: A large-scale and decentralised application-
level multicast infrastructure. In IEEE Journal on Selected Areas in Communications (JSAC) (Special issue on
Network Support for Multicast Communications), 2002.

[6] Woan Sun Chang and Robert Simon. End-host multicasting in support of distributed real-time simulation
systems. In ANSS ’04: Proceedings of the 37th Annual Symposium on Simulation, page 7, Washington, DC,
USA, 2004. IEEE Computer Society.

7

[7] S. E. Deering. Multicast routing in internetworks and extended lans. In SIGCOMM ’88: Symposium proceedings
on Communications Architectures and Protocols, pages 55–64, New York, NY, USA, 1988. ACM Press.

[8] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen. Deployment issues for the IP multicast service
and architecture. In IEEE Network Magazine, January/February 2000.

[9] Aditya Ganjam and Hui Zhang. Connectivity restrictions in overlay multicast. In NOSSDAV ’04: Proceedings of
the 14th international workshop on Network and Operating Systems Support for Digital Audio and Video, pages
54–59, New York, NY, USA, 2004. ACM Press.

[10] Michel Goemans and Jon Kleinberg. An improved approximation ratio for the minimum latency problem. In
SODA ’96: Proceedings of the seventh annual ACM-SIAM Symposium on Discrete Algorithms, pages 152–158,
Philadelphia, PA, USA, 1996. Society for Industrial and Applied Mathematics.

[11] Michel X. Goemans. Minimum bounded degree spanning trees. In Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science, pages 273–282, Los Alamitos, CA, USA, 2006. IEEE
Computer Society.

[12] Michael T. Helmick and Fred S. Annexstein. Depth-latency tradeoffs in multicast tree algorithms. In
Proceedings of the IEEE 21st International Conference on Advanced Information Networking and Applications,
pages 555–564, Los Alamitos, CA, USA, 2007. IEEE Computer Society.

[13] J. Könemann, A. Levin, and A. Sinha. Approximating the degree-bounded minimum diameter spanning tree
problem. Algorithmica, 41(2):117, 2004.

[14] Lap Chi Lau, Joseph (Seffi) Naor, Mohammad R. Salavatipour, and Mohit Singh. Survivable network design
with degree or order constraints. In STOC ’07: Proceedings of the thirty-ninth annual ACM Symposium on
Theory of Computing, pages 651–660, New York, NY, USA, 2007. ACM Press.

[15] C. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one and two. Mathematics
of Operations Research, 18:1–11, 1993.

[16] Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees to within one of
optimal. In STOC ’07: Proceedings of the thirty-ninth annual ACM Symposium on Theory of Computing, pages
661–670, New York, NY, USA, 2007. ACM Press.

8

u

l r

fi

u

l r

fi

Figure 6: Fix-up operations. The left-hand figure shows the fix if fi has lower latency than either l or r. The
right-hand figure shows the fix if l has the lowest latency. The case for r having lowest latency is symmetric.
Dotted lines show edges before the operation, solid lines show edges after the operation. Note that any
grandchildren of u that are not effected are not shown.

5 Appendix
5.1 Proof of Lemma 2.1

LEMMA 5.1. For any optimal latency degree-2 tree T , there is another degree-2 tree T ′ with the same
latency, but with the property that each Fi is organized into a binary tree rooted at fi with exactly the edge
set specified by the construction of G(F) (and similarly for Gi, Bi and Ci). In particular, fi and gi only have
one child each.

Proof. Handle all nodes of Fi, Gi, Bi and Ci in top-down fashion. Let u be any node that has not yet been
handled, but such that its parent in G(F) has been handled. Let l denote the left child of u in G(F), and
similarly r the right child. Let p be the parent of u in T, pl similarly the parent of l and pr the parent of r.
Depending on whichever of fi, r or l has the lowest latency in T , there are three different operations that
can be used to make u the parent of l and r without incurring more latency (See Figure 6). In this picture,
note that u will always have the same latency as fi at the start of the fix-up (by induction). The fix-ups work
because all points within a single Fi (or Gi, Bi or Ci) all have distance 0 to each other. The lemma follows
by induction.

In essence, this lemma shows that there need not be any tricky back-and-forth movement from one Fi, Gi,
Bi or Ci to the others.

CLAIM 1. (PART 1 OF LEMMA 2.1) If T is a minimum latency degree-2 spanning tree of G(F), then T
must include a binary tree on the nodes of “top” with the di being the leaves.

Proof. It is enough to show that every di must have latency 1. Because the tree is degree 2, it is easy to see
that the only way to get latency 1 for all di is to have the di at the leaves of a binary tree.

Let us consider the tree T ′ guaranteed by Lemma 5.1. If any di has latency ≥ 2, then one of the
following must be true:

1. There is some internal node u of “top” that has latency > 0. This is not possible however. Just make
u the left child of root, root’s left child becomes u’s left child, and u’s left child becomes the child of
u’s old parent. This saves at least one unit of latency, which is a contradiction.

2. There is some internal node u of “top” that has less than two children. In this case, just connect it to
di, saving at least one unit of latency. This is a contradiction, however, because T was claimed to be
optimal.

9

3. There is some internal node u of “top” that points directly to a fi, gi, or bi. Note that by Lemma 5.1, if
u points to some node of Fi, Gi or Bi other than fi, gi or bi, then there is some other u′ that is internal
to “top” that points to fi, gi or bi.

If di (with the same value of i as the node pointed to by u) is the node from “top” with latency 2, then
do the following: Make di a child of u in place of fi (resp. gi, bi), make fi the left child of di, and
make di’s old parent the new parent of di’s old left child. This will decrease the total latency by at
least one.

On the other hand, consider the case where some fi, gi, or bi is a child of u that is internal to “top,” but
such that di is also a child of an internal node of “top.” In a previous case we proved that all internal
nodes of “top” must have latency 0, so this means the maximum number of nodes not internal to “top”
that can have parents internal to “top” is n. Hence, there must be some j such that none of fj , gj and
bj have latency≤ 2. Assuming that Lemma 5.1 has been applied, we may switch u to point to dj , and
then dj to bj and fj , and fj to gj . This saves latency at least (33 + 20q)− 13q.

Either way, we reach a contradiction.

4. There is some internal node u of “top” that points directly to a clause. By an argument similar to the
previous one, this is also impossible.

Hence, there is in fact no way that any di can have latency other than 1. Every case that arises when di > 1
leads to a contradiction of the optimality of T .

CLAIM 2. (PART 3 OF LEMMA 2.1) In any optimal latency degree-2 tree, T , all nodes in a single Fi (or
Gi or Bi) must have the same latency.

Proof. The proof is a corollary of Lemma 5.1. If one follows the algorithm there, the result is that all nodes
in Fi get latency equal to the minimum over all nodes of Fi before the operation, and no new latency is
incurred anywhere. If the latency of any node were to decrease by this operation, that would contradict the
optimality of T .

CLAIM 3. (PART 2 OF LEMMA 2.1) Each di must take Bi as one child, and either Fi or Gi as the other.
Whichever of Fi or Gi is not taken becomes the descendant of the other.

Proof. Let us prove the second part first. By Lemma 5.1, fi and gi only need to have degree 1 in order to
connect up Fi and Gi as required. There is always a spare edge available to allow fi to be gi’s parent, or
vice versa. If all points in Fi and Bi have latency 2, then Gi must descend from Fi: Any node not in Fi

has distance at least 2 from Gi and latency at least 2, making the latency of points in Gi at least 4. Hence,
making fi point to gi results in a guaranteed reduction of at least 16+7q latency. The same argument works
if it is Gi and Bi whose points have latency 2.

By part 1 of the Lemma, we know that no Fi, Gi or Bi can be served directly from an internal node of
“top,” hence the only way to get latency 2 or 3 for any of them is to be served by di, and it is possible for
every Fi, Gi and Bi to have latency either 2 or 3. Hence, serving any Fi, Gi or Bi by way of any other dj ,
resulting in latency ≥ 4, is sub-optimal, which is again a contradiction.

Therefore, assume that all nodes in Fi, Gi and Bi have latency either 2 or 3. Some node in Bi must
be the child of di. If not, all nodes of Bi have latency at least 4, for a total latency of 2(17 + 13q) greater
than our proposed solution. On the other hand, the only way that this change could save latency is for di to
take both Fi and Gi as children, saving at most (16 + 7q) + 6q. This additional 6q accounts for the fact that
this tree can satisfy at most 6 more clauses than the proposed tree. Hence, any optimal tree must have some
node in Bi as a child of its di.

10

CLAIM 4. (PART 4 OF LEMMA 2.1) In any latency optimal degree-2 spanning tree of G(F), any satisfied
clause must descend from either Fi or Gi, where xi is one of the variables in the clause.

Proof. If cj descends from such an Fi or Gi, its latency is at most 4. By parts 1, 2 and 3 of the lemma, we
know that cj cannot be served by any node of “top.” If cj is served by any path not going through any of its
variables, then the path must have length at least 5. Hence, by switching cj to descend from some variable
in its clause, we can save at least q latency, contradicting the optimality of T .

11

