
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year

A Simulation of Rapid Evolution: Its

Development in the Object-Oriented

Paradigm

John Bloom
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/41

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1993-001

A Simulation of Rapid Evolution: Its Development in the
Object-Oriented Paradigm

John Bloom

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

A Simulation of Rapid Evolution:

Its Development in the Object-Oriented Paradigm

John Bloom
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #93-001 01 I93

A SIMULATION OF RAPID EVOLUTION:

I T S DEWELOPMENT I N THE OBJECT-ORIENTED PARADIGM

Final Report

Presented in Partial Fulfillment of the Requirements
for the Degree of

Master of Systems Analysis
in the

Graduate School of Miami University

John Bloom

Miami university

1992

R e a d i n g C o n u n i t t e e :

Dr. Thomas G. Gregg, Department of Zoology

Dr. James D. Kiper, Advisor

Dr. Yaman Barlas

A OF CONTENTS

Section 1 Genetics 3

Section 2 The Nodel 6

Section 3 The Software 13
Bibliography ... 32
Appendix A Functinal code 33
Appendix B Object-oriented code 53

This project centered around an event in population
genetics, the modeling necessary to explain it, and the way that
the object-oriented paradigm influenced the implementation of the
model. This paper is divided into three major sections which echo
the three lines of investigation in the project. The first
section is a summary of the concepts and terminology of genetics
necessary for the understanding of what follows. The second is a
description of the model and its results. The third is a report
on the process of moving the software from a procedural language
to an object-oriented one.

When plants and animals reproduce, the development of the
offspring is guided by the information passed on to them by the
parent or parents. The field of genetics (the study of this
"passing onn) is divided roughly into two areas: molecular
genetics and population genetics.

MOLECULAR GENETICS

The physical structure of genes and the way in which they
preserve, transmit, and alter genetic information is immensely
complex. Only in the latter half of this century have molecular
geneticists had the tools necessary for studying the mechanisms
by which information is passed from generation to generation. The
discovery of the structure of DNA in the early 1950's was the key
to understanding this process. The basic units of DNA (the "bitsn
in the genetic code) are nucleotides. Nucleotides are molecules
that include one of four kinds of nitrogen bases: adenine,
cytosine, guanine, or thymine. The DNA molecule is a double
stranded helix in which each strand is made of long sequences of
nucleotides. The nucleotides are utilized in groups of three,
called codons, making sixty four distinct characters in the

alphabet that defines individual genes. But there is some
redundancy of chemical activity among the codons, so there are
only twenty characters and an end-of-word signal available. The
existence of this signal means that the words (genes) of the
genetic language can be of arbitrary length and from this fact
comes the nearly unlimited variety of genes. Genes act as
instructions for the assembly of amino acids into proteins which
determine the individual characteristics of cells and organisms.
The incredible intricacy and diversity of organic evolution is
the expression of the accumulated differences in these proteins.

POPULATION GENETICS

Population genetics is the study of the dynamics of genes in
a population (changes in relative frequency of genes as they are
passed down through successive generations of a group of
individuals). Population genetics takes the complexities studied
in molecular genetics as given, and deals with genes as atomic
objects. Similarly, the impact of an individualrs genetic
inheritance on its physical growth and makeup is immensely
complex. Here again population genetics abstracts a single value,
fitness (the individualrs ability to produce offspring), as its

object of interest.

1.2.1 DEFINITIONS
These simplifications allows population genetics to be built

up from a few basic definitions. The gene is the basic unit of
inheritance. A locus is the position on a chromosome occupied by
a gene. An allele is one of several alternative forms of a given
gene which can appear at a locus. The entire collection of genes
carried by an individual is its genotype; and the phenotype is
the physical manifestation of genetic information in an
individual genotype.

In populations of greatest interest, those in which diploid
individuals reproduce sexually, there are two alleles at each
locus, one inherited from each parent. The notation common in
multiple locus studies uses a letter to denote the locus and a

subscript to denote the allele. So B3 refers to the type three
allele at the B locus and, in general, B, is not the same gene as
A,. Because the chemical action of each allele at a locus is
independent of the other, the combination [A,,] is equivalent to
the combination [A,,].

1.2.2 THE HARDY-WEINBERG EQUATION
The basic mathematics of the way alleles are distributed in

a population is expressed in the Hardy-Weinberg equation, which
was developed in 1908 and is the foundation of mathematical
population genetics. The equation states that, barring mutations
and evolutionary pressures (differences in fitness) and assuming
random mating and distinct generations, the frequencies of given
alleles in a population will not vary under the action of
heredity, and that the frequencies of genotypes in the population
is stable and determined by the allelic frequencies. For instance
if we know the alleles A,, A, and A, appears in the population
with frequency f,, f2 and f, respectively (with f, + f, + f, = 1).
Then the frequencies in the next generation will be same and the
genotypes will have frequencies given by the square law:

(f ,+f ,+f ,) ==>

frequency f l2 f 2, f 3, 2f,f, 2f1f3 2f2f3

for genotype [A,,] [A221 3 1 [A121 [A,,] [A,,]

The analogy here would be dumping three colors of balls into a
barrel and taking them out with replacement two at a time at
without regard to order.

These equations yield more interesting results when the
fitness factor (the frequency with which a genotype passes it
alleles on to the next generation) is added, The notation used
for the fitness of genotype [A,,] is usually W,,. Now f, in the
second generation of a three allele one locus genotype can be
calculated as:

Wll * fll * 1 (each allele from [A,,] is A,)
+ W,, * f,, * . 5 (half the alleles from [A,,] are A,)
+ W,, * f,, * . 5 (half the alleles from [A,,] are A,)
+ WZ2 * f,, * 0 (none of the alleles from [A,,] are A,)
+ W,, * f2, * 0 (none of the alleles from [A,,] are A,)
+ W,, * f,, * 0 (none of the alleles from [A,,] are A,)

Because of the highly abstract nature of the variables in
these equations, they can be churned algebraically without
interference from field data in most cases. An incredibly large
(potentially unlimited) number of papers and dissertations have
been written using the permutations of this algebraic formulation
with a list of modifying assumptions such as mutation, migration,
chance events, diversity, competition etc. Most of these studies
suffer from two limitations based in the algebra. First, they use
only one-locus genotypes because calculations becomes very
awkward as soon as multiple loci are considered. This limitation
is far from trivial. In practice many genes seem to contribute to
multiple phenotypic traits in nonlinear combination with other
genes. Thus a phenotypic change that affects fitness will usually
caused by changes in the alleles at several loci. Second, while
algebraic models in which one of the Hardy-Weinberg assumptions
is altered can be built, changing several assumption leads to
extreme difficulties in calculation.

THE MODEL

While the general framework of population genetics lends
itself to algebraic analysis, there are specific problems that
require a finer tool for modeling. In this section I discuss one
such problem. I then describe the discrete simulation built to
study it; first its inner workings, then its output.

THE PROBLM

The problem our model is designed to investigate is the
question of the speed at which major evolutionary changes can
occur. Major change means a new phenotype replacing an existing
one in a population or, in the language of population genetics, a
shift in the frequencies of alleles at several loci that allows a
new fitter genotype to become predominant. The problem of the
time it takes for this to happen became apparent at the interface
of population genetics and paleontology. Evolution as imagined by
Darwin, although he worked without any knowledge of modern
genetics, was essentially a single locus model. He thought that
favorable mutations would be spread through a population
gradually because of the higher fitness of the inheritors.
This is a good model if we can allow enough time for the mutation
rate and a slight change of fitness to establish a new allele and
thus a new genotype; and many of the classic algebraic models
were built to fit this paradigm. Times of 1,000,000 generations
or more were typical.

But there are two distinct problems with Darwinian
gradualism. First, the fossil record shows that the predominant
phenotype in populations often changes very rapidly (rapidly, in
evolutionary terms, is 5000 generations). Rates like these cannot
be modeled with gradualism because calculated rates of gene
substitution are to slow. Second, as stated above, many
phenotypic changes require allelic changes at several loci. For
these changes the gradualist model will not work. Take for
example the following situation. A fitter genotype that requires
allelic changes at each of 5 locus may be available, but if
changes occur at only three or four loci a less fit genotype is
produced. In a large population, and with enough time, the
superior, but rare, 5 locus genotype will occasionally be formed
by chance from the combination of two inferior parents. That
individual will probably survive, but, when it mates, its
genotype will be lost because the genetic contribution of its
inferior mate. Its offspring will be of the weaker three or four
locus type. Under these conditions, in which mating diffusion

overcomes an advantage in fitness, no amount of time would be
enough for fixation of the new genotype.

THE SOLUTION

The model I propose as a solution for this problem allows a
small colony to be isolated from the main population. In such a
population the law of large numbers would be suspended and the
superior genotype might be fixed. If this colony were then
reintroduced to the population it would be immune to the effects
of mating diffusion because there would be enough superior
individuals in the local area for inbreeding. It would then be
able to rapidly invade and replace the larger group. Such a
scenario is supported by field data that show the geographical
break up of many population at the edges of their range. Although
this model deals with a significant problem and has a simple
intuitive appeal, it has not been studied because it cannot be
modeled algebraically. It requires that individuals mate with
particular neighboring individuals and this action is too
detailed for a stochastic approach. This limitation and the
existence of easily recognizable individuals in the problem
formulation argue for a discrete simulation as a research tool.

MODEL ORGAWIZATION

A model sufficient to simulate this solution should at
minimum have a population of discrete individuals each with
values for genotype and position. Position is important because
the isolation of the colony and the subsequent invasion would be
geographic in nature, and because it is also an obvious way to
control random mating. With random mating the tendency of the
colony members to mate with each other after the reintroduction
would be eliminated and the superior genotype would be lost due
to mating diffusion. The concept for position in the model is
that individuals exist on a two dimensional map and are given a
search distance in which to find a mate. When an acceptable mate
is found, the genes from the parents are mixed and the

offspring's genotype is established. The offspring then competes
with existing individuals in the search area. For this
competition the genotypic fitnesses of the offspring and the
existing individual are compared to a random variable. If the
offspring is successful, the position of the existing individual
is taken over by the offspring and the existing individual dies.
This arrangement has two advantages. First, the local search for
mates and living space is a mode common in many species. Second,
varying the search distance provides a simple way to control the
degree of inbreeding.

Each particular run is controlled by 5 parameters:

LOCI the number of loci; typically 2-4
ALLELES the number of possible alleles that can

appear at each locus; typically 2-3
SEARCH the distance each individual can travel for

mating and competition. A search distance of
1 covers nine squares, 2 covers twenty five;
typically 1-10 (at 10 the action is
essentially random.

FITNESS[] the competitive strength of each genotype.
For a two locus two allele run, the fitness
values might be W ,,,, = 1, W,,,, = 1.2 and all
other genotype sets = 0.9. ; typically 0.8-
3.0

INIT [] the initial frequencies of the alleles in the
population; typically 0.1-0.9

The model is designed with a large square region and a small
square region that share one common side. If the large region is
initialized with type 1 alleles at a frequency of 0.9 and type 2
at 0.1, the frequency of [A,,B,,] genotype will be 0.g4 = 0.656.

The smaller region has only type 2 alleles and thus is uniformly
[A22B22] genotype. Thus the model is started at the moment at
which the smaller, fitter colony is reintroduced to the main
population. A cycle of generations in which the individual at
each position is put through the mating-reproduction cycle is

then begun. The progress of the run is tracked by keeping
statistics on the frequencies of the genotypes and alleles in the
population. The model produces two types of output, static and
dynamic. The static output is a graph (see Figures 2-3 below)
showing the changes in the frequencies of the phenotypes over
time. The dynamic output is a display of the map with each square
filled with a color that represents the genotype of the
individual that occupies it. The map is updated every time an
individual is replaced which provides an animated display. The
time axis of the graph is replaced by real time and the user can
observe the shape of an invasion or the clustering effects of
inbreeding. I found that watching the animated display helped me
to see the workings of the model while the graphs tended to
confirm what I already suspected to be true. Figure 1 is an
example of a map.

Figure 1
Figure 1

shows the 20th generation of an invasion of by [A2,B2,], in black,
of a population in which [A,,B,,] had been fixed. The gray squares

symbolizing mixed genotypes with each level of grey denoting
another representing a higher total of type 2 alleles. The search
distance is 1 and the fitness of [A2,B2,] is 3.0 which accounts
for the uniformity of the original colony. The main population
was initialized with all [A,,B,,] for the sake of visual clarity.
In most runs their frequency was 0.9.

RESULTS

The parameters that were read in for creating runs were set
follows:

population size was set to 10,000. This size is common in
the literature and could be produced with a 100 X 100
map size.

colony size was always 36. It had to be small enough to
allow the unlikely event of fixing the rare superior
genotype.

the number of generations was always 500. This is a short
time in evolution and the largest time that can be
comfortably graphed on the screen.

number of possible alleles was 2. More alleles would have
made the division of genotypes into sets more complex
without adding to the generality of the experiment.

the number of loci in the genotype varied from 2 to 4
the number of genotype sets was always twice the number of

loci plus one. I used an algorithm that counted the
number of type 2 alleles, so that with two loci, the
set number would always be between 0 and 4.

the fitness of the genotype sets varied from 0.9 to 2.5.
Traditionally fitness of the dominant genotype is taken
to be 1.0

the search areas were 1, 2, 3 and 5.

Testing for each one of these combinations led to 48 runs,
Analyzing the results confirmed the strength of the colony
invasion hypothesis but showed that it is not perfectly general.
Runs with relatively low superior fitness and a large search

factor allowed the large population to defuse the small
population. The graph in Figure 2 shows fitness 1.15 and search
3.

Figure 2

The straight lines in this figure signify the elimination of the
superior genotype after only 50 generations. With a smaller

search area, which promotes inbreeding, even a relatively weak
superior genotype will succeed as Figure 3 shows. Here I used
fitness 1.20 and search 1.

Figure 3

It is important to note that the absolute values of the
search and fitness parameters are not significant. The ranges I
constrained them to seem to be reasonable but the detailed
working of the model does not represent any particular species
and there is very little empirical data of fitness. The
statements that can be made about the data concern the
differences in run results as values are changed.

In population genetics, and in this model, there is no

attempt to explain the effect of genotype on fitness with, for
instance, an algorithm that develops fitnesses using the details
of the genotypes. Rather the fitness values are defined

externally to suit the needs of a particular run. This
restriction means that this is not a model in which unimagined
behavior is likely to emerge. With so many parameters set from
the outside and the limited output, the model does not have the
latitude to be creative.

However, there are general lessons that can be learned from
reviewing its output. One is that multi locus change should be
fast. When the superior genotype is successful we see a typical
logistic curve as it overcomes the other types. Why do we not see
the flat curve predicted by gradualism. Calculations with the
algebraic model, predict a fitness of 1.001 in a one locus
genotype would take some 9300 generations to fix a ten thousand
member population. However such a low fitness advantage in a
multi locus model would lead to the superior genotype being lost
through diffusion. In this case as we saw in Figures 2 & 3 the
fitness must be 1.20 before invasion is possible and with this
fitness the curve will be steep and the evolution will be fast.

Another lesson is, given that the colony has been
established, the pace of evolution is not greatly effected by the
number of loci. In my model there are 10,000 non-superior
individuals, and it makes no difference how many genotypes they
are divided into, since the superior genotype reproduces itself
through inbreeding.

A final lesson is that under some circumstances the separate
colony is not needed at all. A small search area can produce
enough inbreeding for the rare superior genotype to become fixed
in a local area inside the population, and spread from there.

3. SOFTWARE
Software development was a major focus of this project. As

an exercise, after the model was running the C code was rewritten
in C++. In this part of the paper I focus on design issues that
emerged during the change over from functional to object-oriented
mode.

3.1 THE FUNCTIONAL DESIGN

Designing a program to implement our model using the
functional paradigm, was quite straight forward. In order to make
the contrast with object orientation clear, I looked for what
actions the model required and designed to them.

3.1.1 PROGRAM STRUCTURE

A top down analysis of the model (as shown in Figure 4)
yields a structure with initialization routines and drivers on

the highest level.

D O INDiVIDUAL

N E X T S P A C E

Figure 4

The first function in the initialization routine,

get-params(), brings in the run parameters from an external text
file, These parameters include values for the fitness, allele

initialization and a number of constants that define the size of
the genotype. As the initialization proceeds init-vid() is
called. Here video mode is established and the screen is
formatted. Finally the map itself is supplied with the first
generation of individual by init-map(). Init-map() iterates
through each square creating individuals. It calls init-gene() to
established the genotype of each new individual. This function
chooses alleles with a Monte Carlo function using the initial
frequencies given for the run. These genotypes are then sent to
make(). Make() calls get-set() with the newly created genotype as
a parameter and uses the returned set to find the fitness of the
new individual. With generation set to zero, the individual's
structure is complete; and make() updates the model's status and

assigns the structure to the active position in the ind[] array.
Make() (and the die() function) are the only places in the
program where the values in the main two dimensional array are
actually changed.

The other branch in the top level hierarchy, the driver,
puts each generation of individuals through the annual cycle and
keeps track of the statistics. The main loop calls
display-statso and do-generationo so that the modelfs display
is updated each generation. The loop continues until a preset
number of generations brought in from the external file is
reached. Do-generation is a loop nested inside the main loop that
indexes through each of the locations on the map putting the
individual there through its annual cycle. The first step in the
cycle, implemented in find-mate(), is for the active individual

to search for a mate. Here next-space() is called repeatedly
until an acceptable mate is found. For random mating,
next-space() would simply return a random (x,y) position. But
when there is a local search area in use, next-space() indexes
through the spaces that are within the search distance of the
active individual. Since an individual on the edge of the map
will sometimes search beyond the edge, a function that defines
the map, in-bounds(), is called by next space to filter out
undefined positions. When a mate has been found, the genotypes of
the active individual and the mate are mixed by the reproduce()

function with each locus in the offspring's genotype receiving
one allele from the analogous locus in the active individual and
one from the mate. Competition for space proceeds by calling
next-space() to find an existing individual in the search range,
To parallel the action of the Hardy-Wineberg equation, the
offspring's fitness is divided by the fitness of the existing
individual plus the offspring's fitness and the resulting
fraction is compared to a random variable. If the fraction is
higher, the offspring replaces the existing individual, When this
happens, the die(existing) is called. This function zeros out the
existing individual's structure and updates the model's status.
Then make() is called and the offspring's data is entered at the
position it has just won.

2 DATA. TYPES

The main data structures are suggested by an inspection of
this design, There are two main actors: the map and the
population. Early in the project I assumed that there would have
to be a structure for each one. But this would have led to a
duplication of data since the individuals have to know their
position and each position has to be able to return the
individual who is there. This dilemma was solved when it was
realized that squares that make up the map are always occupied by
one individual (the death of an individual can only happen when
it is replaced) and that individuals never move from space to
space; i.e., in the context of this program, an individual is a
space. This one-to-one mapping allowed me to combine the two
structures into one. Since the model simulates the actions of
individuals on an X Y map, a two dimensional array of structures
representing individuals and indexed on their positions was made
the central data structure.

An accommodation that was made for the sake of prototyping
was making the array of individuals, ind[], global. On its face
this decision runs counter to the tenets of modular programming.
~ u t closer examination supports the move. Ind[] is used in more
than half of the functions in the program and would have to be
passed through many others to be visible where it is needed. Thus

making it local would be of no value since, in C, an array cannot
be passed by value and any of these functions would then be
capable of making the dreaded inadvertent change.

The variables carried by the elements of this array of
individual structures are its genotype, fitness and generation.
The genotype is used in reproduction to determine the genotype of
the offspring and in competition to assign a fitness. Since there
can be a very large number of possible genotypes, it was decided
that they would be grouped into sets for the purpose of assigning
these values. The second important data structure then, is an
array of fitnesses indexed on set number. The sets can be defined
in various ways for various runs and do not all have to include
the same number of genotypes. To obtain a fitness for a given
individual its genotype must be mapped to a set number by an
algorithm and that number is used as the index to the fitness
array. To avoid having to do this repeatedly for a given
individual, fitness was added to the individual structure.

3.1.4 MODULARIZATION
These examples show how the functions and data were tailored

to the needs of the model. But there was another parameter in the
design process. A major feature in the project was its
exploratory nature. While the broad outlines of the event I was
modeling were understood from the beginning, the details were
not. It was expected that by experimenting with the model, new
avenues for research into fast paced evolution would be found.
From the software development standpoint this meant that the
design would have to be seen as a prototype and that the program
structure would have to accommodate change. Examples of two
changes I made were: a different algorithm for defining the sets
of genotypes; and additions to the data structure of the
individual. Changing the set mapping algorithm did not present
problems from the view point of design. Standard modular design
methods made this change seamless. The new function was called
with the same parameters, so no changes had to be made anywhere
in the rest of the code.

But adding to the main data structure which is accessed from

many places in the code was quite disruptive. The second change
involved adding an origin value to each allele. The value is set
at initialization giving a unique number to each allele in the
population. As the run proceeds, data is kept on the number of
loci in which the two alleles are identical by decent i.e. which
have the same origin number, To do this the allele was redefined
as a structure with two elements, the allele and the origin
number. In retrospect this arrangement was seen to be a mistake.
The change reverberated throughout the program because everywhere
an allele value was used the variable had to be called as
ind[].geno.al instead of ind[].al. This required altering lines
of code in many places in the program. The error, however, made
sense from a functional standpoint. The allele structure neatly
instantiated the semantic requirements of the new value, and made
the code for copying and transferring alleles more straight
forward.

The exploratory nature of the project was also expressed in
the structure of the program which was dividing into 10 different
files. The modularization of large programs into programmer-sized
files is a standard method for software developers. But this was
a small program and, if it had been developed with the aid of a
complete set of requirements, it could have been written in the
one-programmer, one-module mode. In fact it was started that way
and as each feature was added the entire program would be saved.
Blind alleys made this procedure awkward. New code was being
written in several places in the module at any given time. So
when it became necessary to backtrack to a previously saved
module because one of the concepts did not work, improvements
made at other places were lost. The grouping of functions into
files was arranged with an eye toward future changes. Functions
that would be altered by an imaginable change were put in the
same file. The outcome was as follows.

Module Functions

U T I L I T I E S
MAIN main ()

UTIL getnum()
getfracto

SETUP setup(
get next()

DRIVE do-individual()
do-generationo

A C T O R S
INIT init ()

COMP compete ()

NSPAC nextspace()

INBOU inbounds()

SET get-set (

D A T A
BKEEP update-stat()

display-stat()

GENE reproduce()
copygene0
order gene()
equal(
initgene()

VIDEO initvid()
setpalleteo
cllr()
format ()
do-ledger()

This module was created for
sentimental reasons.

These random number functions
should never be changed

These two functions bring
constants in from the external
file and set the values of the
global variables.

These two functions define the
flow of control in the
program.

This function defines the
genotypes that fill the
initial map

This function was changed
often to make our system
comparable to algebraic
systems.

This function controls the
degree of inbreeding.

This function defines the
shape of the map.

This function defines the
genotype sets

The output statistics were
local to this module.

These functions manipulate the
gene structure.

These functions all have to do
with the screen. They include
<graphics.h> and share several
constants.

INDIV die ()
make () These two functions have

access to the array of
individuals

The functions were grouped into modules for three different

reasons delineated by the headings. The modules in the UTILITY

section were formed because their functions perform related

services for the program. Changes in, for instance, the format of

the external data file would be reflected in the Setup module

only. The ACTOR modules are groups of functions that define some

part of the individual's behavior and were changed often as I

simulated different situations. The modules in the DATA section

were formed because they would have to be changed if one of the

data structures were changed. The different reasons for forming

modules and the fact that modules do not fit unambiguously into

one section, hint that the system did not make changes perfectly

local. For instance, get-set() takes a genotype as a parameter

and returns the number of the set to which the genotype belongs.

It was put in its own module because the genotype-to-set mapping

changed with the needs of the simulation. However, it uses the

genotype structure and, if data were the driving concern, it

could have been put in GENE. This sort of overlap made the

modulerization less than perfect, but on the whole it worked

well.

OBJECT ORIENTED DESIGN

After the functional code was completed and the model was

running, the entire project was rewritten in C++. What follows

are some observations about the change over.

3.2.1 CLASSES

In Object Oriented Design (OOD) data and functions are tied

together in classes that express the functionality of some part

of the problem space. The question the designer asks is "what

really exists in the problem space?" or "What are the entities

that act in the problem spacefi The goal is to find a dog and a

cat instead of a pile of legs and a pair of bodies. Answering

these questions divides the problem into chunks that have two

interrelated qualities. They tend to model real world entities

and thus our fashion of thinking; and they have low coupling.

Within the context of the module formation above, these decisions

combine the same parameters as DATA and ACTIVITY for real

entities or DATA and UTILITY of programming entities.

Rewriting the simulation using OOD allowed me to study the way

function grouping decisions are made in a different context, The

first difference was that the grouping of functions into classes

is forced on the designer early in the process. With the

functional concept it was an afterthought - done to accommodate
ongoing changes. With OOD, the designer's first approach to a

problem is deciding what the objects are; and these decisions
will be freed from the details of implementation. It is also true

that the search for objects is a more general guide to program

development than designing for modifications, because it does not

require the designer to look into the future.

3.2.1.1 BEINGS

The most obvious class in this simulation is the beings (the

individuals in the functional design). They combine data: their

genetic make up, age and position; actions: searching, mating and

competing; and a clear is-ness. This last quality is easy to see

in the thing being simulated (what laymen like to call reality),

There will be actual fruit flies, or whatever, swapping genetic

material. Is-ness is also easy to see at the modelling concept

level. Discrete simulations are defined by their technique of

keeping track of individuals. And at the programming level, using

the same analysis as the functional method, the action functions

are going to share the data associated with a being.

At the other end of the scale of objectness is Pos, the

structure that holds X,Y position values. It has data, and

functions act on it; and the fact that it is abstract and passive

should not rule it out (see map below). Why not make Pos a class?

Inspection of the way Pos is used shows that it would be a

nuisance class. There are no special operations on positions that

combine or change them. The only function that deals with pos

exclusively is the extractor: getPoso. So its only effect of a

position class would be to create awkward code like:

The value of thinking about Pos as a class is that it teaches the

designer to ask another question:"Why should this not be a

class?18

3.2.1.2 GENES

A second class is clearly the gene. It combines data, the

arrangement of particular alleles; actions, reproducing, copying

and initializing; and they clearly exist in the problem space.

The interesting question raised by the gene class is its

relationship to beings. In the real world, genes are contained in

individuals. In the model, genes are part of the data of the

individual. This inclusion is expressed in C as a nested data

structure. C++ offers an additional mechanism: inheritance. The

classic use for inheritance is for a number of related classes to

inherit functions and data from an abstract parent class that

expresses their similarities. This implies a spreading tree

structure with functionality and diversity being added at each

level. The basic relationship between child and parent in this

sort of tree is "is a". For example, horse is a mammal. This

relationship does not obtain between beings and genes. There is

no spreading in the move from the gene level to the being level;

and a being is not a less general gene. With this in mind, the

original implementation had the gene object, declared as gnt,

included in the being object along with position and age. But

this created two subtle problems. The first was basically

aesthetic. Including the gene created ugly code like:

newgene = gnt->reproduce(*gnt, *(mate->getGene())) ;

in which the included gene is used to locate its reproduce()

function for which the gene itself is a parameter. A more

important problem involves the calling of constructors. Gene was
coded with three constructors: default, copy, initialize. The
copy constructor for gene is:

Gene(Gene& gn) (*this= gnt;)

It takes an existing gene as its parameter and copies its

genotype and set onto the new gene. In a beingts life cycle, its
gene is created, competes for space, and then, if it is
successful, is copied into the newly created being along with age
and position. This copying is done by the being make constructor.

The problem is that this constructor knows that the gene is
included and it automatically calls the default constructor for

gene :

so the copying must be done in the body of the code. However, if
Gene is a base class inherited by Being, a syntax is provided for

specifying the Gene copy constructor from the Being make

constructor:

Being(Pos post int gen, Gene gn) : Gene(gn)

(

setup(pos) ;

generation = gen;

1
This code explicitly calls the Gene copy constructor with gn and
then creates a being with position pos and age gen. This solution
was chosen for its cleanliness even though is bends the rules of

inheritance.

3.2.1.3 w
A more difficult question for the designer is "does the map

exist?", At first glance it does not seem to be a good candidate

for classhood. The map structure could actually be eliminated

from the program all together. Searching could be performed by

polling random individuals until one with a position in the

search range is found. With this in mind, it could be argued that

the map is just a convenient index that returns a nearby
individual. The statement is true with the exception of the word

'justf. An index is more efficient computationally, but also

parallels more closely the way that searching should be done. In

the field, searching a local area is done by the individual

sensing other individuals are in the range, not by contacting

others and asking if they are nearby. Here there is no agent

necessary to specify which individuals are in the range; they are

simply there. But in the code, specifying is an action that must

be performed by something and that thing is clearly the map. The

map-as-object has another responsibility: defining its own shape.

In the development of the model, when the colony was added to the

square map, another function, in-bounds() was written to mark the

inaccessible squares in the two dimensional array. This function

became a private member of the Map class.

Now we have an action and an actor, the basic requirements

for building a class, but there are two more arguments for making

the Map a class: coupling and control. In the functional program

searching is expressed as a two dimensional array and a function.

Finding the next square is done by nextspace(). Specifying the

individual is done by using the position from nextspace() as an

index to the map array with code like:

pos = nextspace();

mate(ind[pos,x, pos.y]) ;

This code has the functionality required for the model but mate()

is tightly coupled with the implementation of the map data

structure; in this case ind[]. To loosen the coupling we need a

function that takes position as a parameter and returns an

individual, allowing code like:

pos = nextspace();

mate(get-ind(pos)) ;

which might have been used if changing maps had been required by

the model. In its effort to reduce coupling, this design would

create a primitive object with ind[] as its data and get-ind()

its function. This is another argument for making Map a class.

The other OOD tenet that influenced the decision to make Map
a class is decentralization of control. As much as possible, the

flow of a program should be driven by the interaction of objects,

as opposed to the hierarchical system in functional design. In

the functional program initializing is implemented as a module

that indexes through the map calling init-gene() and make(). With

OOD the indexing function forEachSpace() becomes a member of the

Map object. It takes a pointer to the being initialization

function as a parameter and sends each position on the map to it.

With a different parameter, a pointer to a function analogous to

do-individual, it can be called from the main() module instead of

building a control loop there. The ultimate arrangement for

control by object interaction would be each being telling the

next one to go through its cycle, but this would require

concurrency and is thus beyond the scope of C++ when it is run on

a DOS system.

3.2.1.5 UTILITIES

In addition to objects present in the thing being modeled,

classhood can be bestowed on objects present in the program. The

output section has data and functions local to it and was

actually implemented as a primitive class in the functional

program. The output module, which holds update-status() and

display-status(), was formed because it allowed the variables

that they both use (set-count[] and allele-count[]) to have file

scope. The values of these variables are the numbers of

individuals in each genotype set and the total numbers of various

alleles in the population. These values are never used by the

individuals; they are called only for output. Update-status() is

called by make() and die() every time there is a change in the
population. At the end of each generation the driver calls
display-status(). It formats those values and prints them to the
screen. In order for update-status() to have access to these

variables, in a standard modular program, they would have to be
passed all the way down the control structure to make() and die()

and used as parameters. To avoid this awkward arrangement in our
code, the functions were placed in a separate file and the

variables were declared static within that file. This file, then,
operated in much the same way as a class in C++. In fact, classes
that preserve most object oriented functionality (with the major
exception of inheritance) can be written in a procedural

language. Object oriented languages like C++ provide syntax that
makes classes cleaner, but a large part of the power of OOD, the
guidance it gives to the designer for building in low coupling,
is available without these enhancements. In saying this I am in

disagreement with the idea [Ames 911 that inheritance is as
central to OOD as data abstraction.

It should be noted that this class did not survive the
recoding to C++. A class can have variables that have the same

values for each of its objects. This classification, static, is a
good place to put numSet[] and numAl[]. It meant that a separate
file to make the output variables local was no longer necessary.
The functionality of update-status was moved to the Being class;
and output-status() which deals directly with the screen was put
in the video class where it belonged in the first place.

The first C++ video class written, treated the entire screen
as its entity. It included a number of constants for positioning

the map, the legend and the graph, and functions for displaying
them. The class declaration was as follows:

class Video

{

private :

int box ;

int Tvrt, Thor;

int border ;

int graphtop I

int graphbottom ;

int graphlef t ;

// side length of individual
square

// text to pixel conversions
// width of outline
// graph position parameters

int left ; // text position parameters
int top ;

char* format(float, int) ; // format numeric text
void do-legend (void); // initialize screen
void format-display(void); // areas

public :

void initVid(void); // initialize video
// system & screen areas

void display-ind(Pos, char); // display an individual
void exit-vid(); // remove video system

This first module worked, but the numerous examples of video

classes in the literature led me to rethink the arrangement. The

second video module was divided into finer classes held together

in a network of inheritance. In fact, GraphicElements classes are

so finely divided that calls to them look just like calls to

their underlying C++ functions. In this situation the criteria

used in developing classes is somewhat different than it was with

the independent class discussed above. The second arrangement is

shown in Figure 5.

G r a p h i c E l e m e n t

F r a m e P i x e l R e c t a n g i e Text E l e m e n t

Figure 5

Here classes are sometimes established because they combine

elements from the hierarchical layer below them rather than

because they represent some active entity. An example of this is

GraphicElement, the ultimate base class in the video module,

which holds location and color, but has no methods of its own. It

is an abstract class, one that will never be instantiated. The

other abstract class, TextElements, holds no data but has the

text-to-graphics conversion function needed by both Number and

Caption. In a functional system this routine would have simply

been a separate function called by Number and Caption. But

inheritance provides a more structural way of letting these parts

of the system work together. In the same way Pixel inherits its

location data from GraphicElement and provides the plotting

method, Together they display a single dot on the screen.

The facilities offered by these classes combined with the

TextElement classes, are used by Ledger, Graph and Map to produce

the three output windows. These classes have more claim to

modeling part of the problem space than the above do. The Windows

classes coordinate the position of their elements and have both

initialize and update functions. However, as Figure 5 shows there

was no seminal Window class in the second design. They each

inherited from a GraphicElement. This was not satisfying because

nothing in the hierarchy expressed windowness. But it was an

implementation issue that demonstrated the need for third design

shown in Figure 6.

I I
Figure 6

G r a p h i c E i e m e n t

The Window class was needed to hold the virtual function

update(). In C++ objects from different classes often perform

similar actions. It is sometimes necessary to call these actions

from an array. Having a common ancestor with a virtual function

which is instantiated differently in each of the classes allows

code such the following:

Pixe l T e x t E l e m e n t
L

M
1

M Window
N u m b e r Word I

I

Ledger Graph

Window* clss[3];

Graph* gprt = new Graph(x, y, z) ;

Ledger* lptr = new Ledger(x, y, z) ;

clss[O] = gptr;

clss[l] = lptr;

for (int i = 0; i < 1; i++)

window[i]->update();

This would not compiles if Graph and Ledger did not inherit from

Window.
The third design tries to combine the concept of the class

as an entity modeler with the organizational power of

inheritance. It shows that the process of defining classes There

is a satisfaction and a clarity in way that inheritance provides

a syntax for the interdependence of functions and the way it

builds then into a hierarchy. But it does these things at the

expense of the basic role of classes: that of gathering together

related parts of a program into a cohesive whole.

3.2.1 CIASS LIBRARIES

It was decided that letting the Map hold the Being objects

coupled the two classes too tightly. A more object-oriented

approach would be putting the beings in their own data structure.

This way the order of indexing through each generation would not

be tied to position. To implement the list of beings, I used code

from a library.
One of the goals of OOD is to increase the reuse of code.

The Borland Turbo C++ 3.0 used for this project came with a set

of class libraries that are designed to be plugged into user

code. Because they are designed for general applications, the

libraries are mainly data structures that do not make great use

of the power of classes: they have member functions but not much

private data. Most of them are container classes such as stacks

and queues: classes that can contain objects of other classes. At

this point, early in the development of reusable code, there is a

great gap between the general purpose data processing classes

that are supplied with object-oriented languages and application

specific classes written by users. It will be interesting to see
how and whether the gap can be filled.

For this project I used the linked list implementation from

the class library. In order to maintain generality the List

clearly cannot hold data of a particular type. Borland avoids
this by deriving both the containers-as-objects and the objects

they store from the Object class. Containers can then store

references or pointers to Object. The Object class has a set of

pure virtual functions: functions that must be instantiate by the

user in the inheriting class. One of these functions, isEqual()

was written in Being as:

int isEqual(const Object& testBeing) const

{

return (serialNumber==((Being&)testBeing).serialNumber);

1

List can use this function to find a particular being, or

other object, without ever knowing the details of its structure

or even what it means to be equal.

CONCLUSIONS

This project offers an interesting example of one mechanism

by which the evidence of rapid evolution found in the fossil

record can be explained. The use of a discreet simulation makes

it possible to analyze the conditions under which this mechanism,

invasion by a small cohesive colony, can succeed. The simulation

also provides an excellent subject for an investigation of object

oriented design in general and the difference between classes

shaped by inheritance and classes shaped by the problem space in

specific.

B I B L O G R P H Y

Ayala, Francisco, Powulation and Evolutionary Genetics - A
Primer, Benjamine/Cummings Publishing, Menlo Park, CA, 1982

Crookes, J, "Simulations Using Cw in Com~uter Modelina for
Discrete Simulation, John Wiley & Sons, New York, 1989

Kimura, Motoo, Theoretical As~ects of Po~ulation Genetics,
Princeton University Press, New Jersey, 1971

Ladd, Scott, Turbo C++ Techniaues and A~~lications, M&T Books,
Redwood CA, 1990

Lafore, Robert, Obiect-Oriented Prouramming in Turbo C++, Waite
Group Press, Emoryville, CA 1991

Lounamaa, Pertti "An Incremental Object-oriented Language for
Continuous Simulation Modelsm in Artificial Intelliaence,
Simulation & Modelinq Wiley Interscience, New York, 1989

Pidd, Michael wDeveloprnents in Discreet Simulationw in Comguter
Modelina for Discrete Simulation, John Wiley & Sons, New York,
1989

Spiess, Eliot B. Genes in Pogulation, John Wiley & Sons, New
York, 1977

Templeton, Alan R. "Adaptation and the Integration of
Evolutionary Forcesw, in Pers~ectives on Evolution, Sinauer
Associates, Sunderland MA, 1982

Wallace, Bruce, Basic Population Genetics, Columbia University
Press, New York, 1981.

Winblad, Ann, Obiect-Oriented Software, Adison-Weley, Reading MA.
1990

APPENDIX A
Functional code

...
* *
* FILE: G S - M A I N . C k * *
* main module for the genetic simulation project. * * *
* Input : argv[l] the name of the setup file *
* *

include <stdio.h>
include <stdlib.h>
include <malloclh>

include wgs-const.hw /* global constants and types
include "gs-prots.hH /* module for prototypes */

.

M A I N
entry point for genetic simulation

Input: argv[l] name of the external parameter file ...
int main(int argc, char * argv[])
C
int gen; /* the current generation */
int numgen; /* the last generation to be run */

setup(&numgen, a~gv[l]); /* bring in run parameters from the text file */
/* create dynamlc array of individuals */

if ((ind = (Ind *) malloc((long) SIDE * SIDE * sizeof(Ind)))==NULL)
{

printf(" insufficient memory I t) ;

exit(100);
}
init-vid(); /* set video mode and palette */
srand(RND); /* start the pseudo random series at RND */
format-display(); /* setup the display screen */
initialize() ; /* create initial individuals *(
display-status(0) ; /* print the frequencies of inltial individuals */

/* main loop */
for (gen = 1; gen < numgen; gen++)
I
I

do-generation(gen) ; /* put each individual through the annual cycle
*/

display-status(gen) ; /* print the frequencies in this generation */
/* leave display on screen */
/* reset video mode */

APPENDIX A
Functional code

...
* *
* FILE: G S - B K E E P . C * * *
* *
...

struct videoconfig vc;

static int set-count [MAX-SETS];
static int allele-count [MAX-SETS];
static int locus [MAX-SETS] [8];
static int size = 0;
static int f-stat = 0;

extern int graphbottom;
extern int graphleft;

extern int left ;
extern int top ;

/* bookkeeping variables */

/* graph position parameters */

/* text position parameters */

FILE* outf ile; /* external parameter file */

...
U P D A T E S T A T U S

change the status to account for a birth or death

Input: pos position of chanqed individual
count count = 1 for blrth, -1 for death ...

void update-status(Pos pos, char count)
{
int i, j; /* loop control */
Genotype gn; /* space saver */

/* keep track of the total number of individuals */
size += count;

/* k e e ~ track of the number of individuals in each set * /
set-counk[ind[~2(pos)].set] += count;

/* put the qenotype in the space holder */
genecpy(gn, 1nd[D2(pos)].genotype) ; /* keep track of the number of each allele in the population */
for (j = 0; j < GN-LEN; j++)

allele-count[gn[j].al-1] += count;
for (i = 0; i < LOCI; i++) */ count the alleles at each locus
{ that have a common origin */

if (gn[i*2].origin == gn[i*2+l].origin) E-stat += count;
/* update the number of alleles at each locus */

for (j = 0; j < STRANDS; j++)

APPENDIX A
Functional code

k = gn[i*2+j].al-1;
locus[~][k] += count;

1 > >
...

D I S P L A Y S T A T U S
print the frequencies of each of the sets and each of
the allele types to the screen

Input: gen the current generation ..
void display-status(int gen)
{
int i, j; /* loop counter */
char buffer[20]; /* text for output */
static int column = 0; /* graphics column */
int decimal ; /* number of decimal points to display */
int point; /* graphic position holder */
char* gens = "th generation";

/* print generation */
gcvt((double)gen, 4, buffer);
- settextposition(top-1 , left - 15);
- outtext(strcat(buffer, gens)) ;

/* print the frequency of each set */
decimal = 3;
for (i = 0; i < SETS; i++)
{

strcpy(buffer, format((float) set-count[i] / size, decimal)) ;
- settextposition(top + i, left - 20);
- outtext(buffer) ;

>
/* print the frequency of each allele */

decimal = 3;
for (i = 0; i < ALLELES; i++)

{
strcpy(buffer, format((float) allele-count[i] /

GN-LEN / size, decimal)) ;
- settextposition(top + i + SETS + 2, left - 20);
- outtext(buffer) ;

}

/* print the frequency of loci with alleles identical by decent */
decimal = 4;
strcpy(buffer, format((float) f-stat / size, decimal)) ;
- settextposition(top + SETS + ALLELES + 3, left - 20);
-outtext(buffer) ;

/* plot the graph */
column ++;
for (i = 0; i < SETS; i++) /* for each allele */
{ /* add a dot to the graph of frequency */

- setcolor(i + 1) ;
point = graphbottom - (int)((float)set-count[i] / size * 100) ;

APPENDIX A
Functional code

- setpixel(graph1eft + 20 + column, point+l);
- setpixel(graph1eft + 20 + column, point);
- setpixel(graph1eft + 21 + column, point+l);
- setpixel(graph1eft + 21 + column, point);

1
1

...
* *
* FILE: G S - C 0 M P . C * * *
* *
...

...
C O M P E T E

new individual tries to replace an existing individual

Input: parent position of the parent individual
newgene genotype of the new individual

Return : position of the defeated individual
or NULL is offspring fails ...

Pos compete (Pos parent, Genotype newgene, int gen)
{
int total-tries = 0; /* number of tries before failure */
POS existing; /* position of an existing individual */
int tries; /* number of tries (including out of

bounds) used to find the next space */
Pos FAILURE = { -1, -1) ; /* flag for search failure */

while (total-tries < 2) /* try 2 times */
{ /* get the next position in the search grid */

existing = next-space(parent, &tries, SEARCH) ;
total-tries += trles; /* keep track of the total number of tries */

/* do not compete with arent */
if ((existing.~ I = parent.^ 17 existing.~ != parent. y)

/* new individual is fltter than existing */
&&(fitness[get-set(newc~ene)] /

(fitness[ind[D2(exlsting)].set] + fitnessfget-set(newgene)])
> get-fract()))

{
return (existing); /* existing individual will be replaced */

> }
return (FAILURE); /* flag for defeat */

}

APPENDIIIX A
~unctional code

...
* *
* FILE: G S - G E N E . C *
* *
* *
...

...
R E P R O D U C E

create a new genotype using the two parents genotypes

Input : gnl genotype of father
gn2, genotype of mother
newgene genotype of offspring ...

void reproduce(Genotype gnl, Genotype gn2, Genotype newgene)
{
int i, j;

for (i = 0; i < LOCI; i++) /* for each locus */
{

j = i * STRANDS;
newgenerj] = gnl[getnum(O,l)+j]; /* one of the father's alleles */
newgene[l+j] = gn2[getnurn(O,l)+j]; /* one of the mother's alleles */

}

...
C O P Y G E N E
copy gn2 to gnl

Input: gnl gene copied to
gn2 gene copied from ...

void genecpy(Genotype gnl, Genotype gn2)
f
'char i;

for (i = 0 ; i < GN-LEN; i++) gnl[i] = gn2[i];

...
O R D E R G E N E

arrange each locus with alleles in increasing order

Input : gn genotype to be ordered ...
void order-gene(Genotype gn)
{
int i, j;
Gene swap;

APPEEJII)IIX A
Functional code

for (i = 0; i < LOCI; i++) /* for each locus */
{

j = i * STRANDS;
if(gn[j].al > gn[j+l].al) /* if the lower allele is second */
{

swap = gnCjl;
gnE j I = gn[j+l];
gn[j+l] = swap:

1) 1

I

E Q U A L
return true if two gene arrays are equal, false if not

Input: gn genotype to be checked
template genotype to check against ...

int equal(Genotype gn, Genotype template)
{
char i ;

for (i = 0; i < GN-LEN; i++)
{

if (gn[i].al != template[i].al - '0' & & template[i].al != '* ')
return(FALSE) ;

}
return (TRUE);

)

...
I N I T G E N E

create genotypes with a monte carlo process using the setup
probabilities for alleles ...

void init-gene(Genotype gene)

int i, i;
float-sGm, mark;
static unsigned int origin = 0;

for (i = 0; i < GN-LEN; i++) /* for each allele */
{

mark = rand() / (float) (RAND-MAX+l); /* 0 <= mark < 1 */
j = 0;
sum = 0;
while (mark >= sum)
{

sum += ALL-INIT[j++]; /* sum the probabilities */
)

qene[i].al = j; /* allele is type j */
lf (j==O) getcho;
gene[i].origln = ++origin; /* set the origin */
1

1

APPENDIX A
Functional code

...
* *
* FILE: G S - D R 1 V E R . C * * *
* contains the main loops for the program *
* *
* *
...

...
D O G E N E R A T I O N

put every individual in the map through its annual cycle

Input: gen number of the present generation ...
void do-generation(int gen)
{
Pos active; /* the position of the active individual */
char c ; /* key board input */
int start = 1;

/* process the large region */
for (activeex = start; active.^ <= SIDE1; activeex++)/* for each column */
{ /* for each row */

for a active.^ = start; active-y <= SIDE1; active.y++)
{

do-individual(active, gen) ; /* put individual through cycle */
if (kbhit()) /* check for quit signal */

if ((c = getch()) == 'q') exit (3);
}

1 /* process the small region */
for (active-x = SIDEl - SIDE2 + 1; active.^ <= SIDE1; active.x++)
{

for (active.y = SIDEl + 1; active.y <= SIDE; active.y++)
do-individual(active, gen) ;

1 1
...

D O I N D I V I D U A L
put an individual through its annual cycle

Input: active position of the active individual
gen current generation ...

void do-individual(Pos active, int gen)
{
Pos* mate, /* pointer to the position of the mate */

new; /* position invaded by the offspring */
Genotype newgene ; /* genotype of offsprlng */

debug(active, 9); /* for demo runs */

AIIIIENII)I:X A
Functional code

/* get mate if available *(
if ((mate = find-mate(actlve)) != NULL

/* active individual is at least one generation old */
& & ind[D2(active)].generation <= gen)

{
debug(*mate, 10); /* for demo runs */

/* get the genotype of the offspring */
reproduce(ind[D2(active)].genotype,

ind[D2(*mate)].genotypeI newgene) ;
/* offspring competes successfully */

if (in-bounds(new = compete(active, newgene, gen)))
I <

debug(new, 11); /* for demo runs */
die(new) ; /* eliminate the individual at new */
make(new, newgene, gen) ; /* make a new individual */

1 > >
...
* *
* FILE: G S - 1 N B O U . C JC * *

...
I N B O U N D S

Input : pos the position to be tested
Return : boolean flag for good position ...

int in-bounds(Pos pos)
{

if (
(pos.x> 0

&& p0s.x <= SIDE1 /* pos is in the large area */
&& p0s.y > 0
&& p0s.y <= SIDEl

1

I I
I /* or */
(p0s.x > SIDEl - SIDE2

& & p0s.x <= SIDEl
&& p0s.y > SIDE1 /* pos is in the small area */
& & p0s.y <= SIDE

I
) return (TRUE);

return (FALSE);
}

APPENDIIX A
Functional code

...
* *
* FILE: G S - 1 N D I V . C * * *
* contains modules that modify values for an individual * * *
...

#include <stdio.h>
#include ttgs-const. hgt
#include wgs-prots.h"
#define GFILLINTERIOR 3 /* graph.h not included in this file */
#define EDD 1
#define SUBTRACT -1

...
D I E

eliminate an individual

Input: out position of dead individual ...
void die(Pos out)
{

if (ind[D2(out)].number > 0) /* individual is alive */
{

update-status(out, SUBTRACT) ; /* do bookkeeping */
ind[D2(out)].number = -1; /* mark as dead */

} 1
...

M A K E
create a new individual

Input: pos position of new individual
gene genotype of new individual
gen current generation ...

void make(Pos pos, Genotype gene, int gen 1

Ind new; * holder for parameters */
static long number = 0; /* unique number for individual */

/* define the gene, number and generation of the new individual */
genecpy(new,genotype, gene);
new.number = number++;
new.generation = gen;
new.set = get-set(new.genotype);

ind[D2(pos)] = new; /* put individual in the position array */
update-status(pos, ADD); /* put individual in the model */
display-ind(pos, new.set, -GFILLINTERIOR); /* display individual */

1 ...
D 2

return the offset to the individual specified by pos ...
int D2 (Pos pos)
{

return ((p0s.x-1) * SIDE + p0s.y-1) ;)

APPENDXX A
Functional code

...
* *
* FILE: G S - 1 N I T . C * * *
JF contains the map initialization routines *
* *
* *
...

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include "gs-const.hw /* global constants and types */
#include flgs-prots.hw /* module for prototypes */

...
I N T I A L I Z E

fill the map with individuals ...
void initialize()
{
Pos pos ; /* structure holding x, y position */
int generation = 0; /* number of the current generation */
Genotype gn; /* structure holding an individualfs alleles */

/* fill the main area with individuals */
for (p0s.x = 1; pos.x <= SIDEl; pos.x++) /* for each column */
{

for (p0s.y = 1; p0s.y <= SIDE1; pos.y++) /* for each row */
1
t

init-gene(gn); /* create genes using a stochastic process */
/* link position, gene and generation to make an individual */

make(pos, gn, generation);
1

1 /* fill the smaller area with individuals */
ALLINIT[l] = 1; /* genotype contains only type 2 alleles */
ALL-INIT[O] = 0;
for (p0s.x = SIDEl - SIDE2 + 1; p0s.x <= SIDE1; pos.x++)
{

for (p0s.y = SIDEl + 1; p0s.y <= SIDE; pos.y++)
t
I

init-gene(gn);
make(pos, gn, generation);

1 1 1
...
* *
* FILE: G S - M A T E . C tk * *
* *
...

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include wgs-const.hw
#include wgs-prots.hH

AE'PENTDIIIX A
Functional code

...
F I N D M A T E

search the grid around the active individual for a mate
until a mate is found or all the positions have been checked

Input: active the position of the active individual

Return : pointer to the position of the mate
or NULL is no mate is found

...
Pos* findmate(Pos active)
{
int search-area; /* area of the search grid */
static Pos mate; /* the position of the mate */
int tries; /* the number of positions checked by next-space */
int total-tries = 0; /* total number of the tries */

/* get the number of spaces in the search grid */
search-area = pow((2 * SEARCH + I), 2);

/* while there are unchecked positions */
while (total-tries < search-area)
{ /* get the next individual to check */

mate = next-space(active, &tries, SEARCH);
totaltries += tries;

/* mate is not the active individual */
if ((ind[D2(active)].number != ind[D2(mate)].number)

/* mate is the same generation */
&& (ind[D2(mate)].generation == ind[D2(mate)].generation))

return (&mate); /* if this mate is usable, return its address */
f
return(NULL); /* no mate was found in the search grid */

1

...
* *
* FILE: G S - N S P A C E , C J(* *
* *
...

AF'F'ENT>IE:X A
Functional code

...
N E X T S P A C E

return the next position found in the search grid. Positions
are found by indexing the offsets from the active position

Input: active, the position of the active individual
tries, attempts to find a position that is in bounds
depth the greatest search distance from active ...

Pos next-space(Pos active, int* tries, char depth)
{
int Xoffset, Yoffset; /* offsets from active */
Pos new; /* new position defined by offsets and active */

Xoffset = getnum(-depth, depth); /* get random search start position */
Yoffset = getnum(-depth, depth);

{
Xoffset ++; /* index the X offset */
if (Xoffset > depth) /* if the X offset is outside the grid */
f
I

Xoffset = -depth; /* reset the X offset to the other side */
Yoffset ++; /* and index the Y offset */
if (Yoffset > depth) /* if the Y offset is below the search grid
Yoffset = -depth; /* reset the Y offset to the top of the grid

new.x = Xoffset + active.^; /* define the new position */
new.y = Yoffset + active.^;

}
while (! in-bounds(new)) ; /* loop until the position is on the map */
(*tries)++;
return(new);

}

/* increment tries */
/* return the new position */

...
* *
* FILE: gs-palet .c JC * *
* module for setting screen colors *
* *
...

#include <graph.h>
#include wgs-const.ht@
#include wgs-prots.hl'

#define GRID(x) ((x) - 1) * box + border
extern int box;
extern int border;

APPENDXX A
Functional code

...
S E T P A L E T T E

initialize display colors ...
void setpalette()
{

/* blue green red */
-remappalette (0, cllr(0, 0, 0 1) : /* background color */
-remappalette
- remappalette
- remappalette
-remappalette
- remappalette
- remappalette
- remappalette
- remappalette
-remappalette

cllr(22, 06, 02)
cllr (45, 0, 0 1
cllr(35, 40, 25)
cllr(45, 20, 25)

I /* active colors */
I

-remappalette (10, cllr(60, 60, 0)) ; /* debug colors */
-remappalette (11, cllr(60, 0, 60) f ;
- remappalette (12, ellr(0, 60, 60 1) ;
- remappalette (13, cllr(0, 0, 60 1) ;

- remappalette (14, cllr(40, 40, 40 1) ; /* frame color
- remappalette (15, cllr(50, 50, 50)) ; /* text color

1
...

D I S P L A Y I N D
display individual on screen at position pos

Input: pos position of individual
color individual's set
fill flag for fill or border ...

void displaywind(Pos pos, char color, char fill)
{

- setcolor(color +I);
- rectangle(fi.11, GRID(pos.x), GRID(pos.y),

GRID(p0s.x) + box - 2, GRID(p0s.y) + box - 2);

...
* *
* FILE: G S - S E T . C * * *
* *
...

APPENDIX A
Functional code

...
G E T S E T

return the set of the input genotype

Input : gn genotype to check
Uses : geno array of possible types ...

int get-set(6enotype gn)
{
char i :

for (i = 0; i < SETS; i++)
if (equal(gn, geno[i])) return (i);

printf(" set types are incomplete It); /* error trap */
exit(255)

1

...
* *
* FILE: gs-setup .c * * *
tk module includes routines for reading run *
* parameters from an external file *
* * ...

#include <stdio.h>
#include <stdlib.h>
#include llgs-const. h" /* global constants and types */
#include "gs-prots.hW /* module for prototypes */
FILE *inf ile; /* the external file */

...
S E T U P

bring in parameters for this run from external text file

Input: numgen pointer to the number of the last qeneration
filename the literal name of the external file ...

void setup(int* numgen ,char* filename)
I
'int i, j; /* loop variables */
char text[80] ; /* raw text from the external file */

(* open the setup file */
if ((inflle = fopen(filename, "rtW)) == NULL)
{

printf("unab1e to open %s\nm, filename);
exit (-1) ;

1

/* get the global parameters from the external file */
SIDE1 = (int)get-next-param() ; /* side of the larger area */

APPENDIX A
Functional code

SIDE2 = (int) get-next-param() ; /* side of the larger area */
SIDE = SIDE1 + SIDE2;

ALLELES = (int) get-next-param() ; /* number of allele types */
LOCI = (int) get-next-param() ; /* number of loci */

GN-LEN = LOCI * STRANDS ; /* number of alleles per individual

for (i = 0 ; i < SETS; i++)
{

fitness[i] = get-next-param() /* fitness for each set */
fscanf(infile, "%sW , text) ;
for (j = 0 ; i < GN-LEN; j++)

geno[i][]].al = text[]];
1

for (i = 0 ; i < ALLELES ; i++)
ALL-INIT[i] = get-next-param() /* initial frequency of alleles */

RND = (int) get-next-param() ; /* seed for pseudo random generator */
SEARCH = (int) get-next__param() ; /* search distance for mates */
numgen = (int) get-next-param() / number of generations in run */
if ((i = (int) getnext-param()) != -999) /* -999 is a flag for success */
{

printf("too many parameters in Setup ") ;
exit (-3);

...
G E T N E X T P A R A M

return the float value of the string following
the next colon in the parameter file ...

float getnext-param(void)
{
char text[lO] ; /* raw text from the external file */
char c; /* input character */

while ((c = fgetc(infi1e)) != ':' /* read to the next colon */
&& c != EOF);

if (c == EOF)
{

printf("input error: to few values");
exit(-2) ;

1
fscanf(infile, tt%s", text) ; /* read in text value */
return (atof(text)) ; /* convert to float and return */

1

APPENDIIX A
Functional code

...
* *
* FILE: G S - U T I L . C J(* *
* contains utility functions *
* *
* * ...

...
G E T N U M

returns a random integer between (and including) high and low

Input: low lower bound
high upper bound

Returns : random integer ...
int getnum(int low, int high)
{
return (floor(get-fract() * (high - low + 1) + low));

1

...
G E T F R A C T

returns a random number between (but not including) 0 and 1

Input : none
Returns : random float ...

float get-fract(void)
{
return (rand() / (float)(RAND-WX+1)) ;

1

* FILE: gs-video .c *
J: module includes all video routines JC

* *
...

APPENDXX A
Functional code

#define GRID(x) ((x) - 1) * box + border /* translate map position to
pixel position */

struct videoconfig vc;

int box ;
int border = 10;
int edge = 0;

int graphbottom = 430;
int graphdepth = 100;
int graphleft = 130;

int left = 70;
int top = 3;

/* side length of individual square */
/* width of outline

/* graph border */
*/

/* graph position parameters */

/* text position parameters

int Tvrt, Thor; /* text to pixel conversions

...
D E B U G

marks the active grid position with a colored boarder,
waits for a keystroke, then erases the mark.

Input: pos position to be marked
color color of the boarder

...
void debug(Pos pos, short color)
{

- setcolor(color +I); /* print a three pixel wide border at pos */
- rectangle(-GBORDER, GRID(pos.x), GRID(pos.y),

GRID(~os.x) + box - 2, GRID(p0s.y) + box - 2);
-rectangle(-GBORDER, GRID(pos.x)+l, GRID(pos.y)+l,

GRID(p0s.x) + box - 3, GRID(p0s.y) + box - 3);

if (getch() == 'q') exit(1); /* pause */
/* erase border */

display-ind(pos, ind[D2(pos)].set, -GFILLINTERIOR) ;
1

AIPPEND7CX A
Functional code

...
I N I T V I D

configure video system ...
void init-vid()
{

if(!-setvideomode(-VRES16COLOR)) /* initialize video mode */
{

setvideomode(-DEFAULTMODE); /* exit program if VGA */
brintf ("VGA not present\nw) ; /* is not available
getch () ;

*/
exit(-1) ;

1
-getvideoconfig(&vc); /* get video configuration */

/* define pixel to text conversion */
Tvrt = vc.numypixels / vc.numtextrows;
Thor = vc.numxpixels / vc.numtextcols;

box = 300 / (SIDEl+SIDE2); /* set the size (in pixels) of a position */
setpalette(); /* initialize display colors */

...
C L L R

use color intensities to build the VGA code ...
long cllr(int blue, int green, int red)
{

return (blue * 0x10000 + green * 0x100 + red);
1

...
D O L E G E N D

display set symbols and colors ...
void do-legend (void)

int i, j ; /* loop control variables */
char eq[] .-: 11 = 11; /* equals sign */
char buffer[6]; /* array far output */

for (i = 0; i < SETS; i++)
{ /* place set color * /

- setcoior(i + I);
-rectangle(-GFILLINTERIOR,

left * Thor. Tvrt * (i + top - 11,
left * ~hor'+ Tvrt, ~ v r t * Ti + top));

/* output set symbol */

APPENDIX A
Functional code

- settextposition(top + i, left - 2 - GN-LEN);
for (j = 0; j < GN-LEN; j++)

outtext(&geno[i][j].al) ; /* print the set symbol */
- outtext (eq) ;
- settextposition(top + i, left + 6) ;
- outtext(gcvt(fitnessri], 3, buffer)) ; /* print the set fitness */
buffertl] = 0;
for (j = 0; j < ALLELES; j++)
C
\

-settextposition(top + j + SETS + 2, left - 10);
- outtext(" type ") ;
buffer[O] = flf + j;
- outtext(buffer) ;
- outtext(" alleles");

\
J

- settextposition(top + 3 + SETS + ALLELES, left - 10);
- outtext(" identical decent ") ;

...
F O R M A T D I S P L A Y

create color frames on the screen ...
void format-display()
{
int i;

- setcolor(l4); /* fill main area */
- rectangle(-GFILLINTERIOR, 0, 0, SIDE1 * box + 2 * border,

SIDEl * box + 2 * border);
- setcolor(l4); /* fill small area */
-rectangle(-GFILLINTERIOR, (SIDE1 - SIDE2) * box,

SIDEl * box + 2 * border,
SIDEl * box + 2 * border,
(SIDE1-f-SIDE2) * box + 2 * border);

- setcolor(0); /* fill main background */
-rectangle(-GFILLINTERIOR, border, border, (SIDEl) * box + border,

(SIDEl) * box + border);
- setcolor(0); /* fill small background */
- rectangle(-GFILLINTERIOR, (SIDE1 - SIDE2) * box + border,

SIDEl * box ,
SIDEl * box + border,
(SIDEl+SIDE2) * box + border);

- setcolor(l4); /* fill graph background */
-rectangle(-GFILLINTERIOR, graphleft - edge,

graphbottom - graphdepth - edge,
vc.numxpixels - 1,
graphbottom + edge) ;

do-legend(); /* display gene set symbols and colors */
1

APPENDITX A
Functional code

...
E X I T V I D

reset video mode for exit ...
void exit-vid()

...
F O R N A T

return a string formatted to 'decimalf decimal places avoiding
the scientific notation returned by gcvt()

Input: num number to be converted 0 < num <= 1
decimal number of places to the right of the decimal point

Return: formatted string ...
char* format(f1oat num, int decimal)
{
static char buffer[20]; /* return string */

/* put 'decimalf number of places to the left of the decimal point */
nurn = (num * pow(l0, decimal)) + pow(l0, decimal);

/* convert to a string */
gcvt((float) nurn , decimal + 2, buffer);

/* put decimal point at beginning of string */
bufferlo] = '.';

/* check for nurn = 1 */
if (num == 2 * pow(l0, decimal)) strcpy (buffer, 191.00) ;

/* make buffer a string */
buffer[decimal+l] = 0;

return(buffer) ;
1

APPENDIX 33
Object-oriented code

M A I N . C P P

#include <list.h>
#include "global. hl@
#include "being. hgl
#include wmap.hll
#include "video.hH
#include "grf-c1ss.h"
#include <stdio.h>
#include <conio.h> // for kbhit()

List popu;
Window* clss[3];

{
void docycle(Object& obj, void *) ;
Map map;
Video V;
Pos pos;

global::readIn(); // bring in parameters
V.initVid(); // initialize video

while ((p0s.x != SIDE1) / I (p0s.y != SIDE)) // initialize the map
{

pos = map.nextSquare(); // get the next square
Belng* bptr = new Being(pos) ; // create a being
bptr->make(); // enter the being

//into the model
1
for (int gen = 1; gen <= GEN; gen++) // for each generation
{

popu.forEach(docycle, &gen) ; // put each being through
//its annual cycle

for(int i = LEDG; i <= GRPH; i++)
clss[i]->update(Being::getNumInSet()) ;

1
getch () ;

1
/ / t t t t t t t t t t r t t r t t t t r t t t r t t t t t t t ~ t t t r t t t t r t t t t

// D O C Y C L E
ii
// put a being through its annual cycle
/ / 1 1 , 1 1 1 1 , f , 1 1 1 1 , , f , f I I , , I I * i I , , I , i , , , , , ~ , I , , ,

void doCycle(Object& obj, void* gen)
{

Being& b = (Being&) obj; // cast obj as a Being b
becycle(*(int*)gen) ; // put b through cycle
if (kbhit()) exit(l); // exit on key press

1

AIPPENK37CTX E3
object-oriented code

#if !defined BEING-H
#define - BEING-H

typedef struct Pos
I

int x;
int y ;

1:

class Being : public Object, public Gene -

{
private :

Pos pos;
int generation;
long serialNumber; // unique number for each Being

static long Number; // number of living Beings
static long GserialNumber; // total number of Beings created
static int numInSet[lO]; // number of being in each set

public :

(/ default constructor
Being(void);

(/initial constructor
Being(Pos pos) : Gene("init") // "jnjtW is a flag for Gene
4 //initializing constructor

setup(pos) ;
generation = 0;

1
(/ make constructor

Being(Pos pos, int gen, Gene gn) : Gene(gn)
{
setup(pos) ;
generation = gen;

1

// destructor
-Being(){ Number--;)

void make(void) ;
void die(void) ;
void setup(Pos newpos) ;
void cycle(int gen) ;

APkZ.tSNU4-X k 3

Object-oriented code

int getNumber(void){ return serialNumber;)
void show(void) ;
Pos getPos(void) { return pos;)

static int* getNumInSet() { return numInSet;)
static int getsize() { return Number;)

// functions required for classLib

void Being::afunc(void);
classType isA() const { return beingclass;)
char* nameof() const { return IgbeingW;)
void printon(ostream& outputstream)const {) ;
hashValueType hashvalue() const

{ return (hashValueType) Number;)
int isEqual(const Object& testBeing) const

{ return (serialNumber == ((Being&) testBeing).serialNumber);)

long Being::Number = 0; // static variable declared in the
long Being::GserialNumber = 0; //header file must be redeclared
int Beinq::numInSet[]; //here
extern Llst popu; // the linked list from classLib
extern Window* clss[]; // array of screen windows

/ / f f f f f f f t f f f f f f f 1 f f f t f f f f f f f f f I f f f f f f f t f

// S E T U P
ii
// utility function for Being constructors
/ / 1 1 1 1 f 1 1 1 1 f 1 1 1 1 1 1 1 I ~ f ~ I I I f ' I i I I I I ~ I f I , I ~

void Being::setUp(Pos newpos)

// set the position

GserialNumber++; // increment the global serial number
serialNumber = GserialNumber; // set the beingfs serial number

}

APPENDIX 13
Object-oriented code

l / r t r r r r r r r r r r r r r r r r r r

/ C Y C L E
//
// annual cycle for a being
/ / 1 1 , 1 1 , , 1 1 , , , , 1 f , , 9 I f , I I , , , 9 f I , , I , I l l , , I

void Being::cycle(int gen)
{
Being* mate;
Gene newgene ;
Being* existing;
float exfit, newfit;

mate = Map::search(pos) ; // find a mate
newgene = reproduce(mate->getGeno()) ; // create a new gene
newfit = FITNESS[newgene.getSet()]; // get its fitness
existing = Map::search(pos) ; // find a being to compete with
exfit = FITNESS[existing->getset()]; // get its fitnesses

if (((newfit / (newfit+ exfit)) // newgene is successful
> global::getFract()) //and lt is not competing

&& (existing->getNumber() != getNumber()) //with itself
&& (existing->getNumber() != mate->getNumber()))//or its mate

f
Pos expos = existing->getPos(); // destroy the looser and
existing->die(); // save its position

Being* bptr = new Being(expos, gen, newgene);// put the new being
bptr->make(); //into the model at

1 1 //that position
/ / r ~ r r r r r r r r r r r

// M A K E
//
// establish the new being
/ / 1 f 1 1 9 ? 1 1 1 1 1 1 t 1 1 1 1 r , f f ~ I f 9 ? I I I t I , r , I , 9 , f

void Being::make(void) // create a new being
{
Video V;

Number++ ; // increment the total number of beings
numInSet[getset()]++ ; // increment the per set counter
Map::insert(getPos(), this) ; // put it in the map array
popu-add (*this); // put it in the list
~ n t nums[3];
nums[O] = pos.x;
nums[l] = p0s.y;
nums[2] = getset();
clss[VMAP]->update(nums) ;

1
// display it on the screen

APPENDIX I3
Object-oriented code

ii
// destroy a being
/ / , , , , ? 1 1 , , 1 1 1 1 , , f 1 ? , I I , , , , I ~ I ' I I , I I , I , , ,

void Being::die(void)
{

numInSet[getset()] --; // decrement the per set counter
popu.destroy(*this) ; // remove being from list and

//free its heap space
1

#if !defined GENE-H
#define GENE-H

typedef char Genotype[5];

class Gene
{

private :

Genotype geno;
int set;

public:
Gene(void){);

// initialize constructor
Gene(char* init) { initGeno() ;)

// copy constructor
Gene(Gene& gn) { *this = gn; 1

char* getGeno(void) { return geno;)
int getSet(void) { return set;)
void setSet(v0i.d);
Gene reproduce(Genotype) ;
void order-gene(Gene) ;
int equal(Gene, Gene) ;
void initGeno() ;

> ;
#endif

APPENDIX B
Object-oriented code

#include "global. htl
#include "gene.hW
#include <stdio.h>
#include <stdlib.h>

/ / f t t f f f f f f t t t f f f f t f f t t t t f t t t f f f f t t f f f t t f

// S E T S E T
//
// find the set that this genotype belongs to
// by totaling the type 2 alleles
/ / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I , 9 , I I I I 9 I I , I I I , , 9 , ,

void Gene::setSet(void)
{
int i;
int sum = 0;

for(i = 0; i < GNLEN; i++)
{

sum += geno[i] - 1;
1
set = sum;

}

/ / t t t t t t f t f f t t t f t f f f t f t f f t t f t t f t t f ? f r f f t f

// R E P R O D U C E
//
// create a new gene from this gene and gnl
/ / 1 1 1 1 9 , 1 1 ~ 1 1 1 1 1 1 ~ 1 ~ I I 1 ~ 1 I I , 1 , ~ 1 I ~ I , I 1 9 , 1

Gene Gene::reproduce(Genotype gnl)
{
int i, j;
Gene newgene;

for (j = 0; j < LOCI * 2; j += 2)
t

// for each locus
//select

newgene.geno[j] = gnl[global::getnum(O,l)+j]; //one of the father's
//alleles

newgene.geno[l+j] = geno[global::getnum(~,l)+j];//anh one of the
//mother's alleles . .

newgene. geno [GNLEN] = 0 ; // for debug display
newgene.setSet(); // define the set
return(newgene) ;

1

APPENDTX I3
Object-oriented code

~ / t t t t f f t t t t t t t t t t t t t t t f f t t t t t t t t t t f t t t t t

// O R D E R G E N E
i i
// sort the alleles at each locus
/ / , , 1 , 9 1 1 1 1 , ' 1 , , , , , , , I , , , , I ' f , , , I , , , , , , , ,

void Gene::order-gene(Gene gn)
{
int i, j;
int swap;

for (i = 0; i < LOCI; i++)
{

j = i * STRANDS;
// for each locus

if(gn.geno[j] > gn.geno[j+lI) // put the lower valued
{ //allele first

swap = gn.geno[j];
gn.geno[j] = gn.geno[j+l];
gn.geno[]+l] = swap;

1 }

/ / t t f t t t t f t t t t f f t t t f f t t t f / t t f t t t t t t t f f t f f

// E Q U A L
ii
// returns TRUE if two genes are equal
/ / t P I I I I I I ~ I I I I I I I I I 9 I I I I , ~ I I I I I I I ~ I I I I I ~

int Gene::equal(Gene gn, Gene template)
{
char i ;

for (i = 0; i < GNLEN; i++) // for each allele
{

if (gn,geno[i] != template.geno[i] // if they are not equal
&& template.geno[i] != '* ' 1 //and template is not a wild

return(FALSE) ; //card, return false
1
return (TRUE);

}

/ / t t t t t f t t f t t t t f t f t

// I N I T G E N E
/ /
I I

// build a new qene using the
// initialization frequencies
/ / 1 1 1 , 1 1 1 , , , , , , , , 1 1 I f , I , , f I 9 ~ I I , , I I ' , I , , ~

void Gene::initGeno()
{
int i, j;
float sum, mark;

for (i = 0 ; i < GNLEN; i++) // for each allele
{

mark = rand() / (float) RAND-WX; // 0 <= mark < 1
j = 0;

APPENIDTICX B
Object-oriented code

sum = 0;
while (mark > sum)
{

sum += INIT[j++];

G L O B A L . H

// sum the probabilities
//until they are greater
//than mark

// allele is type j

// for debug display
// define the set

#if !defined -GLOBAL-H
#define - GLOBAL-H

const int MAX = 10;
const int STRANDS = 2;

const int VMAP = 0;
const int LEDG = 1;
const int GRPH = 2;

enum {FALSE, TRUE);

// definitions
deflne INIT
define SETS
define SIDE1
define SIDE2
define SIDE
define LOCI
define ALLELES
define RND
define SEARCH
define GEN
define GNLEN
define FITNESS
define GSYM

making code for access to constants more compact
global::getInit()
global::getSets()
global::getSidel()
global::getSide2()
global::getSide()
global::getLoci()

global::getAlleles()
global::getRnd()
global::getSearch()
global::getGen()

global::qetGnLen()
global::getFitness()

global::getGenSym()

class global
{

private : // global constants

static float Init[MAX];
static float Fitness[MAX];
static int Sets;

APPENDXX I3
Object-oriented code

static
static
static
static
static
static
static
static
static

int
int
int
int
int
int
int
int
int

Sidel;
Side2;
Side;
Loci ;
Alleles ;
GnLen ;
Rnd ;
Search ;
Gen ;

static char GenSym[MAX][MAX];

static float getNextParam(void) ;
static void openFile(char*) ;

public :

static void readIn(void);

// functions
static float*
static float*
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int

returning global constants
getInit(v0i.d) { return Init ; }
getFitness(void) { return Fitness; }
getSets(void) { return Sets ; }
getSidel(void) { return Side1 ; }
getSide2(void) { return Side2 ; }
getSide(void) { return Side ; }
getLoci(void) { return Loci ; }
getAlleles(void) { return Alleles;)
getRnd(void) { return Rnd ; }
getSearch(void) { return Search ; }
getGen(v0i.d) { return Gen ; }
getGnLen(void) { return GnLen ; }

// static char*[lO] getGenSym(v0i.d) { return GenSym ; }

// random number utility functions
static int getnum(~ n t low, int high)

{return (floor(getFract() * (high - low + 1) + low));)

static float getFract(v0i.d)
{return (rand() / (float)(RAND-lvlAX+l)) ;)

APPENDIX B
Object-oriented code

ifstream infile;

float global::Init[MAX];
float global::Fitness[MAX];
char global::GenSym[MAX][MAX];
int globa1::Sets;
int globa1::Sidel;
int globa1::SideZ;
int globa1::Side;
int globa1::Loci;
int global::Alleles;
int globa1::GnLen;
int globa1::Rnd;
int globa1::Search;
int globa1::Gen;

// construct the file object

// declare static variables

/ / t t t t t t t t t t t t t t t t t t I t

// O P E N F I L E
ii
// open the setup file

void global::openFile(char* inFileName)
{

infile.open(inFileName, ios::nocreate);
if (! infile)
{

cerr << "could not open << inFileName;
exit (-1) ;

1
1

/ / t

// R E A D I N
//
// get the global parameters
/ / , 1 , 1 1 1 1 , 1 1 f 1 1 1 1 1 1 , f I I / r , I , / , f I I I I I ~ I I I ,

void global::readIn(void)
I
char text[80] ;

Sidel = (int)getNextParam();
Side2 = (int) getNextParam0;

Side = Sidel + Side2;
Alleles = (int) getNextParam();

// side of the larger area
// side of the larger area

// number of allele types

APPEIMDIITX E3
Object-oriented code

Loci = (int) getNextParam0; // number of loci
GnLen = Loci * STRANDS ; // number of alleles per individual

Sets = getNextParam();

for (int i = 0; i < SETS; i++)
{

Fitness[i] = getNextParam0; // fitness for each genotype set
infile.get(text, 80) ;

// for (int 3 = 0; j < GnLen; j++)
// ~eno[i][]] = text[j]; // symbol for each genotype set

1

for (i = 0; i < ALLELES ; i++)
{

Init[i] = getNextParam0; // initial frequency of alleles
1

Rnd = (int) getNextParam(); // seed for pseudo random generator
Search = (int) getNextParam(); // search distance

Gen = (int) getNextParam0;

// error trap
if ((i = (int) getNextParam0) != -999) // -999 is a flag for success
{

tout < "too many parameters in Setup ";
exit (-3);

1
1

/ / l f f f I l l l f f t f l l l l l f f l t I I I I l I f I I I I I I I I t I l

// G E T N E X T P A R A N
ii
// return the string following the next colon
/ / , 1 1 1 1 1 1 1 1 1 , 1 1 1 1 f , I I I I , I I I , , I f I , , , , 1 ? ? , ,

float global::getNextParam(void)
{

char text[800]; // raw text from the external file
char 6; // input character

infile.get(text, 800, f : f) ; // read to the next colon
infile.qet(c);
if (inflle.eof())

{ cout < "too few input valuesH; exit(6);)
infile.get(text, 10) ; // read in text value
return (atof(text)) ; // convert to float and return

1

APPENDXX E3
Object-oriented code

//
// G R F C L S S . H
//
// A file containing the graphics classes.

#if !defined GRF-CLSS-H
#define - GRF-CLSS-H

////////// c L A S S S C R E E N E L E M E N T

class ScreenElement
{

protected:
int posX, posy; // position
int color: // color

public:
ScreenElement(){)

ScreenElement(int x, int y, int clr)
{

posX = x; posy = y; color = clr;
setcolor(color) ;

1

class Pixel: public ScreenElement
{

public:
Pixel(): ScreenElementO { }
Pixel(int x, int y, int clr) : ScreenElement(x, y, clr)

{ display(); 1

void display()
{ putpixel(posX, posy, color) ;)

>:

class Rectangle: public ScreenElement
{

protected:
int sideX, sideY;

public :
Rectangle(): ScreenElement() { }

APPENDITTX 3 3
Object-oriented code

Rectangle(int x, int y, int sX, int sY, int clr)
: ScreenElement(x, y, clr)
{ sideX = sX; sideY = sY; display();)

virtual void display() {)

1;

////////// C L A S S F I L L E D

;lass Filled: public Rectangle
{

public :
Filled(): Rectangle() {)
Filled(int x, int y, int sX, int sY, int clr)

: Rectangle(x, y, sX, sY, clr)
{ display();)

void display()
{

setfillstyle(S0LID-FILLl color) ;
bar(posX, posy, posX+sldeX, posY+sideY) ;

}

class Frame: public Rectangle
{

public:
Frame(): Rectangle() {)
Frame(int x, int y, int sX, int sY, int clr)

: Rectangle(x, y, sX, sY, clr)
{ display();)

void display()
{

setlinestyle(SOLID-LINE, 0, THICK-WIDTH) ;
rectangle(posX, posy, posX + sideX, posy + sideY) ;

1
) :

////////// C L A S S T E X T E L E M E N T

class textElement: public ScreenElement
{

protected:
int row, col;

public:
textElement(): ScreenElementl) {)
textElement(int x, int y, int clr)

: ~creenElement(x, y, clr)
{

row = (f1oat)posY / getmaxy() * 25;
col = (f1oat)posX / getmaxx() * 80;

)
virtual void display(){);

APPENDIX I 3
Object-oriented code

class Numbers: public textElement
I
I

private :
float num;

public:
Numbers(int x, ink y, float value, int clr = 7)

: textElement(x, y, clr)
{ num = value; display();)

void display()
{

gotoxy(co1, row);
cout.precision(3);
cout << num ;

1

////////// c L A S S C A P T I O N

class Caption: public textElement
{

private :
char buffer[80];

public:
Caption(int x, int y, int clr, char* text)

: textElement(x, y, clr)
{ strcpy(buffer, text) ; display();)

void display(){ gotoxy(co1, row); cout << buffer;)
1:

class Vmap: public Window
{

private :
int box ;
int border;

public:
Vmap(int x, int y, int sX, int sY, int clr)

: Window(x, y, sX, sY, clr)
{

border = 2;
box = 300 / SIDE;
Filled fl(posX, posy, sideX, sideY, color) ;

void update(int nums[EfAX])
{

Filled be(posX + (nums[O]-1) * box + border,
posy + (nums[l]-1) * box + border,
box - border,
box - border,
nums[2]) ;

APPENDIIIX E3
Object-oriented code

/ J / / / / / / / / C L A S S G R A P H

zlass Graph: public Window
{

private :
int column;

public:
Graph(int x, int y, int sX, int sY, int clr)

: Window(x, y, sX, sY, clr)
{

column = 10;
Filled fl(posX, posy, sideX, sideY, color) ;

void update(int nums[MAX]);
} :

//,I/////// C L A S S L E G D G E R

class Ledger: public Window

{
private :

public :
Ledger(int x, int y, int sX, int sY, int clr = 0)

: Window(x, y, sX, SY, clr)
{

Frame fr(posX, posy, sideX, sideY, color) ;
initledger();

1
void initLedqer();
void update(1nt *) ;

class Window: public Rectangle
t
I

public:
Window(int x, int y, int sX, int sY, int clr = 0)

:Rectangle(x, y, sX, sY, clr) { }
virtual void update(int[MAX]) { } ; } ;

APPENDXX B
Object-oriented code

V I D E O * H

#define GRID(x) (x-1) * box + border // translate map position to
//pixel position

const int border = 10; // width of outline
const int graphtop = 300; // graph position parameters
const int graphbottom = 400;
const int graphleft = 380;
const int left = 70; // text position parameters
const int top = 3;

class Video
{

private :
int box ;
int Tvrt, Thor;

// side length of individual square
// text to pixel conversions

char* format(f1oat num, int decimal) ;
void do-legend (void);
void format-display();

public:

void initVid(void);
void display-ind(Pos, char) ;
void debug(Pos pos, short color) ;
void exit-vid();

#include "video. hff
#include wgrf-clss.hfg

V I D E O . C P P

extern Window* clss[3];

APPENDIX E3
Object-oriented code

/ J f f f f f f f f f l f t

// I N I T V I D
//
// configure video system
/ / 1 1 1 9 1 1 1 1 , 1 1 1 1 ~ 1 1 1 I f I I I f I I I ~ I Y I f I I I I J I i 1

void Video::initVid()
{

int gmode, errorcode, gdriver = DETECT; // DETECT --> find highest mode

initgraph(&gdriver, &gmode, "\\tc\\bgift); // initialize graphics mode

errorcode = graphresult(); // read result of initialization

if (errorcode != grOk) // an error occurred
{

tout << "Graphics error: " << grapherrormsg(errorcode) << endl;
cout << "Press any key to halt:" ;

// return with error code
1
clss[VMAP] = new Vmap (10, 10, 304, 304, 15); // display the windows
clss[LEDG] = new Ledger (400, 20, 200, 200, 14);
clss[GRPH] = new Graph (30, 320, 500, 100, 8);

/ / f / ~ f f f f f f f f f f f f

// E X I T V I D
ii
// reset video mode for exit
/ / r r r r ! r r r r r r r t r r r ! r t , i t , , t , , I r r , t t r t , , t , , t , t i t r
void V1deo::exj.t-vld()
{

closegraph();
}

/ / f f f f f f 1 f f f f f f f f f f f f f f f f f f f ~ f f f f f f f f f f f f f f f f f f f

// F O R M A T
//
// return a string formatted to /decimalf
// decimal places
/ / 1 1 1 ~ 1 1 ~ 1 1 1 ~ 1 1 1 1 1 1 f I Y I I I I f I J I , , f I , ~ ? , I I f , Y i , , , ,

char* Video::format(float num, int decimal)
{
static char buffer[20]; // return string

// put fdecimalf number of places to the left of the decimal point
num = (num * pow(l0, decimal)) + pow(l0, decimal);

// convert to a string
gcvt((float) num , decimal + 2, buffer);

// put decimal point at beginning of string
buffer[O] = I..';

// check for num = 1

APPENDXX I3
Object-oriented code

if (num == 2 * pow(l0, decimal)) strcpy (buffer, "1.0") ;
// make buffer a string

buffer[decimal+l] = 0;

return(buffer) ;
1
/ / f t f t t t f f t t t t ? t f t t f f t t ? t t t ? t t t r t f t t f t t t t t f t t t t /

// LEDGER :: I N I T L E D G E R
ii
// print the set colors and symbols
/ / 1 1 1 1 ~ 1 ? 1 1 1 1 I 1 1 1 1 , I I I I I I I t I I I I I I I , I I , I , ? , , ! , f ? ,

void Ledger::initLedger()
{
int Th = 16;

for (int i = 0; i < SETS; i++)
{

Filled rt(posX + 140, posy + 30 + i * (Th-2), Th+3, Th-6, i+l) ;
Caption wr(posX + 100, posy + 75 + i * Th, 7, "herem) ;

1
1
/ / t t t t t t t t t t t t f t t t f f f t t t f t t t t t t t t t t t f t t t t t t t t t t t

// LEDGER :: U P D A T E
//
// print the set frequencies
/ / ? I I f I 1 ? , f I , I I 1 I ' , I I I I I , I I , , I f I I I , , , , , , , , ~ , , , , f

void Ledger::update(int nums[MAX])
{
int Th = 16;

for (int i = 0; i < SETS; i++)
{

Numbers n(posX + 25, posy + 75 + i * Th,
nums[i] / (float)Being::getSize()) ;

1 }
/ / t t t t t t t t t t f t t t t t t t t t t t t t t t t t f t t t t f t t f t t t t t t t ? ~

// GRAPH :: U P D A T E
//
// plot a pixel for each set frequency
/ / 1 , , 1 1 1 ~ 1 1 1 1 1 1 , ? 1 I , I I , I I I , I f I ' I I 1 , , , , 1 ~ f , , ~ , , , ,

void Graph::update(int nums[MAX])
{

for (int i = 0 ; i < SETS; i++)
Pixel(posX + column,

posy + sideY - nums[i] / (float)Being::getSize() * sideY,
1+1) ;

column++ ;
}

AF'PENDTX 3 3
Object-oriented code

/d
//
// M A P - H
//
//

#if !defined MAP-H
#define MAP-H

#include "being.hW
#include "global. htl

const int side = 3 0 ;

class Map
{

private :

static Pos present;
static Being* frame[side][side];
static int inBounds(Pos pos) ;

public :

static Being* search(Pos active) ;
static Pos nextSquare(void);
static void insert(Pos active, Being* bptr)

{ frame[active.x][active.y] = bptr;)
static Being* getBptr(Pos active)

{ return frame[active.x][active.y];)

#include 9nap.h"

Being* Map::frame[side][side];

/ / t r r t r r r r t r t r r r t r t t r t t t f t t r t r r r t t t r r r r t r r t r r r

// N E X T S Q U A R E
ii
// move cursor to the next position in
// right to left, top to bottom order
/ / 1 1 1 1 1 1 1 # 1 1 1 1 1 1 1 1 1 f ~ ~ f I I I f I I , I I t f I , I I I , ~ , , , , ,

Pos Map::nextSquare(void)
f

'static Pos cursor = (0 , 0);
do
{

if (! (++cursorex %= SIDE1+1)) // move cursor to the right

