Computer Science and Systems Analysis
Computer Science and Systems Analysis

Technical Reports

Miami University Year 1993

An Expert System Shell Performing the
Generic Task of Hierarchical
Classification

Jen Wazel

Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa_techreports/42

MIAMI UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1993-000

An Expert System Shell Performing the Generic Task of
Hierarchical Classification
Jens Wazel

Sas

School of
Engineering &
Applicd Science

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

IR PN SN A AR RS IR O TEE AR IR R SRR TR W MR s e

-

Table of contents

0. Introduc

tion

1. The generic task concept

s

Hisrarchical classification

3. The HICLASS system

3.1. Introduction
3.1.1. Terminology
3.1.2. The concept of “"table”
3.1.3. Knowledue representation
3. 1;3,3, Sets as a basic approach
3.1.3. Preenumerated soliutions
3.1.3. “"Don’t care” values
3.1.4. The h@erarchy
3.1.5. The control strategy
3.2. Comparison of the HICLASS knowledge representation to other
reprasantations
3.3, Fuzrzy borders: From frame~like objects to rules
2.3.%. The "classical” hierarchical approach
3.3.2. Opening the "classical” structure
2.3.3. The combination of the two concepts
3.3.4. Introduction of a factbase
3.3.5. A Ruyle-based system
3.4. Local control strategies
3.4.1. MATCH
3.4.2. Left-to-Right
3.4.3. Heuristic driven
3.5, Class descriptions with different weights
3.5.1. MATCH
3.5.2. Left-to-right
3.5.3. Heuristic driven
3.6, Dif?e?ent classes with the same content but different
weights
3.7. ASKFIRST
3.8, One class, one table and multiple children
3.9, An answar UNKNOWN
3.9.1. MATCH
3.9.2. Left~to-right
3.9.3, Heuristic driven
3.9.4. Global effects
2.10. Desaling with uncertainty
3,11, Concluding other values
2.12. Explaining the reasoning process
3.13. Incorporating metaknowlsdgs
3.14. Learning
3.15. Global attributes
%2.18. Checking the consistency of the system
2.17. HICLASS and the rest of the world
2.18, Several paths - which cne to Tollow?

o

o0

Y
i

QU N—
W00 e OO e G PO D WD D

PP B RS DS PO PSP DD RS

O3 Lax
{53

CreOm OnoOn O O O e e DD 00 G2
B B B O NN D 00 e b IO P

—-_— WD N S Ny 2 G B O T O B

Entering initial data
. Saving the system state in case of an interruption

information from terminated paths

3.19. Additional features
3.16.1,
3.19.2
3.18.3. Using

3.19.4. Numerical input

3.20. HICLASS - an expert svstem shell

4. The implementation of the HICLASS system
4.1, HIEDIT

4.1.1

4.1,

4.1,

4.1

4.2, HICLASS

4.2.1. The ex
4.2.1.1
4,2.1.2
4.2.1.3.
4.2.1.4
4,2.1.5
4.2.1.8
4.2.1.7.

4.
4.3. Imp
4.
4.
4.

2.
1
3,
3.
3.

FILES scresn

2. DEFINITIONS screen
3. EXAMPLES scresn
.4, SPECIAL screen
8

1

example
. Hisrarchy structure of the example
. Content of the tables

The FILES screen

. Questioning the user
. History
. Resultis

Example sessions

2. Possibie improvements
Teriat1cna% details

. Main data structures
2 The file structure for a table
3. Efficiency

5. Evaluation of the HICLASS system
5.1. HICLASS as a tool for a generic fask
5.2. HICLASS as a tool for hierarchical classification
£.%. HICLASS 1in comparison

5.3.1.

Description of CSRL

£.3.2. HICLASS vs. CSRL
5.3.3. Description of 1st-CLASS

5.3.3. 1.
5.3.3.2.

1st~CLASS specifications
Using 1st-CLASS

5.3.4. HICLASS vs. 1st-CLASS

6. Further research
6.1. HIHYPO - hierarchical hypothesis matching

6.1.1.

Local control strategy and knowledge representation

8.1.2. Selected special problems

6.2. Ac
£.3. Ind
g,
6.
6.
8.

4. An

o

7. Conclusions

5.1.2.1.
8.1.2.2.

Class descriptions with different weights
An answer UNKNOWN

omplex problem-soiver
uctive Tearning

1. Version space

2. Quinlan’s ID3

3.
3,
3.
3.
i

3. AQU1

4, Genetic algorithms
nductive Jearning algorithm for HIHYPO

58
56
58
58
57
60

81
61
82
68
67
89
70
70
71
73
74
75
78
77
79
80
80
82
83

84
84
86
88
88
91
93
93
94

59

100
100
102
104
104
105
1086
108
109
110
11
113
114

119

Refersances
Further Reading
Appendix A
Appendix B

Appendix C

List of files on the program disk
The Softwars Engineering aspect of the project

Modules

120

s
[
e

0. Introduction

Any expert system shell that performs the generic task of hierarchical
classification must deal explicitly with the dissues of knowledgs
representations, control strategies, inductive learning, and ways of
handling uncertainty, ambiguity, and contradictions. This research is
mainly concarned about the creation of the expert system shell HICLASS.
Aspects crucial to this task are challenged from both a theoretical and an
implementational point of view.

The principles of generic tasks and hierarchical classification are
described. Important concepts of HICLASS are introduced, followed by a
detailed description of the knowledge repressntation and local control
strategies developed for the system, 1including a discussion of special
problems and respective solutions. It is described how HICLASS handles
uncertainty. Important dssues Tlike concluding values, explanation,
tearning, incorporating metaknowledge, and the global control strategy of
HICLASS are discussed. Then, the actual implementation of the table editor
HIEDIT as well as HICLASS is described in detail. It is shown that HICLASS
is a genuine tool for the gensric task of hisrarchical classification. The
system is compared to two well-known tools for hierarchical
classification. Using the ideas raised for HICLASE, the development of a
hierarchical hypothesis matcher, HIHYPO, 1is proposed. Essential features
of HIHYPC are 1introduced. A theoretic overview about algorithms for
inductive Tearning s followsed by the description of an inductive learning
algorithm developed for HIHYPO. Appendix B provides an overview about
software engineering methods, and a discussion about methods actually used
to create the HICLASS package. In Appendix €, the definitions of all
modules developed for the package are shown.

i. The generic task concept

The following two chapters are mainly a synthesis of [B, pp.215-2397, as
it relates to this research. An ongoing discussion in AI research s
concerned about the classification of expert system tasks. Haves-Roth, for
instance, tried fo reflect “the different kinds of task that can be
addressed by sxpert systems technology” [10, p.235]. Two of the categories
identified by Haves-Roth are diagnosis and design. "Diaghosis systems
infer system faults from symptom data. ... Design systems develop
configurations of objects that satisfy certain constraints” [10, p.235].
The Hayes-Roth approach has received some criticism, "Targely because it
appears to mix up different dimensions, and because the categories
emploved are not mutually exclusive” [10, p.235]. Clancey, on the other
hand, proposed an analysis in terms of gsneric operations on a system to
answer the guestion what Kinds of operation a program can perform with
respact to a real-world system. "Clancey distinguished between synthetic
operations that construct a system and analytic operations that interpret
a system” [10, p.238]. These general concepts can further be specialized,
in the case of construct into specify, design, and assemble. Expert system
shells 1ike Heracles (Clancey) and COAST (Bennett) have been built that
"consider high-level problems and propose architectures that support
specific behavorial strategies for them” [5, p.235]. Heracles incorporates
heuristic classification, a strategy for diagnosis, while COAST s
concerned about configuration svstems. Despite thesse efforts to
distinguish between different types of knowledge-based reasoning most
expert system methodologies developed so far "apply the same strategy ...
to both design and diagnosis, as well as to any other task” [5, p.215]1.

Chandrasekaran proposes the concept of generic tasks. Generic tasks are
"building blocks out of whic more complex problem-solvers or
architectures for them can be Tabricated” [5, p.235]. Each building block
stands for a different type of reasoning "such that sach of the types is
both genaric and widely useful as components of complex reasoning tasks.”
For each identified task, "languages are developed that sncode both the
problem—solving strategy and knowledge that is appropriate for solving
problems of that type.” The intention of the gensric task approach is to
give the knowledge engineer "accass to tools that work at the level of thse
oroblem, not the level of the implementation language” [5, pp.215-2181.

15

Fach generic task "is characterized by:

1, The kinds of informaticn required as input and the
information produced as a result of performing the task.

2. A way to represent and organize the knowledge neseded to
perform the generic task,

3. The process (algorithm, control, problem solving) thal the task
uses.” [5, pp.2156-216]

6

Some important features of generic tasks as given in [5, pp.234-235] are:

- multiformity

Fach task "provides a different way to organize and use knowledge.
.. Different problems can use different genaric tasks and different

combinations of generic tasks.”

- modularity

"A knowledge-based system can be designed by functicnally decomposing
its intended problem~solving task” (e.g. diagnosis) "into several
cooperating generic tasks. ... Each generic task provides a way to
decompose a particular function intc its conceptual parts, and
allows domain knowledge of other forms to be inserted.”

- knowledge acquisition
"Each generic task is associated with its own knowledge acquisition
strategy.”

- explanation

“. .. the control strategy of sach generic task is specific enough for
generating explanations of why the problem solver chose to evaluate
or not to evaluate a piece of knowledge.”

- exploiting the interaction betwsen knowledge and inference

"... each generic task specifically integrates a particular way of
representing knowledge with a particular way of wusing that
knowledge.”

Like the ones described below, each generic task 1is "constrained to
perform a limited type of problem solving”. A generic task "reguires the
availability of appropriate domain knowledge” [5, p.235]. The task "needs
to be coherent and simple in the sense that it ought to be characterizable
by a simple type of knowledge and a family of inference types” [5, p.217].

Types of generic tasks as identified in [5, p.216] are:

hierarchical classification
" is finding the categories in a classification hierarchy that
apply to the situation being analyzed.”

plan selection and refinement
is designing an object using hierarchical planning.”

knowledge-directed information passing
.. is determining the attribute of some datum based on the
attributes of conceptually related data.”

hypothesis matching

‘... 1s matching hypotheses to a situation using a hierarchical
represantation of evidence absiractions. The gensral idea is that we
have a set of data which potentially pertain to a concept. We want to
know how well the concept matches the data.”

hyvpothesis assembly
“... 18 constructing composite hypotheses 1in order to account for
some set of the data.”

A "number of well-known expert svstems can be thought of as decomposable
into one or more of thesse generic tasks. For example, R1 performs a
simplified type of plan selection and refinement, while MYCIN performs
classification and data abstraction” as well as "plan selection”. "PEIRCE
is the tool for the hypothesis assembly task; INTERNIST and DENDRAL also
perform this task in large measure” [5, p.217]. In a1l of these cases, the
system performs the tasks, but not necessarily with a method most natural
for the particular task. As mentioned, different problems can use
different generic tasks and different combinations of gensric tasks. For
example, diagnosis uses classification and hypothesis assembly. It is a
compound task, since different distinct types of knowledge and inferences
are used.

2. Hierarchical classification

Hierarchical classification performs one problem-solving task in human
reasoning, classification, under the condition that there 1is a
"classification hierarchy that organizes the classificatory hypotheses”
[5, p.2181. T"Hierarchical classification requires as input & data
description of the problem To be solved. After processing, the task yislds
all the categories of the malfunction hierarchy that apply to the given
data. ... The classifier requires a preenumerated list of the categories
that 1t will be using. Furthermore, these categories must be organized
into & hierarchy in which the children (...} of a node represent
subhypotheses of the parent. ... As the hisrarchy is traversed from the
top down, the categories (...) become more specific” [5, p.218].

Fuel syst?m probiens

Bad fué? probiens Fue’l m%xtuée probiens

i
LQ%§G€taﬁe Water in fuel Gigt in fuel

"Fach node 1n the hierarchy is responsible for calculating the ’degres of
Fit’, or confidence value, of the hypotheses that the node represents. ...
Fach node can be thought of as an expert in determining whether the
hypothesis is true. For this reason, each node is termed a specialist in
its small domain. To create each specialist, knowledge must be provided to
make the degree-of-confidence decision. The general idea 1s that each
specialist specifies a list of Teatures that are important in determining
whather the hypothesis it represents is true and a list of patterns that
map combinations of features to confidence values” [5, p.219].

In order to efficiently traverse the hierarchy, & tvpe of hypothesis
refinement 18 used: establish-refins. That iz, "a specialist that
sstablishes its hypothesis {(...) refines 1itself by activating its more
detailed subspecialists, while a specialist that rules oult or rejsct its
hyvpothesis (...) does not send any messages to its subspecialists, thus
avoiding that entire part of the hiesrarchy. ... The establish-refins
process continues until no more refinements can take place. This can occur
either by having rsached the tip level hypothesis of the hisrarchy or by
having ruled out mid-hierarchy hypotheses” [5, p.210].

°

3. The HICLASS system

3.1. Introduction

The expert system shell that is the topic of this research (to be referred
to as HICLASS) will essentially Tollow the ideas raised in chapters 1 and

2. In chapters 8.1, and 5.2. a critigue of HICLASS, with respect to the
issues raiszsed in the first two chapters, is given.

3.1.1. Terminoclogy
In HICLASS
a category will be referred to as a c¢lass
a table 18 a node in a hierarchy (or a specialist)

table consists of one or more classes

jai}

a class is describad by one or more attributes (or features)
all classes within one table share the same set of atiributes

an attribute s defined on an underlying finite set of acceptable
valuss Tor that atiribute

a class is described by a list of instances (or patterns)
that map combinations of values to weights (or confidence
values)

10

3.1.2. The concept of "table”

One important feature of HICLASS is the existence of the concept fable. In
a table, several classes are combined. This 1is an advantage 1f several
classes with the same parent share atiributes and can therefore be
compared with each other under the assumption that they are
distinguishable by the attributes. The attempt is to come up with one
relavant class per set to partition the search space in the most radical
way. This among other things prevents the system from requiring additional
information if the evidence for one class assures that all other classes
can be ruled out. If two or more classes have a certainty of being true
greater than a predefined threshold, then there will be several solutions

for the particular table.

Fuel system Bad fuel Low ootane
Fuel mixture Water in fuel
Dirt din Fue’

Figure 3.7.2.1. Examplie of a hisrarchy of tables

Given a situation in which classes with the same parent do not share
attributes, sets of classes within a table become impractical, since all
the atiributes of a1l c¢lasses have to be considered. In this casse, esach
class is described by its own table, and all of these tables have to be
considered in order to establish or rule out hypotheses.

Fuel system Bad fuel Low octane
Fuel mixturs

Water in fusl

Dirt in fusl

Figure 3.1.2.2. Examplie of a hisrarchy of tables (single classss)

11
3,1.2, Knowledge repressntation

3.1.3.1. Sets as a basic approach

Within a node of the hierarchy, given there are several classes combined
in a table, the task 1is to differentiate instances of one class from
another. "... instances, sach dezcribed in terms of a fixed number of
attributes. Each attribute in turn has a small number of discrete possible
values, and so an instance is specified by the values it takes for each
att r1éuLe " [12, p.198]. An instance can be considered a set of values, a
set of 3R8taﬁCcS describes & class and a table 1s a set of classes.
Therefore, the basic knowledge representation is based on sets and basic
set operations serve as operators on sets.

In earlier stages of this research the special philosophy of XBOOLE [2,14]
has been used to define these sets. XBOOLE is based on an sxtension of
BOOLEAN algebra while introducing a third state variable ’-7, standing for
07 OR '17, in other words for 'Don’t care’. The introduction of 'Don’t
care’ is crucial to an improvement of the performance of a classification
system. It was praved though ihat it is not useful for this purpose to use
the toolbox XBOOLE/XB_PORT [7]. The amount of problems introduced would be

much higher than the number of aqvgntages gained.

12
3.1.3.2. Preenumerated solutions

An important featurs of a classification system ig that solutions can be
enumerated in advance, e.g. "in the diagnosis phase of MYCIN, the program
selects from a fixed set of offending organisms”™ [10, p.2421, In HICLASS,
tables are defined within a hierarchy. A number of atiributes is defined
for each table. These attributes have well defined values for instances of
a particular class description. They serve to rule out classes in the case
of a class set and to determine the certainty value of one or more
succeeding classes. A class description consists of one or more instances
that provide valuss for all the atiributes, including one special
attribute, the result, representing a hypothesis. Prior certainties can be
bound to the values and to the instance itself {a weight in the latter
case). Thus, if an instance can be matched, a result with an associated
cartainty i3 produced. The resulls of a table represent the interfaces to
nodes on a lower level in the hierarchy.

Example:
type size location creaturs weight
catacesa 25 ft. at sea whale 1.0
catacea 20 ft. 2t zea whale G.8
cetaces § ft. near coast porpoise 1.0
cetaces g ft. at ses doiphin 1.0
Fish 1 FL. n.pacific sa1mon 1.0
fish 5 L. at sea shark 1.0

Figure 3.1.3.2.1. Example of a table definition

In the above sxample there are four attributes defined, each of them
described by several values,

type = {oetacea , Fish}

size = {28 FL. , 20 FL. , 6 ft. , 1 f¢.}

Tocation = {at sea , near copast , n.pacific}

creature = {whale , porpoise , dolphin , salmon , shark}

The attribute creature has the special property of describing a result.
There are fTive different class descriptions. Except the class whale {two
instances), all classes are described with one instance. There are weight
values bound to sach instance. A weight of *1.07 means "It is for sure
that this description is true’. Weights are defined as numbers [0.1
1.0].

13

2.1.3.2. "Don’t care” values

A "Don’t care” value will be denoted by “#%° and substitutes values for a
given attribute. Within the limited universe of one attribute definition
it stands for all possible valuss this attribute has, and therefore it
actually disables this attribute from being part of a decision using an
instance including "Don’t care” for this attribute. There are several
reasons why it can be useful to have such a special value:

1. If the knowledge used to describe a class is incomplete, i.e. if
no decision can be made which of the defined values for the attribute

is the appropriate one.

2. If in a table one attribute 1s not applicable (or not defined) for

a certain class.

3. If the attempt is to generalize the description.

Exampies:

[N
"

cetacea 25 Pt # whale G.8

“TF (cetaceadand(23 fi.randdat gses,.nsar coasi,n.pacificy then whalss
with 80% confidencse”.

There was no information available about the location of <whale>, thus
this attribute was disabled and the weight adjusted according to the
incomplete information,

o]
Z.
Lype size color of feathers creaturs weight
cetacss z25 ft. * whzle 1.0
bird i Fr. whnite altpatross 1.0

*TE (oetacsarand B FL.rand<alt ses,nsar coast.n.pacificr then <whalsr for sure”.

Here, ’%’ means "Not applicable”. Since this is not distinguishable to the
“Don’t care” case, problems could arise concerning not conly explanation
featurss but alsc the logic of guestions generated by the system. It
should therefore be svoided to build tables in this fashion.

a3

cataces 25 ¥t. & whals 1.4

“1F <catacearand<2i ft.rand<at sea,negar ceast,n.pacific> then whale> Tor sure”.

Now, the class description was generalized in order to make the inference
process easier and faster. It doesn’t matter, what the location of <whale>
is, since there is confidence that <whale> can be found at all possible
1 R T et a
focations.

14

3.1.4. The hierarchy

Given an input vector, describing a special instance, the task is Lo
classify this instance, this means to find the class (the result) it
belongs to according to the description of this ¢lass. This process is
common to many domains. Examples can for instance be found in zoology and
botany applications; field guides provide a form of ‘manual
classification’. A set reduction takes place, the original set of all
classes will be reduced when the classification process goes on.

"The classes involved usually have a hierarchical organization, in which
subclasses possess the discriminating features of their superclasses, and

classes which are "siblings’ in the hisrarchy are mutually exclusive with
respect Lo the presence or absence of some set of features.” [10, p.2381.

Example: (based on [8])

!

i Animal
Mammal Bird v
Mammal Birgd i
Tiger Ostrich
Giraffe Fenguin
Zebra Albatross

Figure 5.1.4.1. Exampie of a hierarchy

In the example tha first Jevel in the hisrarchy is more abstract than the
sacond one., At the first level we only have one root table (a set of
classes) describing hasic principies of animals {(pringiple ’‘mammal’,
"hird’). Attributes are used to distinguish among classes (like ’can~
Fly’). If the problem at the first level is solved, which means the result
of this table is found (one or more classes), the search space can be
reduced not only by the non-succeeding classes of this set but also by
entire branches of the tree, starting with the children of the classss
that are rejected. At the next Tevel, considering that we found to deal
with a "mammal’, we observe the appropriate set, again consisting of
classes but different attributes to distinguish among these new classes
{1ike ’has-long-neck’).

et
Lo

3.1.5. The control strategy

Parformance-oriented expert systems (HICLASS can be considered as
halonging to this category) "start with a representation of knowledge
about a task or domain and attempt to build a program that displays
competent behavior in that domain” [2, pp.25-28]1. There must be knowledge
about HOW an expert would solve the problem based on the knowledge
available, HOW the problem solving process is guided, how to detect and
measure errors and to deal with contradictions.

Since we have to deal with a hierarchy, "top-down-refinement’ can be used.
"The method of “top-down-refinement’ uses ’levels’ of abstraction. Higher
levels are more abstract than lower levels. When the expsrt system has
solved the problem at one Tevel it moves down to the next, more detailed,
Tevel. The order and content of levels is predefined, whersas the order in
which sub-problems on a particular level are tackled is dependent on the

task in hand.” [9, p.449].

The basic principle of reasoning in a classification system is reascning
by elimination. "Reasoning by elimination is an approach in which non-
solutions {or solutions with low plausibility) are pruned from the search
space as early as possible. To do this, the expert must partition the
search space in such a way that early pruning can be achieved.” [§,
p.448]. This definition is adequate for a system based on sets and set
reduction.

A control strategy designed to serve reasoning by elimination s
Chandrasekarans "establish~refine” (as described in chapter 2). HICLASS
uses the very idea of this strategy. In HICLASS, one or more resulis with
a certainty value bound to them are produced after a table is "sclved” -
hypotheses are established. The process continues while invoking the
subspecialists (or classes) a particular result is pointing to (the
hypothesis refines itself). If the subspecialists are combined in a set,
only one pointer is necessary, otherwise more than one. In class sets,
wrong hypotheses are sither automatically ruled out in the set reduction
process or a certainty vaiue of zero 1s assigned to them. In both cases,
the subspecialist of these classes will not be established. The process
stops when a1l paths followed ferminate because all current tables are
teafs in the classification tree, and when all current hypotheses are
sither ruled out or hold a certainty value smaller than a predefined
threshold,

16

3.2. Comparison of the HICLASS knowledge representation to other
representations

The hierarchy of tables as well as their predefined content using
attributes can be seen as a frame-like structure., Besides some
similarities though, there are basic differences between the two forms of
knowledge representation.

"Each frame contains information about one particular chbject, concept, or
event and typically has slots which contain values. ... The prototype
frame for a class will contain the 1ist of slots applicable to the class
and can also contain default values or valid ranges of values for these
slots. An instance frame for that ¢lass will then contain the detailsd
information for that particular instance.” [11, p.285].

One similarity between frames and a hierarchical table structure is that
a tahle includes attributes (or slots) and that there are values defined
for these slots. The major difference is that muiliple concepts can bs
stored in a table and that there is nothing like a prototype frame. This
leads to a more compact description and incoerporates, differently than in
a basic frame structure, the reasoning principle, in this case a ssat
reduction philosophy used to distinguish beltween classes.

Dealing with frames there are ’ISA’ and "AKO’ relationships, where "ISA°
defines an instance of a class defined by the prototype and "AKO® (Ca kind
of?’) the superclass-subclass relationship between frames. In our case
there is an "AKO’ relationship ("mammal’ is a kind of ’animal’), referring
to a subset (a class) of the corresponding class set on a higher level.
The table 7tself can be seen as a prototype frame, filled with different
class descriptions. The ‘AKQ® relationships have all the typical
qualities, 7Tike inheritance of values from general classes to more
specific classas.

However, there are also some similarities to rule-based systems. A
construction Tike "1F (bird)and{cannot flviand(has Tong neck)and(...) then
ostrich’ is a rule. One of the basic differences hetween a real rule-based
system and the current approach is that the interaction between rules
follows other principlies {(no channel of interaction via a database). But,
as we will see in the next chapter, a combination of ideas from different
basic approaches can make distinctions like this very fuzzy.

5.3, Fuzzy borders: From frame-1ike objecis to rules

As described above, there ars similarities bestween Lhe HICLASS knowladgs
represantation and a representation based on rules. Even if the system
will not be implemented in a rule-Tike fashion, i1 can be interesting how
the proposed representation could be altered to handle this task.
Additionally, there 18 a chance to open up the classical hierarchical
approach 1n order to enrich the reasoning process.

In the following examples, the attribute name resuvli denotes that an exit-
condition 1is bound to the table, whereas c¢lass has to be seen as
describing a subsolution.

2.3.1. The "classical” hierarchical approach

Since the appreoach below follows the description in 2.1.4., no further
comments are given. The hierarchy in figure 3.3.1.1. consists of the three
tables A, B and C. Attributes (at1,a2,...,c4) are defined for each table.
A special atiribute denotes the resulf of a particular table (class_A,
resuti_B, result_CJ.

al az a3 class_A b1 b2 b3 result_B
Mammal Tiger

prer— Giraffe
Zebra

ol o o3 cé result L

Bird Ostrich

p—— Panguin

Alpatross

Figure 3.3.1.1. Tables in a hierarchy

3.3.2. Opening the "c¢lassical” structure

So far 1t was assumed that the attributes (at,a2,...,cd4) are only
dependent on an external input (e.g. a question to the user) rather than
that thair values are provided by another table. Given an application in
which the number of results (combined with an exit-condition} is
relatively small and the distinction between them Tairly easy except some
attributes which 1itself are more complex to be derived, the following
structure would make more sense, since it can turn oub that it is not
necessary to derive these complex values (other attributes might be
reasonable for a distinction), thus we don’t have to go all the way down
in a tree structure.

HOTE: The zooleogical content of the exampls is not very appropriate to itiustrate the
concept, 1t navertheless was chosen to bs consistent.

oat a2 a3 a4 result_A
Mamma] Tiger
Hammal Giraffe
Mammal Zabra
Bird Ostrich
Bird Panguin
Bird Aibatross
1
b1 b2 b3 class B i
Mammal j
>
Bird

ci ©Z o3 class, O

Animal

Plant

Figure 3.3.2.1. Compiex interactions between thes tablss

H

In figure 3.3.2.1., the description for the attributes al and b2 includes
a pointer to other tables. Table B can be used to provide a value for
attribute at of table A, and table C would provide a value for attribute
b2. If the knowledge of the value of attribute a2 is sufficient to come to
a result for table A we don’t have to ’fire’ the tables B and C.
Otherwise, the classification 'Mammal/Bird’ derived from table B could
serve as an input to detect the value of al. For the first moment this

16

structure sesems to drop the feature of inheritance betwesen values from
general classes to more specific classes. But this information is not
Tost, since table B holds all the necessary information which can be
derived from it. Actually, the structure doesn’t violate any important
faature of a c¢lassification structure; it only represents 1t in a
different way.

3.3.%. The combination of the iwo concepts

Depending on the problem on hand, the structure must be flexible enocugh to
handle very different hierarchy descriptions. A combination of the
original with the modified structure is possible and allows much more
flexibility. The tables can be chained in any imaginable way resulting in
a structure serving most classification and efficiency needs. This is the
approach implemented in HICLASS.

a1t a2 a3 a4 result/class A ct 2 resutt O

Tiger —”*~*~1— Zumatra
>

Giraffe Siberian

Zabra

Ostrich

FPanguin

Albatross

b1 b2 b3 class, B

Mammal

| SR —————

Bird

Figure 3.3.3.1. Complex interactions in & hierarchy

20

3.3.4. Introduction of a factbase

Up to now a hierarchy was more or less very strictly defined. In
applications with more complex structures and eventually competing
solutions, it might be more appropriate to not follow the branches of a
predefined tree. The strictly defined chaining could be substituted by an
independent channel of interaction - a database or factbase. One could say
that this is the beginning of giving up any kind of hisrarchy. This is not
true. Even in pure rule-based systems (that are cbviously the destination
of the ’evolution' process described here) one can find a sort of
hierarchy in most of the cases; more hidden, sometimes not fruly
hierarchic. Given a backward-chaining approach and a rule activating
another, the two rules often have a hierarchical relationship between sach
other. "The indirect, limited interaction 18 also, however, the most
significant factor that makes the behavior of a Production System more
gifficult to analyze”. [3, p.32]. For the beginning we still maintain the
concept of tables, which are sets of classes that are distinguishable from
each other using attributes defined for the table. The difference is the
way the tables interact. Now, they are not explicitly calling each other
but having access to a central factbase which will be updated depending on
the process of leading the search.

EN &z ad a4 result/class A
Mammal Tiger

Mammal Giraffe

Mammal Zaebra

Bird Ostrich

Bird Panguin

Bird Albatross

b1 bZ b3 class B

Mammal

Bird

1 62 63 result ¢

Tiger Sumatra

Tiger Siberian

dz d3 class D

Tiger

Lion

Figure 3.3.4.1. Sets interacting via a factbase

21

Assuming that ’Sumatra’ is the desired result of a particular run of the
small expert system incorporating a hierarchy as shown in figure 3.3.4.1.,
the fact ’Tiger’ 1is needed in order to fire table C. Both table A and D
can provide this fact as a result. If one of these tables can successfully
be solved, the result of the table is added to the factbass, from where
the control instance could get the necessary information to fire C. Table
D though might provide the fact *Tiger’ much faster and easier than table
A would do. Thus, it might be better to follow the short path rather than
the longer one. However, the decision of which table to "fire’ remains a
problem for a good control strategy.

— g—— ———

3.3.5. A Rule-based system

In a pure rule-based system, the one and only interaction between the
rules is realized by the factbase. "...ws have a completely ordered set of
rules, with no interaction channel other than the database. ... all
interaction must occur by the effect of modifications written in the
database; ... these modifications are accessible to every one of the
rulaes. ... a svstem, that is strongly modular, since no rule is ever
called directly. ... Production systems emphasize the statement of
independent chunks of knowledge from a domain and make control a secondary
jgsue.” [3, pp.32,38]1.

With respect to classification issues, the only structures remaining are
tables holding the description of one specific class, that are rules. A
rule—-based approach allows a greater flexibility in mapping attributes to
different classes, that are now self-supporting and not explicitly
embedded in a context with other classes Trom which they have to be
distinguished, which in turn also raises the chance of incorporating
contradictions and incomplete descriptions.

i11 possible to keep principles of inheritance. For example, the
(tiger) and (giraffe) indirectly refer to the (mammal) concept.
sz has an unicue attribute, it will only appear in this special
rul sas before it had to be incorporated for all other members of
the same set as well (a lot of "Don’t cares” are the result).

e
-
[
wt
[t
[
m e
-y B

m Tiger if {(mammatijand{...) then tiger
m Giraffs if {(mammalland{...} then giraffs
b Albatross

Mammal

Bird

Figure 3.3.5.1. Independent rules interacting via a Factbase

e
(€%

3.4. Local control strategies

The main goal of a classification system is to find a class an unknown
instance belongs to (a result). This overall goal simplifies some things.
The termination condition of a search within a table will be true if thers
is only one result left, even 1if there are more rows in the table
referring to that result, given that a1l the instances left carry the same
weight., If the latter 1is not the case, the termination condition is
fulfiiled 1f there are only instances with the same weight left. Thus, the
goal is to come up with an unigue result, unique in both the value for the
result and the weight attached to it. The basic reasoning method used in
a classification system is reasoning by elimination. Dealing with
predefined hierarchy structures we have to Tead the process of getting a
resullt within one tablse.

A forward chaining approach is also known as a data-driven approach. In a
rule-based system the rule application module "cvcles through the rules
Tooking for one whose condition part is satisfied by the database. When it
finds such s rule, it invokes the action part. In many cases, the action
results in changes to the database which enable other rules. The rule
application modute continues cyeling either (1) the problem is solved (the
goal s achieved) or (ii1) a state is reached where no more rules can be
invoked. ... In using this method, one begins by entering data about the
currant problem into the database.” [9, pp.421-422, 424]

The statement given above 18 concerned about rule-based systems. Some
things change in HICLASS. In general, there will be no 1initial facts
given, a factbase 1in the sense of a rule-based svstem doesn’t exist
anyway, Knowledge is provided with class descriptions (that can also be
interpreted as rules), grouped together within tables., The first step is
up to the system, which will start with asking a guestion to a user,
attempting to acquire information about a particular result while giving
a multiple choice of all values defined for a particular attribute.

o decide which question to ask next is ths problem of the control
strategy we are concerned about in this chapter. Since there 1is a
predefined hierarchy structure, there will be one table to be 1invoked
first, If the Tirst cuestion really comes from this table or from a tabls
calted from 1, depends on the particular situation. The control strategy
only works in a Vimited environmeni, within one table. Contrasting this
with a data-driven approach in rule—based systems we can say that in our
case it is clear which "rule" to fire according to the hisrarchy. We ars
concarned about which part of the “rule” fo examine next. The process is
not driven by the dnput data but by the remaining data 1in the
knowledgebase. Hence, we will use the term forward c¢haining, thus
contrasting to a backward chaining, goal-driven approach

Using ideas of a forward chaining appreach, there are some different ways
of deciding which question to ask/investigate next. This depends on the
knowledge incorporated in the table.

. s — —_— —— —

25

3.4.2. Left-to-Right

Again, the questions are asked left to right, starting with the first one.
This time though, every answered gquestion leads to a reduction of ths
contents of the table (using intersection again). Hence it can happen that
not all questions need to be asked anymore. Attributes with the same value
ar with <Don’t care> in all rows do not need to be considered anvmore; ths
first applicable question identified is selected.

Example:

What is the olass of the cresturs? Fish

#igh 1 FL. n.pacific sa T mon 1.0
Figh 8 Ft. at =sa shark 1.0
What is the lengih of the creature? i Ft.
fish 1 Ft. n.pacific sz mon 1.8

Result: The creatures is a salmon.

2.4.5%. Heuristic driven

The approaches described above are straight forward, the control strategy
does not involve any knowledge (in the case of MATCH) or only a little
knowledge (in the case of Left-to-Right) about the contents of the table.
A heuristic approach would not simply go in one predefined direction but
choose every guestion according to the knowledge available.

One idea for a heuristic could be to use the one developed in [14]. There,
values have been evaluated according to the amount to which the knowledge
about them would reduce the amount of values remaining. But we have to
deal with a different situation now. The answer to a particular guestion
is not dual anymore, but can be chosen in a multipie choice fashion, thus
involving all possible answers. We cannot predict the answer of the user.
The goal to be achieved is to find a unigue result. Hence, the question
chosen should serve best to distinguish between classes.

A useful heuristic would be to prefer a guestion with the highest amount
of possible answer values, since the more values are defined, the higher
is the chance of an distinction among classes. "Possible answer values’
means that only values are counted which are sti11 valid in a reduced set.

Example:

type: Z valuss

gize: 3 valussg

Jocation: 3 valuss

What is the length of the creature? 1 FL.

Fish i ft. n.pacific salmon 1.0

Result: The creature is a salmon.

This heuristic seems to work fine. An important point to make 1is that a
heuristic driven approach is only applicable if the order of gusstions is
not predefined!

L T —— T L SRR L —— —— —— — — —

P
e

3.5. Class descriptions with different weights

As mentioned above, the termination condition of the Tocal strategies is
fFulfilled if there is only one class left and if all the instances of this
class carry the same weight. The goal is to come up with an unique result,
unigue in both the value for the result and the weight attached to it. So
far, the problem of different weights for a succeeding class was ignhored
and will be discussed below.

The Tollowing table will be used during the discussion:

type size tovation creature weight
ocetacea 25 Ft. at sea whale 3.0
catacesa 25 f&. near coast whale 3.8
fish 1 ft. near coast salmon 1.0

3.5.1. MATCH

Applying a MATCH strategy to the table given above, the following sequence
of action is possible:

Example:
wWhat is the class of the creature? cetacea
¥hat is the length of the creature? 25 Ft.
Vhare does the cresture Tive? near coast
cetacea 25 ft. near coast wha'le .8

Result: It is 80% for sure that the creature is a whale.

There 1s no problem, all guestions are asked anyway and a unigus resylt is
produced.

‘pspesu oJe juybiem oL41oads B UlLM S1INSS shbirun ‘saybLem JuUSJSILILP
BuLAJdied)8 $1LNSSJ 8JOW JO 9UO JO SBOUBISUL sidiainu sde 848yl usaLb
‘uysyl ‘sainssd enbiun puti 031 St [eoB B8yl ‘3SJ4i4 "psuleluiew 8Q 03 SBY
UOLIOR 4O JBpJo oLjiloads B ¢ NDJJ0YS, SLYF MOLLR O3 Jepuo ul tspqissod
8oLApE J0 Jomod 8yl USXHEOM 840 8J8YL pue ‘algeliear obpslAcy 8yl LB 8sh
10U pLhoMm 8M ‘sLyl BuLog C(<eleyM> JOd squBiem eyl (LB JO wnuwiutw 8yl St
§°0) BOUSPLIUCD %06 UILM <BlBYM> SL J{Nsad 8yl 1Byl BuLqe1s 1hg uoiisenb
18B| 84l ¥Se 03 30U eg pLnod we|qoJd SLY3 3e BULNOO| 40 AeM JuB48}iLP V¥

‘spEUM B OSL SUNIESJD SUT 1BUL BJNS JDJ St 11 3LNesy

a i aLeuR ges 38 "14 62 FEDRRED

Bas 3E J@ALL BJNIESUI0 BUL S0P BJIBUN

*81Qgel 8Ul 404 1LnssJd enbLun e 186 07 JepJdo Ul uoLisenb sJoul Buo
%SE 01 SABRY B} "SSB[D Syl JO ssduelsuUL Byl O psyoelie SIUbBLem JusIBLILD
sJge eJeyl 8duLs ‘384 enblun jou SL }(nNss4 8yl ULl SLUI 3Ing ‘1481
sse|D 8uUo ALuo S 848yl ‘3Lnssd Byl SY <¢p80R1aD> 01 usJdssiip <8dAl>
404 SBNLeA 8ABY 3BU] 18S 8|yl wodi suaLadidosep $seLo LLe BulLaowsd ‘goeid
SeYe] UOLIONPaJ 188 B ‘<es0R1el> YlLM pPEJSMSUR Si uoirisenb 1sJL4 8yl 4833V

50 BieUM 18BOD Jesu ‘14 67 BBORLH0
01 aieumn 2esE 3B a4 §7 BHORLBD
BHIeI80 i84n1ESL0 BUL 4O SSERLD 8yl 8L JBUM
iedwRrl
cusddey

OLnoo BULMOLLO4 B8yl ‘®{qe3 oy3 01 paiidde si ABe3BU3S YBLI-01-3387 E 41

ybLa-03-3487 “2°6°¢€

2.5.3. Heuristic driven

Finally, a heuristic driven control strategy could be applied in an
attempt to solve the table:

Examplie:

type: 2 valuss

size: 2 values

Tocation: 2 valiues

wWhat is the class of the creaturs? cataces

cetacsa 25 ft. at s2a whals 1.0

cetacea 25 L. near coast whals 0.8

size: 7 values (buf only one value for this attribute left in the tabls)
Tocation: Z values

Where does the creature Tive? near ooast

cetaces 25 ft. near coast whale 3.5

mesult: It is 80% for sure that the creature is a whale.

The order and amount of questions turned out to be the same as in 3.5.2.,
which must not necessarily be the case and is due to the simple example.

30

3.6. Different classes with the same content but different weights

It might happen that different class descriptions have the same content
but a different weight attached to 1t. It should be possible to handie the
following example.

Example:
cetacea 25 Fr¢ alt zes whals 0.%
cetaces Z5 ft. at sea monster 0.1

There is no way to distinguish betwsen the two classes, hence we will have
to deal with a set of results rather than with one unigus resuit.

3.7. ASKFIRST

Using an approach in which questions for values of specific attributes can
be answered by another table, we sometimes should nevertheless consider to
let the yser answer first. If by chance he knows the answer, we don’t have
to involve the other table or, even worse a series of tables. In case the
human’s answer 1s UNKNOWN we then can "fire” the table to solve the
problem. When this combined option should be used, depends on the specific
situation. This principle is also used in the MYCIN system: "...each
parameter be labeled as an ASKFIRST attribute (...) or as a parameter that
should first be determined by using rules rather than by asking the user.”
(3, p.64].

3.8, One class, one table and muitipie children

In 3.1.2, it was stated that in a situation in which classes with the same
parent do not share attributes, sets of classes within a table become
impractical, since all the attributes of all c¢lasses have toc be
considered. In this case, each c¢lass is described by its own table, and

a1l of theze tables have to be considered in order to sstablish or rule

out hypotheses. Does this have any effect on the local control strategies
used?

The termination condition for local control strategies so far was to
produce one unigue cliass with a unique weight. In the best case, only a
suybset of 811 possible questions has to be asked in order to terminate the
saarch {except MATCH, a1l strategies are aimed at minimizing the amount of

guestions necessary).

Exampie:
A Lyps size size of babies cragiure weight
cetacea 25 FL. 3 FL. whale 1.0
cetacea 25 ¥, 8 L. whale 0.8
B type Bize Tocation creature waight
Fish i ft. near coast salmon 1.0

There are two tables, both are called from the same parent, and both have
to be considered in order to continue with the classification. What can bs
done? There are two instances with different weights in table A. A
heuristic driven strategy can be used to simplify the table content.

wWhat 4 the size of the babies? 3 fr.

a: caetaceaa 25 ft. 2 Fr. whals 1.0

g figh 1 Fr. near coast salimon 1.0

Both tables fulfiil the termination condition ~ unique class descriptions
with unique weights. At Teast we know that <whale> has <3 ft.» Tong bables
{the guestion was asked only for this table!). But so far, we also know
or sure that the creaturs 15 a salmon, without even genarating a guestion
a very smart gystam,.‘,ar not?). There is no way to usse knowledgse
cquired within the context of one table for ancther, since completely
ifferent at*?%bwgeg are defined: even 1T They can share thes same name,
g. <type>, they are NOT the same! The only way to really be sure that no
ro
it
i

“+

ng information will be produced 13 to ask all gquestions available
hin one table, 1.e. we have to use MATCH as long as there are multiple

W W

(%] K ﬁ ¢ Q&mw«w

b ldren left,

32

Additionally, we have to give another answer option to the user to avoid
confusion, since questions and answers might be generated that do not
relate at all to the instance which has to be classified. This option is
<Not applicable> and results, when chosen, in an immediate termination of
the search and in assigning a certainty of zero to the particular table.

i

a) assuming the user "seses” a <whale>

Table A:

What is the class of the creature? cetacsa
What is the Tength of the creature? Z5 ft.

what is the size of the babies? 3 ¥F1.

A cetaces 25 FE. 3 FL. whale 1.6

Tabis B:

What it the class of thse crsaturs? Mot appiicabls

The choices (Fishd and ot applicabled> were given to the user.
The user chose <Not applicable> because he/she "sees” a dwhale).
which is NOT a (fishd.

Result: The creaturs is a whalse.

b) assuming the user "seses” a <salmon>

Taplie A:
What 48 the class of the creature? Mot appiicable

The choices <(cetaces> and <hot applicablie> wers given to the user.
Tha user chose <Not applicable’ bescause he/she "sses’ a (salmon’,
which is NOT a <cetacear.

Rasulit: The creature is a salnon.

It was not necessary to ask any other guestion, since B is the only table
left and has a unique result with a unique weight (the world view is
limited to the information stored in the system!).

A practical problem appears given a parent calling multiple children.
There is only one result defined per instance, thus only one pointer. In
order to call multiple tables at the same time, a dummy table has to be
inserted.

3.9. An answer UNKNOWN

Imagine trying to identify this strange animal you saw the other day. The
computer asks vou "With what are the supraorbital processes fused to ths
braincase?” and gives the choices "with part of posterior projection” or
"with posterior extension”. WHAT??! "I don’t know!”

To handle situations like this there 1is a need for a default answer,
namely UNKNOWN. And mavbe other gquaesitions are easier to answer and it is
nevertheless possible to proceed in the clasgsification. How to deal with

this answer? Which problems arise given this choics?

The easiest way to handle the situation is to simply ignore the UNKNOWN
question/answer as not helpful to the classification process. This of
course will have more or less serious effects, depending on the control
strategies chosen and on the content of the particular sst. Let us now
investigate the effects, considering different control strategies. Without
further discussion it should be stated that, if a guestion marked as
ASKFIRST is answered with UNKNOWN, we will try to find an answer using a
table designed to provide this answer (if there is such a table)}.

Example:
Lype size location creature weight
cetacesa 25 ¥t. at sea vhale 1.0
cetacsa a8 ¥ft. near coast porpoiss 1.0
catacea & FL. at sea dolphin 1.0
fish 1L, n.pacific salmon 1.0
Fish & Ft. at sea shark 1.0

(45
B

3.8.1. MATCH

With this approach, every question is asked from left to right without any
further action involved. An input vector 1is built and compared to the

table.

Example:

vectort = { cetacea, UNKHOWHN, near coast }

cetacea & FL. near CoAast porpoise 1.0

vactorzz { cetacea, UNKHOWH, at sea }

cetaces 25 fr. at sea whale
catacea 8 ft. at sea doiphin

Y

We can get sets of solutions rather than one unigue result after
exhausting all the possible questions. Since the input vector s
incomplete it might not be possible anymore to fully classify instances.
The answer UNKNOWN has no effect on the way the control strategy works,
since all questions are asked anyway.

a5
3.8.2. Left-to-right
Questions are asked from the left to the right, and every answer leads to
a reduction of the table. Hence it can happen that not all guestions have
to he asked anymore. The answer UNKNOWN is ignored, no action will take

place, thus no reduction. Depending on the particular situation this will
effect the number of gquestions tc be asked.

Example:

what is the class of the creature? caetacea

cetacea 285 fFL. at gea whals .0
cetacsas 8 ¥, near coast porpoiss 1.0
cetaces g ¥t, at sea doiphin 1.0

What is the length of the creature? UNKNOWN
no change in the table
Where does the creaturs live? at zes

: Fr. at sea whale 1
L. at sea deiphin i.

Ll

The result is the same as with MATCH, all guestions had to be asked. It
can easily be seen that if the answer to the second question would have
beaen <25 ft.»>, the third question would have been useless, since the
reault would have been clear: <whale>. Hence, the answer UNKNOWN effected

the efficiency of the control sirategy.

3.9.3. Heuristic driven

The heuristic driven approach does not simply procesd in ons predefined
direction, but chooses every guestion according to the knowledge
available. The heuristic to be usad here is to prefer a quastion with the
highest amount of possible answer values.

Example:

type: 2 valuss
size: 3 values
tocation: 3 values

What is the length of the Creature? URKNOWHN
no changs in table

Where doss the creature Tive? 2t ses

cetacesa 25 ft. at sea whale 1.0
celtaces 8 ft. at sea doiphin 1.0
Figh & Ft. at sea shark 1.0
type: 2 valuss

What is the class of the creature? cetacea
cataces 25 FL. at sea whale 1.0
cetacea & Fi. at sea doiphin 1.0

Again, we have the same resull as before; and the szame effects on the
efficiency of the control strategy. For the hsuristic driven as well for
the Left-to-Right approach the effects will not always be as strong as it
turned out here, where no savings at all were left after only one answer
UNKNOWN. But the effects will be there and there is no way to avoid them.

ay

2.9.4. Global effects

Wa found that there are two reasons for having a set of rasults rather
than one single unique result: a) if we deal with muitiple classes having
the same description but different weights attached to them, and b) if
multiple results were produced after an answer UNKNOWN,

Since the tables are embedded 1in a hierarchy structure, we have to take
the results from one table in order to find ocur way through the tres.
Different to the examples already given we are not done with stating that
there are multiple results and maybe displaying the special values.
Depending on the particular situation we basically have to deal with two
situations.

Fxample:
a) A: backpone breathing type weight
Yes iow hole cetaces 1.0
yes gilis Fish 1.0
8. size Tocation craature waight
25 ft. at sea whals 1.0
& Ft. ngar ocoast porpoiss 1.0
8 ft. at sez dotphin 1.0
[location creature weight
n. pacific sa’imon 1.0
at gea shark 1.0
packbone breathing A size location B
yes blow hole [cetacea z5 at ssa wha'ls
sunsneb b B near o. porpoise
8 at sea doiphin
Tocation G
yes gills Fish
n. pac. saimon
amm— Rt ghark
@} A backbons breathin Lyne wadaht
Vs ziow hols catacea 1.0
Vas gilis Fish 1.0
B8 tvpe zize Tocation creature vieioht
cetacea 25 ft. at sea whale 1.0
cataces 8 ft. near coast porpoise 1.0
cetacesa 5 ft. at ses doiphin 1.0
Fish 1 Ft. n.pacific saTmon 1.0
Tish 8 ft. at sea shark 1.0

{The chaining condition for atiribule <{(Lyps> in

A

is chosen to be ASKFIRST=Faliss)

€
&l

——? Type zize Tocation B
catacesa 25 at sea whale
cetacea & naar o. porpoise
cetacea <] at sea doiphin
fish 1 . pac. saTmon
fish & at sea shark

1
H
backbone breathing A ’
yes blow hols cetaces j
’ yes gilis fish

Using a Teft-to-right control strategy, for both a) and b) the first
guestion will be

How does the creature breath? PKMNOWN

resuiting in

A yes biow hols

atacea 1.
ves gills 1

L]

B O

Both classes in this set are true given this answer. They both have tLhe
same certainty of being true.

For a case 1ike a) we have to follow several paths in parallel, as Tong as
we either reach a dead end or come to a solution. This means that we have
to carry the problem with us right to the end, maybe introducing more
paths dus to additional UNKNOWN answers.

With b) both results must be used in order to reduce table B, which in
zﬁ%s particular case (all possible values are still valid) doesn’t result
in any reduction, which means the same as an answer UNKNOWN for the
attribute <class> of table B. We should now ask the user 1if he/she can
specify the class of the creature; we assume here that this answer would
be UNKNOWN as well. In other cases though, 1t might turn out, that at
least some reduction can take place, since not all results of the called

table might be valid anymore

different aspects connected with the raised problems, we

In order to show
ook at different classification goals. A left-right control
be yse

S
will have a lo
strategy will

m,

39

1) assuming the user “ames” a <whale>

what is the sizs of ﬂrv cetacsal? 25 Ft.
(Question from table B.

food
o
S

pesult B: The creature is a whale Tor sure.

whers does the Fish Tive? Mot applticable
{Guestion from table C.)

The choices <n.pacificy>, <at sead> and (not applicabler were given to the user.
And, since the quastion referred to a fish, ths ussr chose (Hot applicabis>,

nesuit: The creaturs is a whale for sure.

»mmwn“ there is a need for an answer <Not applicable>. The condition to be
ul1filled for generating this answer is the fact that the inves wwmmmdmm is

aanm parallel for awﬁmmwmmﬁ tables within one level of the hierarchy.

1t 1is very important to be very explicit in the formulation of the

mmmwww string to avoid confusion as much as possible. The question

should be related to the overall concept of the table. A question Tike

whare does the creaturs lTive?

for mmwwm ¢ would certainly be correct, but is not giving any hint, that
it is aimed to inguire the Tlocation mm a <fish>, while the user might
"sge” a <{(celacsa’.

www what is the sizs of the creature? 25 Ft.

Result: The creature ig a whale for surse.

Tt turns out that a unigue result could be achieved regardless of the
previous uncertainty. No further action is necessary.

I1) assuming the user "sees” a <shark>

ot
-
W

o

vihat 48 the size of the catacsa? Not applicable
{Question from fsble B.)
The choices <25 ff.>, <6 ft.>» and <1 ft.> and {not applicabie’> were given to the user.

What is the location of the fish? at sea
(Quastion from table C.)

Rasult: The creature is a shark.

-

Basically the same comments have to be made as in Ia). Even though,
coincidentally, the attribute <location> is defined for both tables does
not mean that an answer to one of the appropriate guestions 1s also the
answer to the other one. Again it has to be stated: the tables B and C
have nothing to do with each other, except the fact that they both ar
"fired” by table A. They are separate units with their own atiribute
names, vaiues and guestions.

Eib} What is the size of the creature? 8 ft.

a: cetaces 8 Ft. near ooaszt porpoise 1.4
cataces & ft. at ssaa doliphin 1.0
figh 8 Ft. at sea shark 1.0

Wherse doss the cresaturs Tive? at sea

at sea aoliphin 1.0
at sesa shark 1.0

g cetacsa &
Fish & Ft.

Now, the result is not unigue anymore. Both possible results are valid and
can be given to the user. No further activity is possible.

3.10. Dealing with uncertainty

Given multiple resulis so far, we only had to deal with one instance per
class and with an equal Tikelihood of the different ressults. This will
change if there are different waights for class descriptions. The subject
of uncertainty is not trivial, a lot of controversy is going on in this
area of research. The attempt will be to find a reasonable, consistent
approach for the task on hand while providing a practical scheme to work
with. Despite the theoretical problems with a certainty theory applied in
the MYCIN system, we will use basic ideas of this approach.

As described in [9, p.403], a "certainty measurs C{8) is associated with
every 'factual’ statement $ such that:

a) C(8)Y = 1.0 if S is known to be true
b) 6583 = ~1.,0 if S is known to be false
c) 0(8) = 0.0 if nothing is known about 8

d} 1ﬂiermed}aze va?ues indicate a measure of certainty or
uncertainty in 8 7

For our problem, we 1imit the range of measures to the certainty, which
means to a rangs from 0.1 Lo 1.

a) C{8) = 0.1 if very 1ittle iz known about §
BY C{8) = 1.0 if 8 is known to be trus
) intermediate values indicate a measure of certainty in S

The only predefined certainty measurss in the system are weights attached
to descriptions of classes {(or in a different view measures of bslief for
rules) and thresholds for the termination of paths. Only positive class
descriptions with a certainty value eqgual to or biggsr than 0.1 are
allowed. For purposes of inductive learning though, a weight of 0.0 can be
attached to an example to denote a negative exampls.

Example:
type size location creature weight
cetaces 25 ft. at sea whaie 1.0
cetacesa & ft. near coast porpoise 1.0
cataces & Ft. at sea doiphin 1.0
figh i fr, n.pacific sa’lmon 1.0
Figh & ft. at sea shark 1.0

The input vector { cetacea, UNKHOWN, at sea } Tesds fo:

cataces ZE ft. at sea whals 1.0
cetacea 8 Fi. at sea doiphin 1.0

Both results have the same Tikelihood of being true. The two remaining
class descriptions are independent from each other, sach vector can also
be seen as one rule leading fto a particular result. Therefore we can work

42

with them separately. One result cannot be favored over the other
according to the (incomplete) information given to the system. Both
results are possibise,

Within one vector {or rule) we have to deal with complex conditions, the
ovarall certainty value of these conditions can be computed using resulis
from the theory of fuzzy sets:

certainty of [A AND B] = minimum of {C(A), C(B)}
1f there is missing information (expressed by an answer UNKNOWN), we
simply ignore this condition in the process of computing a certainty
measure as also shown in MYCIN [3, p.254]:

CF{h,s1 & s7] = CFlh,s1]

For our examplie this means:

min (C{cetacea), C{(25 ft), C{at sea))

= min { 1.0 ; , 1.0)
= 1.0

min (Clcetacea), C(5 ft), C(at sea))

= min (1.0 , , 1.0)
= 1.0

There can be weights different than <1.0> associated with c¢lass
descriptions, that are measures of the reliability of those descriptions.

Example:

cetaces 28 Ft. a2t sea wha'is (0.8

to be read a2s5:
If 4t 4s a cetacss and 235 §t. long and is 1iving at sea, then
thaere is strong evidence (0.3) that the creature is a whalse,

Assuming that all values of the example can be determined with a certainty

f 1.0, we will calculate the resulting certainty value of the c¢lass
description by multiplying the predefined weight of the description (0.9)
with the combined certainty of the condition part (1.0).

Ciwhale) = 1.0 % 0,8 = 0.8

Let us now assume a class description, in which whale 1s described with
two different vectors (to be read as: ’a whale is a celacea, is 20 or 28
4. long and lives at sea’).

43
Exampie:
type size Jocation creature weight
cetacea 20 ft. at sea whale 4.8
cetaces 25 ft. at sea whale 1.0
cetacesa & Ft. near coast porpoise 1.0
cetacea 6 ft. at sea doiphin 1.0
Fish 1 ft. n.pacific salmon 1.0
fish & Ft. at sea shark 1.0

Now, the input vector { cetacea, UNKNOWN, at sea } Teads to:

cetacesa 20 L. at sea whale 4.8
cetaces 25 ft. at ses whals 1.0
cetacea & ft. at sea doiphin 1.0

We have two vectors left for whale. Since we are interested in the
certainty of the whole class, we have to combine the certainties of both
occurrences. Again it is not possible to state that <whale> is mors
certain than <dolphin>, sven if the first one is sxpresszed with two
vectors. The twe classes are independent of sach other. According to the
information, both are well defined. The fact THAT there are multiple
solutions though points out that there is a problem, that the sclution is
not unique. To combine two occurrences (or two rules) of the same class,
we will use the formula given in [9, p.403]:

CA/AY = Cf

.y

Xy + [CF % [1.0 - COC1T .

»».M -
(]

This formula ig explained in the following way: "If the certainty value
C{X) of a statement is positive, then the most that a rule with positive

CF Caﬁ increase the cartainty of X dis 1.0 - C(X). This amcunt is
multiplied by CF and added to C{X0."

Cilwhale) = 0.0 {initial ssiting}

Ciwhale/1) = 0.0 + [0.8 % [1.0 - 0.0} = 0.8

C(whales2} = 0.9 + [1.0 % [1.0 8,9} = 1.0

So far we assumed, that the condition part has a certainty value of 1.0,
in other words, u?i conditions are certainly true or unknown, and that ths
whole table s "fired” for certain. In a hierarchy wath numerous
interactions betwsen tables this 1s not true anymore. Tables can be
invoked with a certainty less 1.0 and values of conditions determined by
other tables can also hold a certainty less than 1.0. It is chviocus that
these certainties have to be propagated To the table under consideration.
Hence, we also have a chance to distinguish between different possible
solutions, which we got Tollowing different paths of the decision tree. We
need to know the total certainty of such a path, such that it expresses
the quality of a specific solution.

44

Given a situation, in which one table calls another to determine the valus
of one of its attributes and the result of this table 1is not unique,
whereas other valuss of the first table can be determined with certainty
or are unknown, we can get the Tollowing:

at az 23 Result
Q.8 1.00 0.8
0.6 1.00 1.0
al: vaiue rasult of another table

a2 valus = UNKHOWH
23 value = ceriainly trus
Resull: certainiy facior

First, we have to find the minimum of the certainties of the conditions,
ignoring the unknown value. Since the condition part holds & certainty
less than 1.0 now, the certainty factor of the concJusion must be modified
accordingly.

al aZ a3l Rasult
5.9 1.0 4.8 min{0.%,1.0) ¥ 0.8 = .81 = .8
6.6 1.0 1.0 Min(0.6,1.0) % 1.0 = 0.6

And again, 1t can happen that a particular class is described by several
vactors,

ai aZ a3 Resuit
3.9 1.0 0.8 R1 min{0.8,1.0) # 0.9 = 0.81 = 0.8
0.8 1.0 1.0 R1 min{(0.9,1.0) * 1.0 = 0.3
G.8 1.0 1.0 RZ min{(0.6,1.0) % 1.0 = 0.8
C{R1) = 0.0
C{R1/%) = 0.0 + [0.8 * [1.0 -~ 0.0] = 0.8
C{R1/2} = 0.8 + [0.9 * [1.0 - 0.8] = 0.88 = 0.3

WOTE: A i-digit arithmetic with chopping is used.

45

We can derive the certainties within one table now. But we also have to
consider the certainty with which this table had been invoked, a prioer
certainty for the particular table.

al az al Result

.98 1.0 4.8
0.3 R1 C{R1} = 0.8
—— 3.8 1.0 1.0

5.8 1.0 1.0 RZ C{RZ) = 0.8

Again, we multiply the appropriate certainties, resulting in

C{R1}
G(RZ)

[E

pe e
W

[l]
[

Do cd
o1
0ot
[EVE

We have to consider all certainties in the path for a particular result to
measurs its overall gquality in comparison to other resulis.

ai az al Resylt
0.9 1.0 0.8
G.5 R1 C(R1) = 0.4
> 0.8 1.0 1.0
0.8 1.0 1.0 RZ GC(RZ) = 0.3
bi PpZ Result
0.3
> 1.0 1.0 1.0 R3 C{R3Y = 0.5

For the sxample, result R2 would be more Tikely the solution than the
resuylts R1 or RZ.

It was assumed that several descriptions for one class are independent of
each other. This is of importance, since "the rules of certainty theory
... are strictly only applicable 1f the pieces of evidence are
statistically independent.” [9, £.408] Is this really true hare? To answer
this guestion we can again compare the descripiion of & class with a rule
consisting of several conditions and a conclusion. There might be several
descriptions for the same class, or several rules with the same
conclusion. Class descriptions are combined in sets here, which can be
seen a8 a context. Several attributes with a number of values are defined
within the table. The c¢lass descriptions depend on the same attributes,
but not on each other, esven if it might happen that a number of equal
values are found in the conditional part of two vectors. The "rules” are
all diaghosed at the same btime, thereby reducing the set of applicable
ones by rules with not fulfilled conditions.

48

80 far, an answer UNKNOWN had no impact on the certainty of a particular
conclusion. We only examined conditions with a certainty greater than
zero, combined with predefined weights for the conciusions and simply
ignored unknown parts of the conditions. Having a situation with alj
certainty factors equal 1.0, we will never have certainties different than
zero {no information at all for a particular table) or 1.0 {at least one
answer for every table along the path).

Example:
A a2
1.0 2 1.0 .01 7 1.0 C{R1} = 1.0
1.0
>1.00 7 1.0 C{RZY = 1.0
1.01 7 1.0 C(R3) = 1.0
¥
1.0 07 1.0
1.4
>41.0 1.0 C{R4) = 1.0

That all the certainty values happen to be 1.0 s totally correct; given
the amount of information they are all possibie. But it also seems to be
appropriate to say that Result R4 s more likely to be the final result,
since it inciudes more positive evidence than the other results, looking
at the number of guestions answered with UNKNOWN along the path. One way
to incorporate this knowledge is to count the number of guestions answered
with UNKNOWN in a table, subtract this number from the total number of
gusestions asked and compute a ratio, resulting in the percentage of
guestions NOT answersed with UNKNOWN,

7 guestions ~ I UNKNOWN

I guestions

This ratic is then multiplied by the certainty factor of the results. The
information about the amount of unanswered guestions has also to be

incorporated, if there are certainty values different than 1.0.

=N
o

Example:
A B
.91 7 0.8 0.31 7 1.0 C{R1} = D.3%0.5%0.4%1.0 = .06 = ¢
G.4
»40.8] 2 1.0 G(R2) = 0.8%0.5%0.4%1.0 = 0.18 = 0.1
1.0f 2 1.0 C{R3)} = 1.0%0.5%0,4%1.0 = 0.2
r=0,5
0.8] 7 1.0
I
0.3
11,0 1.0 C(R4) = 1.0%0.3%0.5%1.0 = 0.15 = 0.1
r=1.0
r=0.5

A path will be terminated if its combined certainty value drops under a
predefined threshold. These thresholds are predefined for each table.
Assuming that table A has a threshold of <0.4>, then table C will never be
invoked, since the certainty value for the result "firing” the table is
smaller than the threshold. Assuming that table A has a threshold of <0.3%
and tables B and C both have a threshold of <0.2>, the only valid result
will be R3.

T Ny T T S P PGS T e e

48

2.11. Congcluding other values

Depending on the amount of reduction of the number of questions asked,
there will be additional knowledge in ocur knowledgebase that is bound to
the particular result(s), and that can be given to the user if reguested.
The attempt is to exhaust all the information availabie. Valuss for
attributes not covered by any guestion generated and/or values for
attributes the user has no knowledge about (answer UNKNOWN) can be derived
from the descriptions stored in the knowledgebase.

Except working with a MATCH control strategy the goal is fo reduce the
number of guestions necessary to classify a particular instance. In the
hest case we only have to ask one guestion, which could for example result
in the foliowing:

Example:

Type 5128 focation creaturs weight
cetacss 25 ft. at ses whale 1.4
cetacea & ft. near ocoast porpoiss 1.0
cetacss & ft. at s=a doiphin 1.0
Figh i ft. n.pacific sa’imon 1.0
Fish 8 ff. at ssa shark 1.0
what 4s the length of the creature? 25 ft.
cataces 25 fL. at sea whalse 1.0

The creature is a whale Tor sure.

Is thaere a way to conclude the information about other atiributes of the
class and give this data to the user 1f requested? OFf courss: <type> is
<catacear and <location> is <at sea>. In case that there are <Don’t care>
values embedded in the description, all of the possible values for the
appropriate attribute ars valid and have to be given to the user.

Example:

type sizZe Jjocation craeature waight
cetacea Z5 ft. % wha'le 1.0
cetaces 5 ft. n@ar coast porpoise 1.0
cetaces & L. at ses daiphin 1.0
fish 1 Ft. n.pacific saimon 1.0
fish § ft. at sea shark 1.0
wWhat is the length of the creaturs? 25 fi.
cetacesa 25 ft. & whale 1.0

The creature is a whale and has the following charactisristics:
type = cetacea

size = 28 ¥t

Tocation = at ses OR near coast OR norihsrn pacific

49

Given a situation, in which several instances of the same class are left,
we have to exhaust all information left.
Example:
Type size iocation creature waight
cetacea 25 ¥t at sea whale 1.0
cetacea 20 fi at sea whalie 0.8
cetacea 6 L. near coast porpoise 1.0
metares g fr, at ssa doiphin 1.0
Fish 1 FL, n.pacific salmon 1.0
fish & L. at sea shark 1.0
What is the length of the creaturs? UNKNOWH
Where does the creature Tive? at sea
What is the type of the creature? cetacea
cetaces 25 Tt. at sea whale 1.0
cetacesa 20 ft. at ses whale 3.8
cetacesz & ft. at sea doiphin 1.0
C{whale) = 0.5
C{doiphiny = (.8
The creature can be a doliphin (80% sure).
A doiphin has the following characteristios:
type = celizaces
size = 8 Fi.
Tocation = at sea
AND
The creature can be a whale (50% sure)}.
A whale has the following characteristics:
ay (1.0} type = cetacea
size = 25 Ft.
location = at sea
)y {0.8) type = cetacea
size = 20 ft
iocation = at ssa
To conclude values of attributes belonging to parent tables in the
hierarchy, the same steps have to be performed. We must keep track of the
path we went down to a solution, for instance with & pointer back to (az)

calling tablels),

50
2.492. Explaining the reasoning process

The ability to explain the reasoning used to ask a particular question is
an important feature of an expert system. As can be ssen easily this
option is less powerful with control strategies like MATCH and Lefi-to-
Right. Since the selection of questions asked is not very sophisticated in
these cases the only explanation could be given regarding to the overaill
goal within the context of the particular table, eventually complemented
by some already concluded results on higher hierarchy levels.

Examples:

5} type size ipcation creaturs waiaht
cetacea 25 Ft. at sea whale 1.0
cetacea 8 ft. near coast porpoiss 1.0
cELacea & ft. at ses doiphin 1.0
fish 1 ft. n.pacific sa’tmon 1.0
Fish & ft. at ssa shark 1.0

Question: What is the type of the creaturse?
Explanation: This gquestion serves to concliude the creature.

b A: backbone breathing type weight
Yan biow hole cetacea 1.0
VES gilis fish 1.0
& Bize iocation creature Haight
25 FL, at sea whals 1.0
6 L. near coast porpoiss 1.0
8 FL. at sea doliphin 1.0
[o Tocation craagture weight
n,pacific sainon 1.0
at sea shark 1.0
a B
cetacea whale
— aorpoise
doiphin
c
Fish sz lmon
> shark

Question: How does the creature breath?
Explanation: This question is asked in order to define the type of the creature.
This is necessary to concliude the creaturs.

Question: What s the Tength of the Figh?
Explanation: It was concluded that the creature is a Fisgh,
This guestion serves to concliude the creaturs.

-3

_— L4 W —— L W

51

Ueing a heuristic driven forward chaining, some more detailed explanations
ara possible, based on the philosophy of the heuristic itself.

Example: using Example a)

Guestion: What is the lTength of the creature?

Explanation: This question serves to conclude the creasturs.
The Tsngth of the creature serves best to accompiish this goal,
since the creatures differ very such in their length.

I

Given a more complex hierarchy and additional fTeatures like answers
UNKNCOWN, several fables with the same parent etc., the explanations will
be more sophisticated.

&0
™

3.13. Incorporating metaknowledge

As described before there are different ways of controlling the reasoning
process, depending on the contents of the knowledge description and on the
task at hand. The decision which one to use can only be made according to
this information, thus 1t is not possible to “hardcode’ them.

One particular table in the system can have an order dependency, whereas
others don't have this constraint. Hence, for the first one we have to use
either MATCH or Left-to-right, the other ones can more efficiently be
explored using heuristic methods.

"Consequently, there are good reasons for making control knowledge
explicit. ... metarules, which are invoked as part of the conflict
resolution strategy, can capture and implement strategic knowledge about
a domain.” [9, p.435]. "Meta-rules are distinguished from ordinary rules
in that their role is to direct the reasoning reguired to solve a problem,
rather than to actually perform that reasoning.” [10, p.147].

In our case, the following meta-rules could for example be stated:

IF there is & favored strategy bound to the tabls THEN use this
ELSE use Heuristic

IF there is an order within the table THEN use Lefit-to-right or Match
ELBF use Heuristic

I the usser answers with UNKNOWHN very often
THEN dignorse the ASKFIRST flags and branch to other tables without asking.

If there are multiple instances of one class with different wsights
THEN first try to reduce the set to get one result cliass and
THEN fry to raduce the set to get one result class with a unigue waight.

I¥ there ars other classes with the sams parent left
THEHN use MATCH

The following example 11lustrates how metarules are used within HICLASS to
decide which control strategy has to be applied for a particular table:

strat: =favored_strategy,; {use user’s favored strategy}

if strat=0 then strat:=3; {if no strategy is favored use heuristic}

if {(predefined)and(strat=3) then strat:=2; {cannot use heuristic if predefined order}
if sib then strat:=zi; {there ars active siblings in the hierarchy}

cass strat of
1 match(table,gb);
21 left_right{iable,gb);
3: heuristic(tablise,.qb);
and;

3.14. learning

In our classificaticon system it might happen that the fincorporated
knowladge i1s incomplate, that there are special cases which have not been
considered before. For example, the user could "see” a value for an
attribute that 1s not incorporated in the multiple choice presented by the
system. Rather than simply stating that the system cannot classify this
ingtance, new knowledge could be acquired from the user and the systen
could try to proceed with this new information, at the same time
memorizing the specific constellation for maintenance purposes.

Example:

{interval gize = 0% = unigus values}

Lyps size Tocatinn creature weiaht
celtarnes 25 Ft. at saz vhalie 1.0
cetacea g FL. near coast porpoise 1.0
Figh 1 L. n.pacific sainon 1.0

What is the class of the creaturse? cetaces

cataces 25 f¢. at sea whaie 1
Tacesa & Ft. near coast porpoise 1.

[

What s the length of the creaturs? 23 7t.

HOTE: The user snters a length that is inconsistent with the given knowledgs.
The systam Triss now to coms up with a rasull anyway.

vWhere doss the orsaturse live? at ses

Besutt: It s likely thabt the creaturs is a whale.
& porpoise normally has a length of 25 fL.
Pisase check the length you entersd (23 Ft.).
If you are sure sbout the length, then enter YES.

1f the usesr confirms the new knowledge, it will be stored and can be
checked in a maintenance run performed by a human expert. If he/she can
onfirm this new 1instance as belonging tc the class detected by the

vstem, the description for this class has to be updated. Otherwise, if
he new information 1s inconsistent with the class, there might bhe a

complete new class to add.

ot O
5

3.15. Globhal attributes

1f there are attributes in different tables that are 1iterally the same
and have the same domain of possible answer values, which will most Tikely
he the case 1f there are multinle tables with the same parent in parallel
{as described in 2.8.), then it should not be necessary for the user to
answer the same question several times. Attributes like this will be
marked "global” and a guestion will only be gensrated for the first tims
the attribute is encountered. The atiribute name together with the user’s
answer will be stored. Then, given an attribute marked as glcbhal is
invoked again, the answer will be taken from this internal list rather
than asking the user. OF course, the value should be included 1in the set
of possible answer values of the current attribute, the common domain
condition as mentionad above has to hold, this is one of the consistency
constraints of the system (the topic will further be discussed in the next
section).

3.16. Checking the consistency of the system

There are two major consistency problems within the hierarchy of tables.
First, all valuss of a global attribute have to be defined within the same
domain for all occurrences of this global attribute. Second, the domain of
result values of & table that 18 invoked from another table to provide a
value for an attribute of the calling table has to be the same as the
domain for the attribute of the calling table. If this constraint does not
hold, contradictions would be introduced. In order to check the whole
system, a consistency test routine could be introduced, checking alil
global attributes and the interfaces of chainad tables.

3.17. HICLASS and the rest of the worid

So far, HICLASS has been thought of as an independent program solving the
task of hierarchical classification. It might be possible though to embed
the program in a bigger system to solve one part of a task. We're talking
the use of HICLASS as a building block for more complex problem—solvers or
architectures. In chapter 5 1t will be shown that HICLASS indeed fulfills
conditions to implement a generic task. Hence, extended by appropriate
interfaces to other building blocks, HICLASS could serve as part of a more
complex system.

Additionally, the intesraction with the world could be performed in
different wavs than described so Tar (questions are generated and a user
answers while choosing a multiple choice answer or Lyping a value). The
“guestions” could be calls to other programs or real world processes to
determine values which are sent back to HICLASE to proceed 1in the
classification. Thus, no human user has to be involved anvmore; HICLASS
would serve as the control unit of an automated process.

Ln
(4]

3.18. Several paths — which one to follow?

Tt can happen that the system has to maintain several proper paths at the
same time, esach of them carrving & certainty value with it. The guestion
is in which order we proceed 1n the reasoning process. There are basically
two ways of dealing with this the problem.

We could apply a depth~first search, which means that we would follow the
Tefimost path until a leaf table is solved, or until the path terminates
hecause the certainty of a table becomes smaller than the threshold bound
to it. If thers are other paths left, then again the leftmost of those
will be followed first.

Or, we could apply a best-first search. If there are sseveral paths, ws
would further explore the path with the highast certainty value until a
teaf table is solved or the certainty value of the path becomes smaller
than the maximum certainty value of the other paths under consideration.
1f a leaf table s solved, a sclution can be given to the user and a
question can be generated to inquire if the user likes the reasoning
process to continue {and to try to come up with another result, which will
have a smaller certainty than the first result). If the user agrees, the
same process starts over again with the remaining paths. In the case that
the certainty value of a path becomes smaller than the valus of another
path currently defined, paths will be switched. In other words, the
current path will be disabled and we continue with the most promising path
as before. This algorithm assures that we are not wasting time while
exploring paths with a very 1ittle certainty of lsading to the raesult. OF
course, we cannot predict Tuture events, and the least promising path
might succead in the end, a problem that is common to most of the search
technigques developed for AL applications and that is tackled in one way or
another by the more sophisticated ones.

(4]
L)

3.19. Additional features
2.19.1. Entering initial data

It was stated before that in general there will be no initial data given.
But one also might think of an application in which some data can be
provided by the user before the system starts its reasoning process. MYCIN
uses a "tabular representation”, that can initially be filled with some
values from a patient’s record. This concept ssems useless for a
classification system. As described in [3, p.62] there is "the attendant
risk of asking for information that would not actually be used in some
cases.” For ocur special application, "some cases” would be "almost all”
Since we are moving within a hierarchy, only the questions in the first
table invoked are relevant for sure. On the next level in the hierarchy,
only a subset of all possible gquestions is valid anymore, since we "close”
whole branches of the decision tree.

3,19.2. Saving the system state in case of an interruption

& useful option to add would be that in case of an interruption of the
session due to a number of reasons, one is the nsed of the user to get
more information before being able to proceed, it should not be necessary
to enter the already given information again. This could be achieved by
storing the state of the system in a way that information about al]l
questions and answers so Tar are saved and then used as an automatic input
when running the system again, such that the state of the system can
easily be restored.

2.19.3. Using information from terminated paths

As stated above, a path will be terminated 1F its combined certainty valuse
drops under a predefined threshold. If all paths terminate and none of the
paths reached a tip Jevel, thus a final result, the logical answer of the
system would be to state "Dus to insufficient information I have no
advice”, period. But maybe at Teast some confidence about subgoals along
the paths was accumulated. It could for instance be sure that the creature
iz a <fish>. The svystem should be able to at least give this information
to the user.

3.99.4. Humerical input

So far, only symbols in the shape of strings are allowed as an input to a
specific quastion, given in a multiple choice to the user. It might also
he useful to have a numerical input option. For the examples above, size
could be inguired as a number rather than to give a predefined choice. The
problem is how to interpret a numerical input. Is it useful to work with
intervals? How can this be incorporated in a rule?

Fxample:
The following instances ars ussed to sst up the table:

28 ¥t. whalse
8 ft. doiphin
2 ft. salmon

Up to now, only the three predefined sizes were allowed to be chosen by
the user. A <whale> was <26 ft.> long, a <doiphin> had toc be <& ft.> and
a <salmon> <2 ft.> in order to be recognized by the system. Working with
the table (that is embedded in a hierarchy), we should be able to use the
dimensions given to derive intervals in order to allow a more flexible
input. In order to calculate the left border of an interval, we subtract
the next smaller valus from the value undsr consideration, then multiply
the difference by 0.5, and subtract the result from the current value. To
calculate a right border, we take the next higher value, subtract the
current value, multiply the result by 0.5, and add the result to the
current valus. I a value 13 the smallest in the set, no left border needs
to be calculated:; the same is true with the highest value and the right

border.

<yhaler: 28 - &8 = 20
20 % .5 = 10
26 ~ 10 = 18
(dolphiny: 6 - 2 = 4
4 % 5 = Z
6 - 2 = 4

8 -~ 8 = 20

20 * .8 = 10

g + 10 =z 18
<saimons: 8 ~ 2 = 4
4 % B = 2
Z 4+ Z = 4

Resulting in:

i¥ size 7 16 then whalse
if 4 S gize < 18 then dolphin
i gize < 4 then salimon

3

a

If the uyser 1isg prompted

to identify the size of the creaturs to be
classified, the following cl

assification is possible now:

Vinat i3 the Tength of the creature? 23 ft.
Result: The creature is a whale.

The idesa described s of course very general and might not serve all
situations. But, values could be marked as uniogue, therefore not
axtendable to an interval, or the interval size could be Timited. So far,
a full half range between values was used (50%). In HICLASS, an interval
size has to be defined for sach table, ranging from

o

0% = unigue values to
0% = full half range

(]

The left border of an interval is now calculated by subtracting the next
smaller value from the valus under consideration. Then, the result is
weakened by the predefined interval gize (g value of 25 defines that the
teft interval border will only be 25% of the full distance betwesn the two
values away from the current value). Again, the result is subtracted from
the current value to get the left border of the interval. Right borders
are calculated accordingly.

)
(&
a8

interval gize =

<whalsr: 28 ~ 8 = 20
20 % .25 = 5B
28 ~ 2 = 21
<doiphins: 8 - 2 = 4
4 % 2B = 1
g ~ 1 = B
28 ~ & = 20
20 % 28 = 3
8 + 5 = 11
<sainons 6 ~ 2 = 4
4 % .25 = 1
2 + 1 = 3

if size 2 21 then whals
if 5 S gize ¢ 11 then doliphin
iF size < 3 then salmon

1f there are several descriptions for one class including numerical values
and carrving the same weight, the system s0 far is not able to combine
thosse descriptions.

59

Example:

it

28 ft. whals
Z4 Fft. vwhale
& ¥t. doliphin
Z ft. salimon

P
jo vl w i o]

The algorithm does not care about relationships between values found in
descriptions for the same class. Given a full half range, it would come up
with:

if size 2 25 then whale

if 16 = size < 25 then whale
if 4 X size < 15 then doiphin
if size < 4 then salmon

This result is logically completely correct and the system would have no
problem classifying a <whale>, that is <20 ft.> Tong. For compactness and
explanation reasons though it would be better to combine the two
dascriptions for <whale> to

if size Z 18 then whale

60

3.20. HICLASE — an expert system shell

The term "user” so far was referring to a person using a ready made expert
system to solve a problem. But who is actually creating the system? GOne
could refer to this person as a "knowledge engineer”. His/her task iz to
acquire the knowledge, organize it and encode it together with all the
necessary control structures. As already mentioned, HICLASS is a tool for
hierarchical classification. It provides a knowledge representation and
control structures suited for this purpose. The wheel does not have to be
reinvented every time a knowledge engineer attempts to build & new expert
system. HICLASS has to be thought of as an “"empty” system, capable of
solving the task of hierarchical classification 1if fed with tables
containing all the necessary information. Therefore, it is an expert
system shell.

"Shells are intended to allow non-programmers to take advantage of the
efforts of programmers who have solved a problem similar to their own.”
[10, p.338].

Thus, the knowledge enginser does not even have Lo know a programming
language in order to build an expert system. The only thing needed i3 a
toal for creating and maintaining tables, together with other control
parameters. This tool is the editor HIEDIT, which will be described in
chapter 4.1.

Every attempt to provide a Jot of flexibility goes hand in hand with a
problem to provide special features which might be needed for a particular
application. Hence, for a very special classification task, HICLASS might
be useless, since the knowledge engineer’s chances to change the behavior
of the system arse somewhat limited. One example 1is the handling of
uncertainty. "...most if not 211 of Lthese shells are either inconsistent
with probability theory or have properties that are simply hard to
analyze. Although a pragmatic Jjustification can often be given for a
particular treatment of uncertainty 1in the context of a particular
application (for example, Shortliffe’s rationale for using certainty
factors in MYCINY, 1t is a much more dangerous enterprise to adopt such a
treatment simply because it comes with the shell one is using.” [10,
0.3427.

Jackson [10, p.342] also mentionad some advantages of expert system shells
Tike the fact that they are widely available for smaller machines, that
hecause they are mostly written 1in "non-AI" languages they can aid
portability and interfacing to other software and finally, that they are
inexpensive compared to especially designed svstems. It really depends on
the application if the use of an expert system shell can be recommended or
not.

4., The implementation of the HICLASS system

The HICLASS system is divided into two major parts: HIEDIT, the table
editor program, and HICLASS, the application program performing
hierarchical classification based on tables chained togsther 1in a
hierarchy. Approximately 16.000 lines of TURBO PASCAL 8.0 code were
written. A description of the software engineering technigues used can be
found in Appendix B, section 7. Appendix C includes a description of
almost all modules designed for the project.

4.1, HIEDIT

As discussed in 3.20., a tool is needed to create and maintain the tables
ysed in HICLASS as well as in HIMYPO. This tool is HIEDIT, & special table
aditor program. HIEDIT supporis the whole process from defining attributes
far a table, defining a domain of values for each attribute, stating
examples for descriptions of classes and adding a number of control
narameters attached to each table. Additionally, an inductive Tearning
feature Lo create a distinction—griented sel of descriptions for HIHYPO is
embedded. The program is completely pull down menu driven, values and
examples can easily be entered and changed 1in a spreadsheet. Thare are
four screens defined, the user can move between the screens with FO/F10.

FILES — DEFINITIONS — EXAMPLES -~ SPECIAL
A context~sensitive help is provided to explain features

o I 0.
Additionally, error and other messages help to guide the process of
defining a table.

4.1.1. FILES scrsen
L.oad Chbir New Print Export Save 03 Quit
Tabls: FizHelp
CINTPEVEHIT
e <DIR> 106~30-81
BGI <DIR> 11~11-81
DEMOS <DIR> 01-01-80
DOG <DIR: 01-01-80
DOCDEMGS <DIR> O1-01-80
SOURCE <DIR> 10-30-~91
TRU <DIR> 10-30-5%

TVDEMOS <DIR> 01-01-80
TYISION <DIR> 01~01-80

UTILS <DIR> 11-11-81
ANIMALY 885 05~26-92
ANIMALZ 1008 08-26~52
AMIMALZ 1042 08-286-892
ANIMALA 988 08%-26-82
ANIMALS 864 09-26-82

Pgin

Load an sxisting tabls

Figure 4.1.1.1. FILES scresn in HIEDIT

Explanation of features:

l.oad

Chdir

Print

Export

Save

Quit

it

1

H

1

1

Load a table from disk.

Only directories and table files (¥.HIT) can be
selected from a pull down menu.

Change the current directory.

Can be used to store tables in a different
directory.

Start a new table.

Print the gcontent of a table (not implemented vei)
Export the content of a table as a text file or

a file with a format compatible with programs
1ike LOTUS 1-2-3. {not implemented vet)

Access to DOS without gquitting HIEDIT.

GQuit HIEDIT.

L]
(5]

4. 1.2, DEFINITIONS screen

F3 = Add F4 = Change F5 = Move FB = Text F7 = Delete
Tabls: ANIMALY FizHelp F3zFiles Fii=Exampies
>itype sizg Tocation [RESULT
cetacea B8 at sea whals
fish naarcoast iporpoise
n.pacificidoinhin
saimon
shark
Enter attribute name: Tanimaiz Ask for Tocal values first 7 V/M

Figure 4.1.2.1. DEFINITIONS screen in HIEDIT

txplanation of features:
(depending on the position in the spreadsheet)

Add = Add up to 12 attributes.
If the new attribute name starts with a """, then the
systam will inguire 1f the introduced call to another
table should have an ASKFIRST option or not.
If the name starts with "17, then a global attribute
will be defined.
The attribute RESULT is predefined.

Add up to 26 values per atiribute in a spreadshest.
"#.87 denotas that the value is numeric (default is
numeric).

Change = Change the name of an atiribute.
Changs the name of a valus.

Move an attribute to another location.
Move a value to ancther Tocation.

it

Move

84

Text = Invoke a full screen editor for editing up to 20
Tines of text to be attached to an atiribute or to
values of RESULT.

Fdit one line of text for a value.

Delete = Delete an atiribute.

Delete a value.

some of the operations will have an effect on possibly already defined
examples. The effects will be propagated to all example definitions.

table: ANIMALY attribute: typs s OmMma na S
HICLASE EDITOR Pglip Page up
Pghv Page down
Yhat is the type of the animal 7 “Pglp first page
“Pglw Tlast page
“R First screen Tine
G ast screen lins
Home first column
End last column
~Y daelets 1ins

~QgY delete to end of Tine
~“KY delets text

TH insert line

"FZ oopy

“F2Z paste

Fz accentuation/coliors
Fa read ASCII file

F4 05~3hall

F& save as ASCII file
Fé show dirsctory

F7 shangs dirsciory

F8 print text

Fg change tab length
Fi0 ESC qguit esditor

ALT+ At B ot pip B Fi azg Hig zf§ 3:§ K

Figure £.1.2.2. Editor within ATTRIBUTES screen

The full screen editor has a lot of features common to ASCIIT editors. It
supports a word-wrap function, includes an easy editing of graphic
elements and is able io display color.

tabie: ANIMALY attribute: type CTRL+FT & F1 =
HICLASS EDITOR Ins Line 1 Co

Help
i

1

wWhat iz the

Femm FUNCTIONS OF THE HICLASS EDRITOR 1 OF 2

Exit the seditor

Move through the text
Delete characters or Tines
Insart 2 line

Insart an ASCII file

Save text as an ABCII Fils

Chioose a topic with the arrow keys and press ORI

Palip/Pgbn —

act+ Aty ool pip B Fol o] Hig f B o] md ey oib e

Figure 4.1.2.3. Contexi-sensitive help within the editor

85

4.1.3. EXAMPLES scrsen

F3 = Add F4 = Changs F5 = Replicats F7 = Delete
Tabie: AHIMALY FizHelp FozDefinitions Fi10=8pecial
Flocations
tyne 2 zZe Tocation REBULT WEIGHT *
1 cetaces 25 nearcoast whale [0.0} far sea
2 cetacea 25 at sea whale [1.067 near cost
3 cetacea 8 nearceast porpoise [1.0] n.pacific
4 cetacea] at sea doiphin £1.01
> 5 fish i n.pacific salmon [1.03
§ fish i nearcoast salmon 10.81
7 fish & at sea shark [1.07

Where does the animal Yive 7

Figure 4.1.3.1. EXAMPLES screen in HIEDIY

Explanation of features:

Add = Add up to 255 examplies in a spreadshest.
The values for attributes can either be chosen
from a pull down menu or a numeric vaiue can be
definad.
%" denot

e on’t care>.
Each examp

s <D
e has a weight attached to it:
[0.1..1.0] = de

8
= gree of confidence
[G.0] = negative example

Change = Change a value for an sxample.

o

Replicate = Craate a new example identical to the current one.

slete an example.

5]
3

Delete

4.1.4. SPECIAL screen

THE LAST SCREEN. DEFINE FINAL SETTINGS. GOOD LUCK!

Table: ANIMAL1 FizHelp FScExamplss

Distinction oriented Tearning provided: YES

Show sxampiss resulting from distinction orignted learning
Mon-distinction oriented Tearning provided: NO

Show exampies resulting from non-distinction oriented Tearning
Answer <Not applicable> allowed: NO

Arnswer <Unknown: allowsd: NO

Predefined ordsr within tabls enforced: NO

Favored Tocal strategy: MATOH

Threshold for uncartainty handling: {1
Interval for numesric valuss: § BMONE
Termination condition: unigus class MATCH
LEFT TO RIGHT
HEURIBTIC

Figure 4.1.4.1, SPECIAL screen in HIEDIT

Explanation of featurss:

Distinction oriented learning provided:
-YES/NO (default=NO)

Show examplas resulting from distinction oriented learning
-create and show distinction oriented set of examplses

Non-distinction oriented learning provided:
-YE&/NO {default=NO)

Show examples resulting from non-distinction oriented learning
-create and show non-redundant set of examples
{not implemented vet)

Answer <Not applicable> allowed
-YES/NG (default=ND)

Answer <Unknown> allowed
-YES/NG (default=NO)

Pradefined order within table enforced
-YES/HNO {defaultzNG)

Favored Gocal strategy:
-NONE / MATCH / LEFT 70 RIGHT j HEURISTIC
{(defayli=NONE - no favored strategy)

[#5]

e

Threshold for uncertainty handling:
S10.1..1.07 (default=1.0)

Interval for numeric values:
[0, 801 {default=0 =

Termination condition:
-<unigue class> OR
<unigue class AND unigue weight>

unigue values)

%

{default=<wnigue class AND unigue weight>)

HAVE A LOOW AT THE DISTINCTION-QRIENTED EXAMPLES !

Table: ANIMALY

type size Tocation RESULT W

> % 0% 16<34 3t sea wha'ie H
7 % 4%50is nearcoast porpoise |

3 cetacea 4«15 at sea deliphin f

4 % * rn.pacific saimon 1

5 fish * nearcoast saimon I

& fish 415 # shark {

What is the type of the animal 7

P J S 1

IGHT

.03

.03
.03

.01

FizHelp FBzExamplies

Figurg 4.1.4.2. Set of distinction-orisnted sxamp

Tes

89

4.2. HICLASS

The program HICLASS is based on the theoretic discussion made earlier. Due
to the high implementational effort, not all of the features described
have already been implemented vyet. Neverthelsss, the program 1s solving
the task of hiesrarchical classification using tables created with HIERIT
successfully, providing a1l of the major features covered.

The features not implemented vet are:

using information from terminated paths
explaining the reasoning process
dealing with new information

checking the consistency of the sysiem
interface to other programs

Even if these fsatures are not implemented vet, they were thought of; and
the data structures as well as the program structure are designed to allow
additions.

The global control strategy implemented uses a depth-Tirst search. Evary
time a table is called either from a result or from an attribute of
another table, the file containing this table 1is Jloaded and some
initialization steps are performed (e.g. appliying the metarules to decide
upeon the control strategy to be used). Then, the Tocal control strategy
starts working. If values for an atiribute have to be provided by another
table, then this table is called using a nested call to the same procedure
used for the original table (the main procedure mata is called recursively
evary Time a new table is invoked). Depending on the control strategy
chosen, the table content is reduced during the guestion/answer dialogue
or {in the case of MATCH) at the end of the dialogue. Checks for unique
results {or unigue results AND unigue weights) are performed to check the
termination condition. If a table is solvad successfully, certainties for
the results are calculated and these results are given to the user if
necessary. In the case of multiple table calls as the result of a table,
these calls are placed in a control list and the resulting paths are
invoked from left to right as siblings. If a table s called to provids
values for an attribute, then the particuiar sublree is solved first,
following the same steps as in the "main” free. So far, it 1is only
possible, that ONE table provides values for an attribute of a calling
table; 1t doesn’t matter if thisz s the table invoked first or another
table of the subtree. After a table iz sclved completeiy, it is disposed.
This and the fact that tables are only invoked 1T necessary allows to
suild very large systems without running out of memory. Tables can be
disposed since all values for global attributes are stored in a separate
Tist, and the whole dialogue including questions, answers, results and
certainties is documented in a history Tist. Of course, values as well as
results of a table can be numeric:; numeric values are processed within the
boundaries of the predefined interval range.

The basic description given above roughly outlines "the way it works". It
will be supplemented by additional infaormation given in the next sections.

4.2.1. The example

In order to 1llustrate the performance of HICLASS, a special example was
created showing as many of the features as possible. The zoological
content of the example is mainly based on [4],

4.2 %.1. Hierarchy structure of the example

The following figure shows the hierarchy structure of the example.
Connections marked with <’ and ’>’° denote that values for an attribute
are provided by another table. The table NOTCETAC is a dummy table and is
inserted in order to call several tables from just one result (there is
only one attribute defined in this table, the result; the table acts as a
routing device). Tables can be used several times in the hierarchy (an
example is table SIZE). Ancther special feature is shown with table
ANIMALT. This table either provides values for ANIMAL or calls NOFISH to
provide these values {the decision is made according tc the certainty of
the results of ANIMALY: 1F the minimal certainty of the "real” rssulis
providing values 1is smaller than the minimal certainty of all results
which are calls, then the calls are made; otherwise the results are given
back 1o the calling table).

ROOT ¢ - < i
pamil | |
anTmaL |« > | antmaLy
L NOFISH !
i i I < 1
BIRD >| TEMPCH |
MAMMAL
FISH L norceTac
fv~jim<-7 CETACEA b
L] s1ze §-«5§-<*w CARNIVOR UNGULATE
Lyl srze

Figure 4.2.1.1.1. Hisrarchy structure of the exampie

g
s

4.2.1.2. Content of the tables

calls to other tables are made using their filename. A °7° denotas that
ASKFIRST=false, whereas a ’~’ stands for ASKFIRST=ztrue, and the user has
to be asked before a table is invoked. An 17 at the beginning of an
attribute name means that this attribute is defined globally.

There are control parameters bound to each table, among others:

UzUNKNOWH 2l lowed

NzNOT APPLICABLE alliowed
T=Threshold

FzFavored straiegy
Izdumeric Interval

The tahle EXAMPLET provides some introductory comments for the example.
EXAMPLEY (uUzno, N=no, T=1.0, F=none, I=0)

oun nore RESULT WETIGHT
1 goon Suon ~andimal {1.01

ANIMAL <(u=ves, d¥zno, T=0.%1, Fznonea, I=0)
“animall RESULT WEIGHT

1 mammal “mammal [1.01
2 fish “Figh [1.0]
3 Bird “bird [1.01

ANIMALT (usyes, Nzno, Tz0.1, Fenone, I=0)
“temoch breathing RESULT WEIGHT

i variablie gills fish [1.01

Zz constant lungs “nofish {1.07

TEMPCH (u=zyes, N=no, T=0.1, Fznone, I=0)
tempch RESULT WEIGHT

ves variabie [1.0]

no congtant [1.0]

[V

NOFISH c(uzyes, Neno, T=0.1, Fzleft-to-right, I=0)
bodvitenn reproguct RESULT WELGHTY

1 107 R Bird 11.4¢3

2z 88 uterus mamma’ 1.4}

MAMMAL (u=yes, Noves, T=0.5, Fznone, I=0)

skin REBULTY WEIGHT
1 naked “cetacea [1.0]
2 hair “notcetac [0.8]

CETACEA (y=zyes, N=no, T=0.1, Fznone, I=50)

“size location RESULT WEIGHT
18 nearcoast porpoise [1.0]
2 20 * whale [1.01

SIZE (u=ves, N=nho, T=0.1, Fz=none, I=0)
isize RESULT WEIGHT

1 small 1 1.4}

2 medium 8 [1.03

3 big 21 £1.07

4 very big 28 [1.07

NOTCETAL tusno, Nzne, T=0.1, Fznone, Iz
RESULT WEIGHT

1 Tearndvor [1.0]
Z2 “unguiate [1.0]3

a3

CARNIVOR {u=yes, N=yes, T=0.1, Fznone, I=0)

thoofs tdarkaspot iblstri RESULT WEIGHT
1 no Va5 no cheatah 11.07%
Z ne no yes tigsr [1.03

UNGULATE (u=zyes, N=ves, T=0.1, Fznone, 120}

ihoofs longneck longlegs ldarkspot blstrip RESULT WEIGHT
i ves ¥as Ves yes no giraffes 11.03
Z yes g no no yes zebra {1.0]
BIRD t(u=ves, M=zves, T=0.1, Fznone, I=0)

canfly longnack ongliegs icolor canswim RESULT WEIGHT
1 no yes yes béw no ostrich [1.06]
Z no no no bhw yes panguin £1.0]
2 yes no ne whits no aibatross [1.01

FISH (u=yes, N=yes, T=0.1, Fznone, I=50)

“eize RESULT WEIGHT
1 s2'tmon [1.0]
2 10 shark [1.0}

ond
[

T Y . — —_— e e — — p—

.
(o]

4.2.1.3. The FILES screen

The first screen of HICLASS is concerned about directoriss and files. A
table can be chosen with LOAD, this table rapresents the root table of the
hierarchy. The current directory can be changed with CHDIR. SAVE saves a
sesgion report, and RESTORE loads a session report file. After RESTORE,
the system takes the information in the file as a "background” input and
orocesds as if the user would have been gusstionad, taking all the former
answers stored in the session report as answers Tor the current session.
This option can be used after a session was interrupted to restore the
former system state. QUIT terminates HICLASS,

Load Chidir Restore Save uit

Main tabls:

FECONTPENTPUNTHESISEXN# . HITS
.- <DIR> 10~283-82
ANIMAL 784 10-23-%2
ANIHMALY 382 10-23~82
BIRD 1248 10-23~82
CARNIVOR 733 10-23-82
CETACEAR 824 10-23~82
EXAMPLEY 2344 10-23-82
FIgH 384 10-23-82
MAMMAL 474 10~-23-52
MOFISH 514 10~23-82
NOTCETAC 124 10-23-82

IZE 27% 10-28-82
TEMPCH 2832 10-23-82
UHGULATE 487 10-23-382

toad a main tabls

Figure 4.2.171.3.1. The FILES screen in HICLABS

4.2,.1.4. GQuestioning the user

The system generates gquesltions using the text screens and the text for
values defined in HIEDIT. The user can browse through the guestion text
{up to 20 lines) and then either choose an answer in a multiple choice
fashion, or as shown in Tigure 4.2.1.4.1. enter a numeric value. F1
provides a context sensitive help, and F3 expliains the reasoning process
{not implemented vet). F7 allows the user to interrupt the current session
and he/she can save the staie of the system in the FILES screen, If The
answer UNKHNOWN iz allowed, then F2 provides this answer, Lhe same i3 trus
for F10 and NOT APPLICABLE (these choices are only given in appropriate
situations).

Fi=Help F3=zExplain F4=MHistory F7=Quit

Main table: LXAMPLEY Current table: nofish

vWhat i3 the body temperature of the animal (in Fahrenheit)?

Enter values : %8

e

F8 = Unknown

Figurs 4.2.1.4.1. Questions and answsrs in HICLASS

4,2.1.5. History

Choosing F4, a 1ist of all questions, answers and resuits as well as their
certainty for the current session is displayed.

FizMelp FiazExpiain Fédc-History Fi=Guit
Mazin tablie: EXAMPLEY Current tablie: History
SIEAAMPLEY moon Goon 1.4
EXAMPLET mors SO0N 1.0
siioes the anima’l have dark spois? EXAMPLEY RESULY “animal 1.0
animall tampoh constant 1.0
yes animali RESILT “nofish 1.0
ne nofish bodyitemp 88 1.0
nofish REBULTY mamma’l 1.0
anima’l RESINT “mamma’l 1.0
mammal skin hair 1.0
mamma RESILT “notostac 0.8
notcetac REBULT ~ocarnivor 0.3
notocetas RESULY ~ungulate .8
carnivor hoofs yes 1.0
F& = Unknown F10 = HNot applicable

Figure 4.2.1.5.1. History in HICLASS

e I - — L —— ——

4.2.1.8. Results

Each table invoked will have zero, one or more resulits. The text screens
of results are only shown, 1f the text Tor the atiribute RESULT is not
empty, otherwise the system just moves on in the reasoning process without
stating results., This iz useful if the user should or should not be
informed about subresults along the path. It is alsoc possible to display
a result text if the particular result is a call to another table. If 1%
is indicated that a result itexi should be produced and there is no proper
result for the particular table, then the message "Sorry, no advice
possible” is generated. If there are several valid results for a table,
then all the texts are given, divided by an "OR”. In order to incorporats
the certainty information for resulis, two special strings can be definsd
in the HIEDIT editor. These strings will be replaced by the actual
certainty value. 73837 will show the certainty on a per cent scals
{certainty 0.8 will be displayed as "807), and "$.%" produces a notation
similar to the interna’l representation (certainty 0.8 1s displaved as
0,87 3.

With F5, the CONCLUDE option can be activated. The system shows all valuss
for all attributes for a particular result. If a value is %7, then thse
whole domain of values is provided. Again, if there are multiple results,
values for every single result are provided.

FizHelip FizExpiain F4=History Fi=Caonclude F7=Quit
Main table: EXAMPLET Current table: ungulats P Conciude
>RESULTY : giraffs

noots L YEes
>iThe animal you want to classify is longneck @ yes
longiegs @ yes
a2 giraffe (B0% certainty j. darkaspot | yss
bistrip @ no

Fg = inknown F10 = Not applicable

Figure 4.2.1.6.1. Stating results in HIGLASS

—"Fw_—w

4.2.1.7. Example sessions

In order to illustrate the performance of HICLASS, the protocols of 2
number of sample runs are provided below. The protocols are copies of

session report filses created by HICLASS,
Examplie 1:

The user "sees” a whale,

EABMPLET goon soon 10
EAAMPLEY mors anon 10
EXAMPLEY RESILT Tanimal 10
animall ~“tempch UNKNOWN
tempch Lempoh UNKNOWH
tempoh RESULY NO RESULT O
anima’ll breathing lungs 10
animali REBULTY “nofish 5
notish bodytend UNENOWH
nofish reproduct uterus 1G
nofish RESULT mamma’l 2
animai RESULT “mammal 2
mamma’l skin naked i0
mamma RESULY NO RESULT O

NOTES:

The user has no knowledge about ths body femperature of the animal.
Nevartheless it can be concluded that the animal is a2 mammal. Since the
threshold of table mammal is 0.5 and the certainty of the path is 0.2 by
now, no advice can be given.

<
f

Example 2:
The usser "sees” a zebra,

EXBMPLET goon goon 10
EXAMPLEYT more goon 10
EXAMPLEY RESULT ~animal 10
animall “tennch caonstant 10

animall RESULT “nofish 10
nofish bodytenp 88 16
nofish RESULT mammal 10
animal REBULT “mamma’l 10
mammal skin hair 10
mamma’l RESULY “notoetac 8

notcetac RESULT “garnivor 8

notoetac RESULT “unguiate 8

carnivor Thoofs yas G
carnivor ldarkspot no 10
carnivor (bistrip ves 10
carnivor RESULT HO RESILT O

unguiate heofs yes 10
unguiate {iongneck no 10
ungulate !Jonglegs no i0
ungulate ldarkspot no 10
ungulate Ibistrip ves 30
unguiate RESULT zabra g

ed
€

4.2.2. Possible improvements

After working on the programs and while resviewing the results it became
clear that a number of improvements could be made in addition to the
features not implemented vet at all. A number of these improvements are
mentionad below.

Faor several reascons, 1t could be more efficient to implement the g?ﬂi 1
control strabtegy in a best~-first manner. This could for in

achieved while treating each table as an independent oble ? an
maintaining a global control list storing crucial information about éﬁ&
ochjects currently present in the system. If a table is called, informatio
about this table including its prior certainty, the name of the ﬁaizénJ
table, the fact if it is called by a result or by an attribute could be

stored in the global 1ist. The global control strategy would decide about
the table to work on next. Different fo the current implementation of
HIC 5, tables would only be called by the gliobal strategy, not by other
tab a table ds waiting for the answer of another table, and the
sac Te happens to be solved, then the first table can request this
inf from the second one.

The reasoning capabilities could be extended in ﬁ r to First make some
basic checks about the Tikelihood of a table (as described for CSRL; see
sactions 5.3.%1. and 5.3.2.3.

CONCLUDE option could be extended to cover dintervais of numeric
nd not Caéy single valuss.

iy
] ek
. fo o
&3S & o

wn

&3]

TORY option could be designed more user-friendly while not using
attribute and value names, but a more sophisticated output.

8o far, the accentuations and colors provided with the aditor in HIEDIT
cecessible within HICLASS. This could be changed.

1f & table is calling another, then up to now only the results of ONE
table can be given back to the calling tagie It should ée possible that
211 appropriate results produced in a subtree can be provided.

e type of numeric values should be changed from integer in the range
of [0..253] to floating point.

a0
4.3, Implementational details
4.3.1. Main data structures

Due to the dynamic nature of the problem, almost ail data structurss are
designed in a dynamic way. Data fields are created when needed, and
disposed after use. This s true for menus and spreadshests as well as for
table definitions. In HICLASS, a table is read from disk, 1t is proceassed,
and then disposed after it is completely solved. This allows to build very
large systems without running oult of memory. Every attempl to create new
data fields 1s combined with a memory check. It is checked if after the
memory allocation the remaining memory space is sufficient to allow a
proper program performance, &.9. accessing the menus in HIEDIT. The main
data structure in HICLASS is a table. A table, a dynamic data structure
itseif, is defined in the following wav:

tabla ~-->y [tabls

main _table = record {HICLASS tablis format}
name stringlsl; {table name}
max atiriinteger; inumbar of attributes?
max_sx integer; {number of examplies}
fFirst_attriattr_pointer; fgtart of atiributes}
firat e iex pointar; {start of examplies}
unknown_allowed boclisan; funknown allowed}
dont_appiic_allowed:boclean; {don’i appiicable allowed}
predefined bovisan, {predefined order?:
Favorad_strategy byte: {favored Tocal strategy}
threshold hyte; {threshold for uncertainiv}
interval.byte; finterval numeric values}
shortout boolsan {shortout a8l lowed?}
strategy_used:byte; istrategy used:
orior_ceriainty byvie; {prior cert. for tablisl
readerpointer; {reader for table}
no_gques:byte; {number of gusstions}
no_unknown:byte {numbar of answersg UNKHOWN]
num num, pointer; {Tist of numeric valuss}
anumaric bosliean; fresults numeric}
end ;
There i ontents of the tablse which has

s a pointer providing access to the
a name attached to it. The number of att
the number of c¢lass descriptions stor
£
<

NA ("')

ributes defined (max_aftir), and
aed in the table {(max_sx) ars
provided. Pointers to the begirr;ug of Tinked lists for the attribute
definitions {(first_attr) as well as th descriptions {firsi_ex) are
included. A number of control §3 1ds are bound to sach table definition,
oroviding information dmportant for the performance of the local and
global control strategies. A pointer (reader) allows to access the
dialogue window produced for the user interface. The number of guestions
asked and the numbear of guestions answered with UNKNOWN are recorded and
stored within the table udia structure. Each tfable fincludes a1}
information necessary to continue its processing even if the particuiar
table ig not the one currently ¢@ used on {there i3 only one active table
at a time, but mavbe several tables are waiting to be completed; szee

D

£

P Ny L] ——— L L g —— —— — —— —— —— —

o 7]
by

section 4.2. for an explanation of the C&ﬁ??G} strategy). The
attribute/value definitions are separated from the class descriptions.
siey are stored in Tinked Tists.

m
oS
vk
4
Py
%

First_attr ~->lattri—>- RESULT

L. [
>taxt

ey ya Tt Perivaltz o val3rodvaild

main_atir = record {attribute}
name stringlsl; {attribute nama}
text:text_pointer; [text for attribute}
agkfirst byte; {0=no ixaskfirst Z=no askfirst}
max_valibyte; {rnumber of valuas}
vatlues:val_pointer; {valus definitions}
min _ceriibyts; fcurrent minimal certainty of values)
naext:attr_pointer inext attribuie}

It

main _val = record fvaiue}
name:string{8]; iname of value}
text:stringl74]; {text Ffor valiue}
textres: text_pointer); {text Ffor values of RESULT}
cert:byte,; fcurrent certainty of valuel
nextival _pointer; {rext valuse}

and;

main_text = rgoord {text format}
anzherv:byte; nunzer of accertuations}
textrarray[1..8h] of stringleb]}; {text itself}
herv:arrayl1..max_hervor,1..3] of byte; {accentuations}

end;

The class descriptions of a table are sitored in a separate Tinked 1ist
The refarence to the atiribute and value definitions is realized usin
numeric values referring to the relative position of the appropriai
dafinition in the attribute/valus lTinked Vists. If during the ¥8Guwu?$§

a table class descriptions and/or values are deleted, the reference

updated accordingly. Numeric values are stored as such., The last field

the olass description holds the weight of the description.

et £ 2 - o+
9 o=h oW

)

h

¥

]
v
@
ke
iy

First_ex ~~>1 exi [

main_gx = record {axampie}
viarray[l. .abs_max_attr+1] of byte;
nextiex _pointer;
snd;

B

A complete description of the data structures used within the system can
be found in Appendix C.

&8z
4.32.2. The file structure for a table
The following logical file structure is used for storing a table defined
in HIEDIT on a storage device. Not all information is used by HICLASS, the

distinction-oriented knowledge representation is included for the &se by
HIHYPO only, and the non-distinction-orientad representation (most general
description to be derived) is not implemented yet.

- file tag

- distinction~oriented learning examples provided (y/nj

- non-distinction-oriented Tearning examples provided (y/n)
©answer UNKNOWN at1lowed (v/n)

©oangwar KOT APPLICABLE zllowed {vy/n}

- predefined ordsr enforocsd (y/n)

- Favored strategy (OG=znone, 1=MATCH, Z=b
- thraeshold for uncertainty handling {Q
interval range for numeric valuss [0
unigue results only {(y/n)

© npumbaer of atiributes
- For 11 atiributss
©oattributs nams
- askfirst {O=not valid, i=maskfirst=ztrus, Z=askfirst=false)
© number of values
- for 217 values
c ovaius nans
- walue text
- number of examplies
- for all examples
© exampis contant
- number of distinction-orisnted sxamplies
For all exampiss
- exampis content
< number of non-distinction-oriented examplies
- For 811 sxamples
- exampie content

EFT-TO-RIGHT, 3=HEURISTIC)
1..4.01
.50]

]
a3

4.32.3, Efficiency

A Tot of thought was given to an efficient storage management. Most data
atructures are implemented dynamically to allow a very flexible
nerformance of the system. In the case of HICLASS, only a few gicbal
variables and information crucial to further process invoked but vet
unsolved tables are kept in main memory. Algorithms used to process tables
are designed to be time efficient.

Az described din Appendix B, the system 1is strongly modularized.
Maintenance can be focused on the very module performing a specific task.
The modules have well-defined interfaces between each other. Thus, a
module can be changed without affecting other modules. I, for example,
mouse support s desired, only the low-level utility modules concerned
with the user intarface have to be changed. A change in global constants
and data structures affects the whole system. In most cases no changes in
any of the modules are Necessary.

he program shows small processing delays working with small to medium
size tables. With large size tables, processing time increases. Thus, time
crucial parts of the progrum could further be Qst mized. It is propo SPd to
strongly modularize an expert system to be built. Smaill wab;eq are not
only Taster to process, they are also easier to change and t mprehend,

Q‘)

o0
EEN

5. Evaluation of the HICLASS system
5.1. HICLASS as a tool for a generic task

it was stated that HICLASS attempts to serve as a tool for the generic
tgsx hierarchical csasgéfésatéan as given by Chandrasekaran. Let us first
have 2 look at the features of a generic task to prove 1f this attempl was
Sy ful, since a successful tool for a particular task would have io
fu these requirements.

Wi
i

ass
11

ce
ulfi
Multiformity

HICLASS 12 based on a special way to organize and use knowledge. Sets are

Tinked @getﬁer in a hierarchy, presarving inheritance. An establish-
refine strategy is used to traverse the hisrarchy tree. Basically,
reasoning bg slimination takes place and specific control strategies serve
to guide the performance in the most promising manner using operations
designed to deal with the data structure. HICLASS s best suited for
performing a hierarchical classification task.

Modularity:

HICLASS can be used as an indspendent tool, but it alsc can be
incorporated in a complex knowledge-based system as a subtask cooperating
with other generic tasks. The particular function, hierarchical
classification in this case, 1s decomposad intoc its conceptual parts.
These parts are tables, including one ore more cliass descriptions. Domain
knowledge of other form s inserted, e.g., evidence-accumulation
knowledge.

Sow ledge acquisition:
A knowledge acguisition strategy has to be used to build a HICLASS
application. The svstem allows a very fTlexible organization of the

hierarchy to be built., The knowiedge engineer has to determine usefyl
ategories and ways of linking the categories together in the hisrarchy.

Explanation:

HICLASS provides an explanation featurs in order Lo sxplain currant sitsps
of the control strategy to the user in a Tocal or glebal manner. This s
possible, since the control strategy is very specific.

Fxploiting the interaction betwsen knowledge and inference:

As already mentioned, a particular way of representing knowledge (values
of attributes in class sets) is integrated with a particular way of using
that knowledge (set reduction according to the match of input data with
the values of the class descriptions). Additionaily, the glcbal contrnl
strategy is especially designed to deal with the structure of the
knowledge embedded in the system.

The discussion shows that HICLASS addresses all of the important featurss
of a generic task, and can therefore be useful as a tool serving to
fulfill this task,

<o
Lo n]

5.2, HICLASS as a tonl for hierarchical classification

To show that HICLASS is a genuine hierarchical classification tool it must
be demonstrated that HICLASS incorporates the problem—solving strategy and
knowledge appropriate for the specific task as defined by Chandrasekaran
L
Lol e

*Hisrarchical classification requires as input a data description of the problem fo be
salved. After processing, the task vields all ths categories of the hisrarchy that apply to
the given data.” [5, p.Z218]

The input reguired by HICLASS is a data description of the problem. The
data is enterad by answering guestions the system generates. Answering
questions can mean that the user types in an answer, bul it can alsoc mean
that an external program or real world process sends the data. The basic
attempt of most of the local control strategies is that only a minimum
number of guestions have to be asked. The system will come up with one or
more results, supplemented by certainty values defining the Tikelihood of
the particular result. It is alsc possible to Tist all the subresults
along the relevant pathis).

“The classifier requires a preenumerated list of the categories that it will bes using.
Furthermors, thess categories must be orgenized into a hierarchy in which the children (...}
of & node represent subhyvpotheges of the parent. ... As the hierarchy is traversed from the
top down, the categories (...) bscome more specific.” [5, p.218]

Fach HICLASS system has a preenumerated list of the categories it uses.
These categories are referred to as c¢lasses in HICLASS. The classses arse
organized into a hierarchy, in which the children represent subhypotheses
of the parent. The classes become more specific going down in the
hierarchy tree. A special feature of HICLASS 1is that classes can be
combined in a table.

“"Each noda in the hisrarchy g responsible for calculating the “degree of fit7, or confidence
value, of the hvpothesez that the node reprsssnts. ... Each node can be thought of as an
axpert in determining whether the hypothesis is true. For this reason, sach node is termed
a specialist in iits small domain.” [B, p.218]

e "degree of fit" is expressed in the shape of certainty values 1in
CLASS, A certainty value is assigned to each hypothesis that is not
ruled out, depending on prior certainties and the number of answers
UMKNOWN, In fact, each class can be thought of as a specialist in a
Timited domain. In the case of classes combined in a table, the systenm
tries to determine which of the classes is true with which cartainty. If
there is only one class per table, Then Lhe system tries fo come up with
the certainty of this class.

87

"To create sach specialist, knowledge must be provided to make the degres-of-confidence
decision. The gensral idea is that sach specialist specifiss & 1ist of features that are
important in determining whether the hypothesis it represaents 18 true and & Tist of patterns
that map combinations of featurss to confidence values.” [§5, p.218]

-t
®
i

In HICLASS, a number of atiributes is defined for each table. ae
attributes, or features, have well defined values for a particular clas
description. They serve to rule out classes in the case of a class set and
to determine the certainty value of one or more succeeding classes.
class description consists of one or more instances that provide values
for all the attributes, including one special attribute, the result,
representing a hypothesis. Prior weights are bound to the instances. Thus,
if an instance can be matched, s result with a special certainty is

L
produced.

Th
1

o
A0

T

In ordser o efféczenfiy traverse the hierarchy, a typs of hypothesis reféﬂement %5 used:
sstablish-refine. “A specialist that establishes its hypothesis (...) refines itself by
activating its morse detailsd subspecialiste, while a specialist that ru?eﬂ aut or f@gect its
hypothesis {...) does not send any messages to its subspecialists, thus avoiding that entire

ga?é of the %%e?arahy§ ... The sstablish-rafine process continues until no more refinements
can take place. This can occur either by having reached the tip isvel hypothesis of the
nisrarchy or by having ruled out mid-hierarchy hypotheses.” [5, p.218]

e control strategy described above is the global strategy used to guide

iassification process. In HICLASS, one or more results with a
ty value bound to them are produced after the table is "szolved” -
ses are sastablished. The process continues while invoking the
ia lzcts a particular result is Qq?ﬁt1ﬁg to (the hypothesis refines

f the subspecialists are combined in a table, only one pointer
is ﬁﬁﬁesqa?y otherwise more than one. In class setls, wrong hypotheses are
either automatically ruled out in the set reduction process or a certainty
value of zero is assigned to them. In both cases, the subspecialist of
thase classes will not be established. The process stops when all paths
followed terminate because all current tables are Teafs 1in the
claszification tree, and when all current hypotheses are either ruled out
or hold a certainty value of zerc.

It could be shown that HICLASS addresses all the dssues raised by
Chandrasekarans definition of the ganaric task hiararchical
classification. HICLASS fincorporates the problem-solving strategy and
knowledge appropriate for this task.

88

5.3. HICLASS in comparison

£E.2.1. Description of CSRL

CSRL (Conceptual Structure Representation lLanguage) is introduced as a
language for writing hierarchical-classification expert systems.
Chandrasekaran [8, pp.215~238] describes the basic idea of C8RL at a level
of detail which allows to make a general comparison, some details though
can oniy be assumad or are not Known.

In CSRL, each specialist for a particular hypothesis s implemented
individually. The parents (referred to as superspecialists) and
subspecialists of a specialist are declarad within the definition
(DECLAREY. A skeletal outline of a specialist definition for a bad-fuel
node 1s the following:

{SPECIALIST BadFuel
(DECLARE (BUPERSPECIALIST FueiSvstem)
(BURSPECIALIST LowOctane WaterinFusl DirtinFuel})
(KGS...)
{MESBAGES. ..}

The KGS section (knowledge group section) consists of knowledge groups
that "contain knowledge that matches the features of a specialist against
the case data. Fach knowledge group is used to determine a confidence
value for some subset of features used by the spsciglist. ... A knowledge
group 1s implemented as a cluster of production rules that maps the values
of a 1ist of expressions (...} to some conclusion on a discrete, symbolic
scale” [5, 0.220]. One knowledge group of BadFuel called “"relevant” has
the following content:

(RELEVANT TABLE
{MATCH
{ASKYNUT "Is the car siow to respond”)
{ASKYNU? "Does the oar start hard”)
(AMD (ASKYNUT "Do you hear knocking or pinging sounds™)
{ASKYHU? “"Doess the problsm occour while accelerating”)
WITH (IF T¥? THEN -3
ELSEIF 2?77 THEN -3
ELSETF P77 THEN 3
ELSE 1))}

The expressions in MATCH query the user. ASKYNU? is a LISP function asking
the user for YES, NO or UNKNOWN and translatses the answer into T {irue)},
F {false) or U {unknown). Any LISP function can be used insitead. The
results of the MATCH are then compared to a condition Tist. &4 777 dn a
pattern means “dossn’t matter’, If the Tirst question i3 answered with
YES, then the first pattern "T??° is true and -3 becomes the value of the
knowledge group {the values are assigned on a discrete scale from -3 to 3,
where -3 means “ruled out” and 2 stands for "confirmed”). Otherwise, the

39

other patterns are evaluated. If none of the rules match, the value for
the knowledge group will be 1 (default value). The following knowledge is
encoded with the group:

YIFf the car is slow to respond or the car starts hard,
then BadFuel is not relevant in this cass. Otherwise, if
thers are knocking or pinging sounds and if the problem
cccure while accelerating, then BadFusl is highly
relevant. In 217 other casss, BadFuel is only middis
reltevant” [8, p.221].

A specialist can contain several knowledge groups, which are separately
chacked in a specific order. Special knowledge groups can be designed fo
combine values of several groups into a single confidence value, thus
abstracting the results of a number of knowledge groups.

(SUMMARY TABLE
(MATCH RELEVANT gas
WITH (IF 3 {GE 0) THEN 3
ELSEIF 1 (GE 0) THEN 2
ELSEIF 7 (LT ©) THEN -331)

The MATCH expressions stand for the two knowledge groups "relevant” and
“gas". For example, if the value of the relevant knowledge group is 3 and
the value of the gas knowledge group is greater or equal to 0 (GE(0)),
then the value of the summary knowledge group {and so the confidence value
of BadFuel) 1is 3.

The overall control strategy is realized with inserting a MESSAGE section
into the definition of a specialist. This section "contains a list of
message procedures that specify how the specialist will respond to
different messages from its superspecialist” [5, p.222]. There are two
nradefined messages: ESTABLISH and REFINE.

"The ESTABLISH message procedure of a specialist determines the confidence
value {...) of the specialist’s hypothesis” [5, p.222].

(ESTABLISH (IF (GE relevant 0}
THEN (BETCONFIDENCE seif summary)
ELSE (SETCONFIDENCE se'f relsvant)))

The terms “"relevant” and “summary” refer to knowledge groups defined
within the specialist, "self" stands for the name of the specialist
itself. The example procedure first tests the value of the relevant
knowledge group (if it is not evaluated yet, then this is done now). If
the value is greater or sgual to 0, then the confidence value of BadFuel
ig set to the value of the summary knowledge group; otherwiss it is set to
the value of the relesvant knowledge group. The strategy behind this is
that 1F BadFuel s not a relevant hypothesis to hold (indicated by a value

20

tess than 0), then the confidence of the specialist is set to the degree
of relevance. Otherwise, more complicated reasoning 1is performed to
determine the confidence value {(the summary knowledge group combinegs the
values of other knowledge groups).

"The REFINE message procedure determines which subspecialist should be
invoked and which messages they are sent” [5, p.223].

(REFINE (FOR specialist IH subspecialists
DO {CALL specialist with ESTABLISH)
{IF (+7 specialist)
THEN (CALL specialist WITH REFINE)}))

The procedure calls each subspecialist with an ESTABLISH message. It ths
subspecialist establishes itself, then it is sent a REFINE message {(+7
tests whether the confidence value is +2 or +3). Other than having a 'Big
Brother’-control structure organizing the establishment of hypotheses, ths
nodes itself are active and invoke children 1f necessary.

Thare are several aspecis of hierarchy within this philosophy, First, the
categories are organized in a hisrarchical manner. Second, the knowledge
within one knowledge group is organized in a way that if a row of the
group 1s matched, then none of the subsequent rows is evaluated.

91

5.3.2. HICLASS vs. CSRL

First of all, C3RL is a LISP-based Janguage. HICLASS, on the other hand,
is an expert system shell, even if there also i1s the possibility to build
a language around the basic concepts. As a language, CSRL can be applied
ery flexible; especially the feature of user-defined LISP functions is a
owarful option. Part of the attempt of HICLASS is to free the user Trom
programming the system in the sense of the word. Rather than writing
functions, a user in HICLASS would enter his/her knowledge into predefinsd
tables, supplemented by prior certainty and threshold values, as well as
important information like the order dependency of attributes and
hierarchy structure information. The system itself would decide about
control strategies to apply and sclve the problem according to a
sredefined plan of action. lLess flexibility is the price to pay.

<

kel

i

The basic distinction between CSRL and HICLASS though, resulting in a
number of differences, can be found at another level of absiraction. The
whole philosophy is different in & way. In HICLASS, a specialist is a
class, described by one or more instances, most likely combined in a table
together with other class descriptions. Each table has a parent, the
information about this link is not given within this child table to allow
a flexible usage, but can be derived from the hisrarchy structure within
tha particular system. Further on, each c¢lass, which in fact is a
hypothesis, has a result which is either a true statement about the world
{at the leaf Jevel) or & pointer to other class tables, which can be
raeferrad to as children. 8o far, there is no difference to the definition
of a specialist in CSRL.

The difference is that in the case of CSRL the certainty of a hypothasis
ie not derived from only one class description and that hypotheses are
never combined in one single data structure like a table in HICLASS. In
order 1o prove a hypothesis in C8RL, several knowledge groups (KGS) can be
considersd, thus allowing a very Tlexible and extendable proof. Each XKGS
provides a confidence value which can be summarized in a user-controlled
way to provide a value for the whole specialist. The overall control
structure in C8RL s realized with the help of MESSAGES, which are sent
from a parent to its children, determining how the confidence value of the
subhypothesis should be determined and which threshold should be used to
refine the subhypotheses itself. The latter contrasts to HICLASS 1in & way,
that there the oversll control strategy is implicit given in the sysiem
(if a class has a certainty egual or greatsr than a threshold, then we
move on Lo the nexit level in the tree). Considering only the messages
ESTABLISH and REFINE, there s no difference in the performance. But user-
defined messages can be passed as well in C8RL, which makes the control
explicit and more flexible.

The task of a2 specialist in CSRL can be considered as defining a group of
K32 which a1l serve to prove one specific hypothesis, The KGS itself are
independent and can be used by several specialists. Each KGS provides a
canfidence value. The confidence valuss of several KGS can bs combined in
a flexible way. Once an overall confidence value for 2 specialist s

82

determined, it 1s compared with & threshold. If the check 1is successful,
then activating messages are sent to the children, ctherwise the path is
closed. No accumulation of avidence takes place from one level of the tree
to ancther, only within one specialist - another difference to HICLASS.

A very interssting and useful fact is that CSRL allows to first call a KGS
to make some basic checks, and then depending on the result, to either
turn down the hypothesis or to perform more detailed checks in order to
prove the hypothesis on a finer scale. This 1is alsoc the reason fTor a
default confidence value within a KGS. It allows to introduce a decision
if some more reasoning should be done, sven if none of the patterns in the
particular group matches the data. This is not necessary in HICLASS, since
we only deal with one group of patterns, and if these cannot be matched,
then the hypothesis can be turned down immediately. The combination of
confidence values of different KGS happens in a totally user controlled
manner in the shape of predefined calculation rules, that seem difficult
to derive,

For an example that only has one KGS in order to prove the hypothesis of
a specialist, HICLASS comes to the same results CSRL would do. Differences
are that 1in HICLASS evidence would be accumulated for a particular path
and that several specialists could be combined in one table. The latter
one could be important if several specialists share attributes and are
distinguishable from each other. Questions for special attributes can be
answerad by invoking other tables; if this is also possible in CSRL cannot
he derived from Chandrasekarans description. It is also not clear if the
nature of questions (only YES/NO/UNKNOWN) can be changed and if the order
dependent left-right strategy 1in asking these questions has to be
maintained, which both seem to Timit the flexibility otherwise very strong
within CSRL. Another similarity is that in HICLASS as well as in C8RL
saveral class descriptions can be combiped (the thrse guestions in the
example KGS bad fuel can be implemented as three instances in a HICLASS
table).

As described above, one of the major differences between the approaches,
if not THE major difference, is that a class description in HICLASS is
only realized within the boundaries of one table, whereas 1in CSRL
different KGS can be combined to establish one overall hypothesis,

5.3.3. Description of 1st-CLASS

5.3.32.1. 1st~CLASS specifications

HOTE: The description of the expert system shell 1st~CLASS provided below is directiy taken
from an explanation file delivered with the 1st-CLASS package; only information relevant for
a comparison with HICLASS will be given.

Copyright
Program Lype!

Methods used!

Data entry method:
Data types:

Example editor:

Size of one moduls:

Chained modulss:
Expert advisor:
Advisor editor:

Rule generation:

Spesd of operation:

Ruie editor:

weights:

Bnswarback:

Rapart generation:
Data interchangs:

File access!

Programming Tanguage:

External programg:

Logic engine:

{C) Copyright 1885, 1988. Programs in Moticon Inc., Wayland MA
Expert System fGenerator.
Inductive classification,
Database search, and/or
Direct rule construction & editing.
Examples in a spreadshest format or direct rule construction.
Logical (choices) and numeric {floaling point).
Multiple choice entry plus editing functions,
Up to 32 factors, 32 resuits, and 2535 sxamplises.
Mo Timit except on-line disk capacity.
Auto~gensrated or ussr-created advisor scrsens.
Full screen sditor, supports color/asttributss.
Four algorithms can be used:
-~ optimized decision tree construction;
- ordered, allows you to choose processing ordsr;
~ matching, for pattern matching appiications;
- direct building/editing of rules.
Bince the rules are compiled, there ars no delave during use.

On soreen, graphical rule editor.

Can be assigned to each example; several statistical indexes
can be calculated from them and displayved.

Summarizes how answer was reachsad and allows The usser to
change an answer and run again.

Can build g report on disk automatically.
Exchangss data with other programs.
Can process data from disk files.

Not reguired to use 1st~CLABS; can be used for special needs
if desgirad,

Can be writien in any language, and can pass dats to and
from 18t-CLASS,

18t~LLASS can be callsd from other programs and can return
an angwar te then.

5.3.3.2. Using 1st~CLASS

The following examples were edited and performed in 1st-CLASS (the second
example 1s a sample knowledgebase provided with the 1st-CLASS packags},
parts of screens of the program are shown below.

Example 1:
Examples:
type size jocation RESULT Weight
1 cetaces 257t atsea whale {1.001
2: cetacea GFL nearcoast porpoise {1.00]
3 cetacea 6Ft atsea doiphin [1.00}
4: Fish 1F% npacific zaimon 73,003
5 fish BFt atsea shark {1.00]
Rule optimized:
size??
25FL: hale
fﬁfi:tyae??
%catacea:?ocaiiﬁn??
! nearcoast: orpoise
} npacific: o-data
i atsea: gdniphin
fish: ark
1ft: almon
e @0 OF rule e

Statistics for <«whaled:

Active examnliss: 5 Haesult’s exanniss:
Result frequency: 0.20 Result probability:
Total weight: 5.00 Result weight:

Rule Teft to right:

1 Exampies: 1
0,20 Relative probabitity: 1.00
1.00 Average weight: 00

typa??
%aetaaaaisize??
i 25Ft: whale
iﬁft:éacatéan??
tﬁearc&ast: orpoise
rnpacific: o-data
: Latsea: oiphin
I 4 o~data
Lrighisize??
257t no-data
B¥L ghark
17t sa Tnon

e @i 0F pule wee-

Examplie 2:

Examples:
SAUCE pref~colior main-comp coior Weight
i * red % rad [1.5807
2 tomato * ¥ rad [1.00]
3 * white % whita [1.803
4 orean * £ white [1.00]
5 % * meat red [1.00]
5 *® " vaal white 1.003
7: cream * turkey white [1.00]
8 cream * pouttry white [1.00]
EN Tomato % Turkey red 11,001
14 tomato # noultry rad 11,007
11 * * fish white {1.00]
12 % # Fish white {1.007
13 Crean # other white {1.003
14! tomato * other red {1.00]
Parts of the rule:
sauce??
rorean: pref-color??
rred:inain-comp??
mest! E=2e] {13
B o e e e e e e e e e e white
veal: hits
e red
rturkey: ite
R T T T red
fish: ite
I e T T T T T red
noultry: white
R T red
other: white
R T I red
wh%te:@ain«camp??
(meat: hite
i I T T rad

Statistics

getive exanplies!: 14
Resuli freguency: 0.43

Taotal weight:

Dialogue:

sauce
praf-color

won

for first path of <red> (1)

Resulit’s examplss:
Result probabitity: 0.
15.00 Rasult waight: 2.

2
-
7
O

L3 e

crean
rad

main-comp = meat

Resylt:

Exampies: 1,8
Relative probability:
Average weight:

G,

4

74

iizg

Nt Al

You've selected red wine,

You’'ve selected white wine,

with a confidence of 71.43%.

with z confidence of 28.57%.

98
After experimentiing with the program, the following details of behavior seem to

he important for a comparison with HICLASS. Exampls 2 will be used in the
discusgion.

The following sxamples contributed to the final resulti:

i ¥ red # rad {1.50}
4 orean * * white [1.00}
5 # % maat red [1.001

Statistics for one of the succeeding paths (red):

Active examplies: 14 Rezuit’'s examplss: 2 Exazmples: 1,5
Result frequency: U.43 Result probability: .17 Relative probability: 0.71
Total weight: 15.00 Resyult weight: 2.50 Average weight: 1.28

ht for a result is determined by simply adding up a1l the weights of

a) The wei
1 r this result.

19
axampias fo

b)Y The statistics calculated for a particular path are statistics in the sense
of the word.

For the succeeding path of {(radi:

of examplies for result / # of all sxamplies
8 7/ 14 = 42.8

Result Fregusnsy

HoH

resuit weight / total weight
2.5 /7 158 = §.188

Result probability

o

result weight / total resuit weight of succeeding result
2.8 /7 3.8 = 0.71

Relative probability

0o

) The goal of the performance is to come up with one or several results with s
ceratin probability. If there is only one succesding result, then this is given
with 100% certainty, sven if there are exampies describing this resulf with a
waight different to 1.0.

d) If a guestion is answered by another knowledgebase, this knowledgebass is
invoked first, there is nothing like an ABKFIRST option.

2} If & question is answered by ancther knowledgebase, and this knowledgebase has
sevaral resulits with different probsbilities, then oniy the result with the
nighest probability is given back to the calling knowledgebase (or in the case
of equal probabilities the first result identified). There is alwavs only ONE
result per knowledgebase., The probability of this result is NOT used in the
reasoning process of the calling knowledgebase.

N |] — ——
T

a7

f) If a knowledgebase has several results with a certain probability, and these
results call other knowledgebases, then only the knowledgebase is invoked that
is called by the result with the highest probability. There is always only ONE
knowledgebase called. Probabilities are NOT propagated down to the next
knowledgebase(s).

Summarizing the comments so far it can be stated that the global control strategy
as well as the uncertainty handling is very straight forward and simplifies
results of the reasoning process in order to maintain this straight forward
philosophy. That this simplification can lead to problems will be shown in the
following examplie, solved with 1st-CLASS,

Exampie:
a: nackbons reathin tvpe waight
yas biow hole cetacea 1.0
yes gills fish 1.0
BN type size location creature weight
cetacea 25 L. at sea wha'le 1.0
catacen [near coast porpoise 1.Q
cetacea 6 ft. at sea doiphin 1.0
Figh 1 FL. n.pacific aalmnon 1.0
Fish & ft. at sea shark 1.0
o whale
o porpoise
o doiphin
¥ sainon
¥ shark
T
A
!
cetaces §
N i
Fish
The following sequence of action was recorded by the report file created by 1st-
CLASS. The first column shows the active knowledgebase, the sscond column dencies
the attribute {(called factor in 1st-CLASS) and the third column the value.

- ————

L] N —

R

a} the user "sees” a shark

a breathing UNKNOWN
2 backbone YEE

& a fish

g size &FL

B RESULT shark

Knowlaedgebase A is solved, the user does not know the valus for <bresathing>, thus
hoth results are valid with a relative probability of 0.5, but only the first
result <fish> is taken. In this case, this does not result in any problem, the
proper result can be found.

b} the user "sees” a whalse

breathing URKNOWH

2
a backbone Yes
B a Fish
g size 25Ft
2 RESULT UNKNOWN

Now, the system i3 not able to give an advice due to the fact that the result
<cetacesr was rejected in knowledgebase A, even if it had the same probability
of being true as <Fish>,

(6]
el

5.3.4. HICLASBS vs. 1st-CLASS

A 1ot of the features of HICLASS Took similar to the onss of 1st-CLASS, which is
due to the fact that the ideas used to develop HICLASS were influsnced by the
15t~CLASS system, which incorporates a number of very useful approachss to solve
the problem of building an expert system shell for hierarchical classification.
To a certain extent, the same principles of building a hierarchy, holding sevaral
class dascriptions in one table, maintaining a set of preenumerated solutions,
allowing "Don’t care” and "UNKNOWN", designing Tocal strategies, and others can
he found in both svstems. Besides similtarities though, a number of important
differences have to bs mentioned. One could look at HICLASS as s successor of
121~CLASS, using useful approaches but trying to resolve serious Timitations of
this program.

Examples of useful 1st~CLASS features which will not be implemented in HIEDRIT or
HICLASS due to the high implementational effort are the graphic rule editor and
the very flexible interface with the “worid".

There are a number of problems addrassed by HICLASS that are not touched by ist-
CLASS at 2171 or solved in a guestionable way. The fact that rules in i1st-CLASS
are build beforehand helps to speed up an advising session since only a small
number of calculations have to be performed, but this obviously doss limit Lhe
flexibitity of the system and it does not allow to guide the process of finding
a resylt with regard to the current situation., 8ince no set reduction of the
table takes place during an advising session, choices given to the user can be
not valid anvymore and the chance of wrong conclusions 1s introduced.

18t~CLASS does not exhaust all reasoning possibilities which can be derived from
the data provided for the system {one sxample was given at the end of 5.3.3.2.}.
The simplification of the uncertainty handling and of a global control strategy
leads to 2 loss of accuracy., HICLASS provides a more sophisticated uncertainty
reasoning and a propagation of uncertainty. In HICLASS it is possibie to follow
saveral paths at the same time and to maintain thresholds for the termination of
these paths. The certainties for severa’l instances per class can be combined and
an expianation feature is embedded in the system. In 1st-CLASS it can happen that
the svstem follows a "blind” path (fthere is only ONE path at a time)} and it is
not pessible to call multiple childran,

As mentionad before: HICLASS incorporates a lot of the features of 1st-CLASS but
attemnts to overcome problems Timiting an accurate performance of solving the
task of hierarchical classification,

100

§. Further research

6.1. HIHYPO —~ hierarchical hypothesis matching

One of the generic tasks identified by Chandrasekaran [5] is hypothesis
matching, which he defines as "matching hypotheses to a situation using a
hierarchical representation of evidence abstraction. The general idea is
that we have a set of data which potentially pertain to a concept. We want
to know how well the concept matches the data. For exampls, the concept
may be a disease and data may be @atéeﬁt data relevant to the dissase, and
we wish to know what the Tikelihood of the disease is. Hypothesis matching
is a very common subtask in a number of reasoning tasks.” [5, pp.216]
This chapter will be concerned about sketching a hierarchical hypothesis
mgtc%t g system (to be referred to as HIHYPO), using a number of ideas
from HICLASS, complemented by goal-oriented control strategies and a
%gecéa% distinction—orientad knowledge representation. HIHYPO has no
implementation yet.

{

i

jex

he knowledge in HIHYPO will be organized in a hierarchy of tables. Again,
he assumption is made that several concepts may share attributes and can
therafore be combined in a table. Everything which was said about the
HICLASS represantation i1s valid: there are ﬁfﬁ%?gﬁe;atea solutions, "Don’t
ars

" values, weights, questions answered by other tables etc.

e S

.

(=

{

Exampia:
A backbone breathing type weight
/5 Bliow hole cetaces 1.0
yes gillis Fish i.0
5 gize location creagture weight
Z8 ¥t at saa whals 1.0
g ¥F1. near CORSt porpoise 1.0
8 ¢ at ses doipnin 1.0
G iocation creature weight
n,.pacific saimon 1.0
at ses shark 1.0
A B8
cetaces whala
-< porpoise
doiphin
G
Fish a8 Tnon
R shark

] |] L I — P S — — —— == — n— —

101

Assuming, the ﬁypathesis to be matched is <«whale>r Lo for instance answer
a user’s guestion "Can the creature I saw be a whale?”, the hierarchy has
to be traversad from bottom to top, whereas 1in HICLASS the opposite
direction was Tollowed. The assumption <whale> is taken as a goal and the
attempt of HIHYPO is to confirm this goal. A backward chaining in contrast
to the global forward chaining in HICLASS has to be performed, since in
order to confirm <whale> the whole path from the very special description
up to the most general one has to be confirmed. This is because the whole
path describes the concept <whale>, not Jjust the last table.

With a backward chaining (or goal-driven) approach "the system focuses iis
attention by only considering rules That are relevanl to the problem on
hand. In this approach, the user begins by specifying a geal by stating an
expression % whose truth value is to be determined. ... The main advantage
of the goal-driven approach is that it does not seek data and does not
apply ra}es which are unrelated toc the problem in hand.” [9, pp.428, 430]

o

If a goal can be confirmed within one table in the relevant path, the
narent of this table has to be considered, thus serviﬁg as a glcbal
subgoal, and so on, until the top of the hierarchy 1is reached. For
rejecting a goal though, it is sufficient to reject one of zhe subgoals
along the path.

s
<o
R

§.1.1. Local control strategy and knowledge representation

Within the context of one table, the attempt of the svstem is to confirm
or reject a result of the table. The local control strategy is strictly
goal-driven and it is mainly focused con the differences betwsen concepts
{again referred to as classes) combined in a table. Thus, values for
attributes that are unigue or most unigue for the special goal compared to
other c¢lasses in the table serve this strategy best. A special
distinction-oriented knowledoge representation, which is non-redundant and
shows only the differences between classes would be perfect for this.

Example:

rL¥pe size lpoation creaturs waight
cetacea 25 ft. at sea whale 1.0
cetanss & 1. near coast porpoiss 1.0
cetacea & ft. at sea doiphin 1.0
Fish i FE. n.pacific saimon 1.0
Figh 8 ft. at sea shark 1.0
Figure 6.1.1.1. Original cliass descriptions

type size iocation craaturs waight
* 25 ft. * whale 1.0

* * near coast porpoise 1.0
catacsa 5 ft. at sea doiphin 1.0

1 Fr. ¥ saTmon 1.0
Fish & ft. % shark 1.0

Figurs 8.1.1.2. Distinction-oriented class descriptions

The non-redundant, distinction oriented class descriptions in figure
&.1.1.2. are generated from the descriptions in figure &.1.1.1. using 2
special kind of mechanical induction (the algorithm s described in
section 6.4.). The new descriptions only include the information crucial
to distinguish betwsen the different classes within the table. The
information, for example, that the size of the creaturs i3 25 fi.>» s
sufficient Lo confirm that the creature is a <whale> within the (Timited)
worldview of the particular table. The %7 has to be read as "Don’t care’
only by the control strategy, it can for instance nolt be derived that it
dossn’t matter if <whale> is a <«fish> or a <cetacea>. Valuss for
attributes describing a particular class are only defined 1f they are
unigue for this class, and not only values bul also sets of values.

Example:

* 1 Ft. # sa Tmon 1.0
The knowledge about the length s sufficient to confirm or reject the goal (salmon’,

cen 8 ft, a2t saa daoiphin 1.0
thres attributes have to be kKnown to confirm or reject the goal <doiphind.

10!

Lo

& local goal-driven control sirategy takes singie values or sets of values
Tocal subgoals and generates questions in order to inguire if thess

as
values match the user’s datas or not. If only one of thase subgoals cannot
te confirmed, the whole goal in a local as well as in a global sense has
to be rejsctad.

Example:

a) to confirm a goal with one subgoal

goal: salmon
subgoat: 1 ft.

What is the length of the creature? i ft.
The oniy subgoal is confirmed, thus the goal is confirmed.
Result: The creature is a salimon.

bBY to confirm a goal with muitiple subgoals

goal: shark
subgoalis: fish, 6§ i,

What is the class of the creature? Figh

What i the length of the craature? § ft.

817 two subgoals could be confirmed, thus the goal is confirmed,
Resuit: The crealture ig & shark.

c) to rajesct 2 goal

goal: saimon
subgoal: 1 ft.
What is the length of the creature? 235 Ft.

The onty subgoal is rejected, thus the goal is rejectsd.
Rasuit: The creature is not a saimon.

With a class description consisting of several instances per c¢lass, we
choose the instance with the least amount of unigue values. To confirm the
goal class we have to confirm all of these valuss. To reject the goal
though it is necessary to reject at Teast one unigue valus per instance.

104

£.1.2. Selected special problems

Almost a1l of the problems raised for HICLASS have to be considered in
HIHYPO as well. Important guestions to be answered are for instance:

- What happens 1if instances describing ong class carry different weights?
How to deal with uncertainty in general?
How can the reasoning process be explained?
Are there metarules to guide the process?
What should be done if there is a predefined order within the table?

Although 1t 1s not in the scope of this work to fully cover all aspects of
the HIHYPO system, let us nevertheless have a look at some crucial
problems.

§.1.2.1. Class descriptions with different weights

Different to a Tocal forward chaining control strategy, the attempt in
HIHYPO 1s to confirm or reject a special local goal. This gosl can be
describad by several instances, which in turn can have different weighis
attached to it. In order to fully exhaust all the information provided, we
are not done with simply confirming the goal and moving up in thse
hierarchy, we also have to take care of the certainty with which the goal
is confirmed.

Example:
* 2t sea whale 1.0
cRLaces Ed near coast whale .38
Fish # * sa8tmon 1.0

goal: whale
subgoal: cetacsa
What iz the colass of the creature? cetacea

goal: whals (1.0}

subgoal: at sea

Where does the creature Tiver? at saa
Resull: The creaturs is a whale for sure.

Why was <cetacea> chosen as the local subgoal for the first guestion, and
not <at sear? This was done according to the fTact that a specific order is
maintained: First, the local geal is confirmed using the distinction to
other c¢lassas in the table, then, given there are multiple instances
describing this goal carrving different weights, the appropriate waight is
needed. Hence, one of the instances is chosen as the new local goal.

6§.1.2.2. An answer UNKNOWN

Allowing the user to answer with UNKNOWN, additional uncertainty will be
introduced. How to proceed in this case? The example used balow is the
distinction-oriented version of the example given in &6.1.1.

Fxample:

A * blow hole cetaces 1.0
gilis Figh R

B 25 Ft, * whale 1.0
naar coast porpoise 1.4
£ Fi, at sea daoiphin 1.0

giobal goal : owhale

Tocal goal B P whals

Tocal subgoal B ¢ 28 Ft.
B: What is the size of the cetacea? UNKHOWN

globatl goal ¢ whale
Tocal goal A . cetacea
Tocal subgosl A ¢ blow hole

A: How does tThe creature breath? through a blow hole

Resylt: It is possible that the creature s a whals {1.0).
Due to incompliste information though, this can only be
confirmed with 0.5,

A similar strategy 13 used as Tor a forward chaining in HICLASS., The
answer UNKNOWN is dgnored as not helpful to confirm the subgoal (in fact
we act as 1T a confirmation took place). The answers UNKNOWN ars counted
for a particular table and this value is used to determine a certainty for
the conclusion.

108
§.2. A complex problem—solver

The task of the hypothesis matching system could be extended such that in
case of the rejection of a goal, the system could try to come up with a
concept matching the user’s data - a hisrarchical ¢lassification task. To
allow a combination of the two concepts, 1t is useful to start the
hvpothesis matching at the root table {(this could be an advantage anvyway,
because more genaral guestions might betlier be suited to early reject &
goal). Having a goal to confirm, the system would trace the path up to the
root ftable, maintaining a 1ist of Tocal goals, one for each table touched.
I¥ one Tocal goal cannot be confirmed, the system could switch over to a
classification mode to find a valid solution if there i3 one. This
behavior would allow to not inguire information twice. Anothar idea woul
be to NOT start at the root, but Jjumping there in case of the rejsction of
the current goal, while keeping already observed tables 1incliuding the
user’s answers in memory in case we have to invoke them again.

Example:

B ¥ blow hole cetacssa 1.0
* aills fish 1.0

B: 25 Ft. Ed whals 1.0
* near coast porpoise 1.0
8 ft. at sea doiphin 1.0

o nopacific a8 Tmon 1.8
at s=a shark 1.0

a} starting at the root

global goal: whals
Tecal goals: whale, cetacea
Jocal subgoal A: blow hole

A How does the creature breath? through gilis
O #Where doss the fish Tive? at sea

Result: Tha creaturs is HOT a whale bult a shark.

The rejection of the local subgpals Jed to a rejection of all the local
goals as well as the glicbal goal. Table A was solved with the result
«fish>. We went on forward and invoked table €, coming to a result
matching the user’s data.

el
<
-

b)Y without starting at the root

global goal ;D wha'ls
Jocal goat B : whale
tocal subgoal B o0 28 Fi.

B: What ig the length of the cetacea? g fL.
A: How does the creature breath? through a biow hols
B: wWhere does the cetacea Tive? at sea

Result: The creature is NOT a whale but a doliphin,

The global goal was rejected. We jumped fo the roolt node and solved table
A. The result pointed to table B, which was partly solved before, thus we
do not have to ask all of the questions again.

The seqguence of action described above 18 an example of using two
differant generic tasks, namely hypothesis matching and hierarchical
classification for building a more complex problem solver. Both
implementations incorporate their own problem-solving strategy and
knowledge representation appropriate for solving the specific problem,
They partly share the same data description (organization of the
hierarchy, attributes, values, etc.), complemented by specific table
contents {distinction- and non-distinction-oriented tables).

108

8.3. Inductive learning

An dmportant issue for almost all applications in the field of Al s the
process of coding information, of incorporating knowledge into a
predefined data structure. "...machine learning is not merely a short-cut
method of building expert systems; learning is the key to intelligent
behavior, and that is a lesson the AI community will have to learn if
artificial intelligence iz ever to deserve this title.” [8, p.187].

There are several ways of learning: simple memorization, learning from
instruction, learning by analogy, learning from examples, Tearning by
discovery [1, p.87]. With respect to the hierarchical systems HICLASS and
HINYPO, a simple memorization would mean to encode a given non-redundant
description of a class {(for the field-guide-example the encoding of the
orovided key hierarchy)., This requires that there is explicit knowiedgs
about 1t. However, it will be more often tha case that only examples are
available describing instances of the class {(e.g.: description of
different rabbits). There are applications Tike CENTAUR that use Lhess
examples directly, for instance in the shape of prototypes. "The goal of
the system s to confirm that one or more of the prototypes in ths
prototype network match the data in an actual case.” [3, p.428].

Ancther way 135 to generalize the information given with a set of instances
to obtain a good, in the best case non-redundant description of the ¢lass.
We're talking the implementation of wmechanical induction. "A simpls
inductive learning task is to induce a generalized description of a singlse
concept ar class of objscts. A training set of individual instances of the
concept is provided, each with a description. ... The goal of the learnsr
is to establish a maximally specific gensralization of the concept.” [1,
op.B8-84]

"L induction by machine is easy: useful induction is hard. The problem s
not that machines cannot gensralize. On the contrary, there are too many
ways of generalizing” [8, p.211]. Some ways of generalizing include
dropping conditions, internal disjunction, relaxing a constraint and
making a constant intec a “don’t care’ variable. Model-driven (top-down)
algorithms are guided by prior assumptions about the form of hypotheses,
whersas data-driven {(bottom—up) approaches are guided by patterns in the
training data.

Tn the next sections, several approaches to solve the problem of inductive
learning for expert sysiems will be covered in an overview manner.

§.3.1. Version space

Learning can be viewed as a search “through the space of all possible
descriptions for those which are valuable for the task in hand” [13].
Since the number of valid descriptions can be astronomical, a heuristic
method has to be found to guide the search. [8, p.188].

Mitchell developed an algorithm for searching the space of possible
concepts {the version space): candidate-slimination, a cross between the
Siaeve of Fratosthenss and the Binary Chop [13]1.

ne basic idea is to first Vist all possible descriptions and then to
ross of f those that do not apply to the training data. A partial ordering
xists among the descriptions, from general to specific. The sysiem
maintains two boundary sets: 8, the sst of the most specific possibis
&

-
i
c
e

descriptions compatible with the training data so far, and G, the set of
the most general possible descriptions. The two sets are gradually made to
converge as more and more training instances are examined. The convergence
is achieved as follows

1. when a positive instance iz encountersd, any description in G that doss not cover
it is sliminated, and a1l elaments of 2 are generalized as 1ittle as possgible 80 that

they cover 3t.

2. When a negative instance is encounterad, any description in 8 that covers it is

s

deleted, and 211 elements in G are specialized as Tittle as possible s0 that they no
Tonger oover it.

Theoretically, this procedure is optimal, but "it starts to get 1into
trouble with quite modest amounts of noise in the training data” [8,
p.2027%.

£.3.2. Quinlan’s ID3

In a discussion of Quinlan’s ID3 algorithm Michie [12, p.222] statss that
the basic purpose of this algorithm is to "grow a small example set from
an exhaustive set of situations stored on a database.” The ID3 algorith

ig iterative. A decision tree is formed using a subset of the training
set. Then, the other members of the training set are c¢lassified using this
tree. In the case of an misclassification the decision tree is rebuilt
using additional instances. The iterative way of building the tree is said
to be more efficient than to build it in a single step using all the data.

A major disadvantage of the original algorithm is stated in [12, p.2 é},
ref ferring to the results of the application of ID3 to a chess databac
“The induced decision-tree rule Jocked good by the criteria of sgntmes;s
cost, compacinass, and execut%oa efficiency; but 1t made no sense to the
chess expert.” This is, especially for explanation features embedded in
expart svstems, a serious critiqus.

Forsyth [8, p.203] does list a number of ID3’s shortcomings: “1. The rules
are not probabilistic:; 2. sesveral 2§eat€ca§ exampies have no more effect
than one; 3. it cannot deal with contradictory examples; 4. the results
are therefore over-sensitive to small alterations to the training
database.”

And also Jackson [10, p.450] criticizes the algorithm: "... you cannot
consider ada tional training data without reconsidering the classification
of previous instances. Also, ID3 is not guaranteed to find the simplest
decision trae that characterizes the training instances, bescause the
information-theoretic evaluation function for choosing attributes is only
a heuristic. Nevertheless, ... its decision trees are relatively simple
and perform well in classifying unsesn objects

Besides these problems though, ID3 has been incorporated into a number of
commercial packages, Vike ExTran and 7st~-CLASS.

6.3.3. Ag11

Tha program AQ11, designed by Michalski, Larson and Chilausky "is the one
which Ffound better rulas for soybean disesase diagnosis than a human
expert” [8, p.207]. The rules in AQ11 are generated in a language called
VL1, where a description is a set of terms called "selectors’.

Samplie VL1 ruie:

03 [leaves = normal] [stem = abnormal]
[atem cankers = below 03l Tine]
foanksr lesion color = bhrown]
OR [leaf maiformation = absent] [stem = abnormal]
fatem cankers = below s0i11 Tine]
foanker lssion color = brown]

The rule consists of two descriptions linked by an OR, whereass a
description i1s a conjunction of terms. Each selector compares cone variable
with a constant {or range of copstants). "AQ11 works in an incremental
fashion, each step adding ancther conjunctive term (i.e. a new selector)
starting off from a null description. The idea is to introduce new items
of evidence one at a time, or a few at a time, and extend the growing rule
to deal with them. The AQ11 method can be outlined in the following
pseudo-code,

iset of Positive instances of the concept}
{set of Negative instances of the concept}
fanswer set, initially empty}

{set of most general rules, initially nult}

[EI 1

B
a
G

o

repeat until P s emply

[choose an element p from P

apply i-~sided Candidate Elimination with p versus N

using a conjunctive rule Tanguage;

select a description g from G,

append § to A;

remove from P all alements covered by 4]
save and/or display A.

The main step in this top-level algorithm is best understood as a one-
sided variant of the candidate-elimination algorithm; there is a G set of
maximally general descriptions (..) but no S set. The place of the S set
is taken by a single example,p. The method specializes G as little as
possible to exclude all N (negative examples)” [8, pp.208-209].

"In the soybean work, the system made a complete pass through the data for
each disease type, treating cases of that disease as positive examples and
all other cases as negative examples. ... It is also possible to treat
previously generated rules as negative examples... AQ11 rules start off
very general and become more and more specific. It adds new terms to
exclude negative examples, while still covering as many as positive cases
as possible” [8&, p.208].

112
For an example used several times 1in the discussion of HICLASS the
algorithm is assumed to work Tike shown below (there are some parts of the

algorithm which are not clearly described by Forsyth, but it is beyond the
scope of this work to clarify these problems).

Example:

Tearning <whala>:

P = {cetaces 25 FL, at ssal

N = {cetacea 8 Ft. near coast,
cetaces 5 ¥t. at ssa B
Fiah I o n.pacific .
Fish a Ft. at saa ¥

G = {cetacsal} {new conjuncitive ternm)

p = {cetacea 28 Ft. at sea}l

candidate elimination:

~

G covers p ~> no change in G

iz speciatized to not longer cover examplies in N
= {oetacea, 25 ft.)

fiy &

resuylt:

4 = {cstaces, 25 L.}

£.3.4. Geneltic algorithms

Genetic algorithms are inspired by evolution. They are "very general and
robust in the face of noise” and they "are inherentiy parallel”.
“Evolutionary algorithms are very simplified versions of what goes on in
nature, but they share the inherent parallelism of the natural process”
[8, p.218].

For Forsyth [8, pp.216-219] the essence of & genetic algorithm is that
"the expected number of ’offspring’ of a rule is proportional to the
syccess of that rule in the task being learnsd.” The author looks at
genetic algorithms as an advanced form of the 'Monte Carlo’ method. "Using
the basic Monte Carloc approach, a computer simply generates potential
solutions, evaluates them and retains the one with the highest score. The
Tonger the system runs, the greater the probability that it will find a
solution within a preset distance from the optimum” [8, p.216]

Forsyth states that genetic algorithms “"take the Monte Carlo idea one
stage further by maintaining a population of potential solutions and
biasing the search for new candidate solutions towards regions of the
search space that have proved successful in past trials” [8, p.216].

z H

s
S

§.4. An ipductive learning algorithm for HIHYPOD

algorithm developed for creating a distinction-oriented representation
HIHYPO system uses a number of ideas mentioned 1in the last
tione and applies them (and other ideas) to the special problem,

(3 wdy d
$O oo
Oy D
¥
iy
[

choice of representation for encoding a system’s knowledge is at
ast as important as the details of the learning algorithm 1t uses.
s also very convenient 1f the representation for the input data is the
ag that for the descriptions {or rules)...” [8, p.198]. The choice
t the knowledge representation for HICLASS as well as for HIHYPO has
@ad; been made: sets as described in 3.1.3. The attempt of buiiding a
stinction-oriented class description will be basaed on the same
Ywni tion; the "system is said to employ the ’single representation
i“?Cﬁ [2, p.igs8].

e
¥

ey

DN bed e
el A I ¢V |

[o

Q [0 B

Db
Ve

&
T3

An important fact is that the worldview of an HINYPO system 1s somewhat
Timited (preenumerated sclutions, attributes and values). Therefora ths
algorithm starts generating all possible descriptions and crossing off
those that do not apply to the training data (the resemblance to the Sievs
of Fratosthenes). The number of possible descriptions is Tikely to produce
a cambinatorial explosion: within the limits of a practical HIHYPO
implementation though (something VTike maximal 12 atiributes and maximal 26
values per attribute) it is still possibie to deal with the problam.

Example:

Training data:

type size iocation oregature waight

cetaces 25 ¢, at sea whals 1.0 (1)
cetacas 25 Fi. near coast whals 0.9 {2}
Fiah 1 FL. near coast sainon 1.0 {(t3)
Figh 1 L. at sea =8 Tmon 0.0 {td)

Desired resylt:

type zize ipoation creature weight
* at sea whals 1.8

catacea * near coast whalse 0.8

Fiash ® near coast salimon 1.0

Attribute ssts:

Lyps = {wetacea , fish}
size = {28 ft. , 1 ft.}
iocatdion = {8t sea , near coast}

ciass 1 = <whaler (o1}
class 2 =z <sainon> {023

115

A& recursive algorithm generates descriptions, checks them against the
training data and stores the descriptions that apply without
contradictions supplemented by attributes showing the amount of reduction
which could be achiaved using this description, the ¢lass this description
belongs to and the weight it carries. Contradictions to be checkad are the
following:

2) a description is true for saveral classes and the maximal combined
weight of instances is greater than 1.0

b) a description is true for instances of one class carrying
different welights

c¢) a description is true for a negative example for a class

For the example the gensrated descriptions and the result of the
contradiction check would be the following:

di = {cetacea , * ; * 3 appiies to ©1,tZ2; different weights, reject
d2 = {cetacea , 25 ft. . * Y oappiiss to ©1,12; different weights, reject
d3 = {cetacsa ., Z58 FiL. , at sea } appiies to t1;, take

d4 = {cetacea , 25 T , near coastl applies to L2, taks

df = {cetacea , 1 ft. , * 1 does not apply

48 = {ocetaces , 1 L. , at sea 1 doss not apply

47 = fcetaces , 1 ft. , near coast} doss not apply

d8 = {cetacea , X ; at sea 3 appliss to t1; take

d8 = {cetacea , * ., near coast) applies to 12 izke

di = {Fish . . % Y applies to t3,t4, 4 is neg. example; rsject
a1t = {fiszh » 25 ft. % } doss not apply

12 = {Fish , 28 ¥&. ., =2t ses } doss not apply

413 = {fish , 25 Ft. , near coazst} doss not apply

did = [fish , 1 FE. & t applies to £3,t4; t4 ds neg. example; reject
dis = {fish ;1 FL. , &t sea ¥ applies to t4; té is neg. sexample; reject
gi8 = [Ffish , 1 ft. ., near coast} applies to i3 take

di7 = {Ffish . F , at sea 1 appliss Lo T4 T4 ds ney. exampls; rejsct
418 = {fish , % . near coast) appiies fo 13, take

dig = { * , &5 ft. , ¥ } appliss Lo t1,t2) different weights; reject
dz0 = { * , 25 ft. , at sea ¥ applies to ti1, take

dzi = { * , 25 FL. , near coast) applies to T2 itske

a2z = { * , 1 Ft. ¥ Y applies to t3,t4; 14 is neg. sxampls. raject
dZ23 = { * , 1 Fft. , at sea } applies Lo té; t4 iz neg. example, reject
dZ4 = { * .1 L., near coastl appliss to t3) take

d25 = { * P £ ; a2t ses P oapplties to 1,14 combined weight=1.0; itske
428 = 1 # R % , near coast}) applies to t2,13) reject

Descriptions still valid:

the seoond ssl has to be raad as:
iresult, weight, number of exanmpies substituted)

a1 ; 25 Ft. , at sesa ¥ ofct, 1.0, 1%
dz ¢ , 2B ft. , near coastd {ci. 0.8, 1}
3 {cetacea , * , at sea 3 o{ci, 1.0, 13
dd = {cetacea , * , near coast} {cl, 0.9, 1}
45 = {fish 1 ft. , near coast} {cZ, 1.0, 1}
d6 = {fish ;% , near cooast} {c2, 1.0, 1}
a7 = { * , 28 ft. , at sea Pofel, 1.0, 1}
g8 = ¢ # , 25 Ft. , near cecast} {ci, 0.9, 1}
48 = { # . 1 Ft., , near coast? {cZ, 1.0, 1}
dio = { * s & , at sea Y ofot, 1.0, 1%

- il
i18

For each class, descriptions have to be fTound that are maximal general.
The criterion for "maximal general” is the minimum number of values

-

different than "%, The algorithm performs the foliowing loop:
g L

for sach class do begin
repeat
Took for maximal general
check 1if description is already covered by result set
if not then append this description Lo the result set
delete this description in the description set
until there are no more descriptions for the class
end

description
:
H

For the example of ¢2 (<salmon>) the sequence of action is the following:

Descripticn set (D):

d1 = {fish , 1 ft. , near coast} {c2, 1.0, 1}
dz = {fish , , near coast} {cZ, 1.0, 1}
a3 = { Ed , 1 ft. , near ceast} {c2, 1.0, 1}
Resuylt set (R):

ri o= { % B * ; at sea , whale , 1.0, 1}
rZz = {cetacea , * . n@ear coast, whale , 0.8, 13
Loock for maximal general description

dz = {fish . % , near coast} {cZ, 1.0, 1}

Description already coversd by result set? wuo

Append to result sat

ri = { * 5 % , at sea , whale 1.0, 13
rZ2 = {cetaces | # . near coast, whale |, 0.3, 1}
r3 = {fish R £ , near coast, saimon, 1.0, 1}
Delete in description sst

41 = {fish ;1 Ft. , near coast} {cZ, 1.0, 1}

4z = 4 # , 1 Ft. , near coast} {cZ, 1.0, 1}
Look for maximal gensral description

%2 = 4 % ;1 Fu. , near cosst} {¢Z, 1.0, 1}

Description already covered by resull set? ves

Delete in description set
gl = {¥Fish . 1 ft. , near coast} {c2, 1.0, 1}

Look for maximal general description
di = {Ffish , 1 ft. , near coast} {2, 1.0,

e
?

Description already coversed by result set? ves

Delete in description set

Result:
i

H
ri = * P % ; at ses , wngle , 1.0, 1%
rz = {cetaces . & , near cosst, whale , $.8, 1}
r3 = {fish s * . near ooast, zaimon, 1.0, 1)

The criterion for the decigsion "Description already covered by result?” is
the following:

iF {result_valued ¥ jand{description_valus O % jand{result_ valueCdescrigtion_wlug)
then inciuded: =Talse

8]

L45]
ok

ing this criterion we achisve a minimal set of results.
Changing the criterion to

i {result_valus %" jand{result_valuelodescription_value}
then included:zfalss

the description
4z = { % , 1 FL. , near cpast} {c2, 1.0, 1%

would have been valid, thus the result set would have been

r1o= {0 ¥ ;R ; &t sea , whale , 1.0, 1}
rz = {cetaces , * , hear coast, whals , 6.8, 1}
r3 = {fish . % , near ceast, salmon, 1.0, 1}
ré = { % ;1 ¥t. , near coast, salmon, 1.0, 1}
which 1s a proper, but not minimal result set.

The check 1if a description is already included in another description
could have been made while checking the descriptions against the examples;
we simply would have performed another check against the already defined
descriptions. That this was not done is due to the attempt to maintain s
simple logical flow of the algorithm.

The algorithm works properly for all fraining data ssts checked so far.
Thae combinatorial explosion problem is Timited by Timiting the number of
possible combinations. It is not a perfect algorithm for applications with
a higher amount of attributes or values; within the context of HIHYPO
though it is a useful approach. Noise in the training data sels causes
trouble, thus the algorithm works perfectly only with an idealized, noise-
free training set.

The example
algorithm:

Outiook

sunny
sUNNY
ovarcast
rain
rain
rain
overcast
SUNMY
SUnny
rain
BUNNY
avercast
overcast
rain

A generalization of the class P (N denoting negative examplies for P

given with

P = [outipck=overcast]
[{outlook=sunny jand(humidityznormatl)]

given 1in

Temperaturs

hot

hot

hot

miid
[elstol]
ool
[ofelo]
mitd
[oleTeli
mild
mild
mild
hot

mitd

118

[10, p.447] could properly be solved by the

Humidity

high
nigh
high
high
narmal
norma’t
norma’l
high
norma’l
norma’l
normal
nigh
norsaa’
high

o

false
Trye
falise
false
false
Trus
Trus
false
false
fa'lse
trus
Trus
falge
True

[{outlookzrain)and{windy=Ffalise)]

Class

]
N

L B e < ol ¢ s < B B ¢

O

e

ot
0]

119

7. Conclusions

An expert system shell solving the generic task of hierarchical
tassification has bsen created. Crucial aspects have bsen challenged from
s thegretical and an dmplementational point of view. Issues of
nowledgs representations, control strategies, inductive learning, ways of

handling uncertainty, ambiguity, and contradiciions, and more have been

covered. Additionally, the development of a hierarchical hypothesis
matcher has been proposed. A special algorithm for inductive learning has
been developed and implemented.

T 0y
o] :
[t
oS

in goals of the research could successfully be achisved. The next

=

21 steps would be to

complexity study
implement the proposed but vet not integrated features of HICLASS
improve the HICLASS system as described in 4.2.2.

sxpand the research on learning, explaining the reasconing process, and
concluding facts

implemant HIHYPO, a hisrarchical hypothssis mat

atcher
design a complex problem solver combining HICLASS

and HIHYPO

Ultimately, the system could be perfected to market it.

ey
Pl
(]

References

Black. Intelligent Knowledge Based Systems — an introduction,
Berkshiras/England: Van Nostrand Reinhold (UK), 1887,

ey
s
[

(2] Bochmann/Steinbach. Logikentwurf mit XBOOLE. (Logic Design with
XBOOLEY. Berlin: Verlag Technik, 1881,
[3] N

Buchanan/Short1iffe, eds. Rule-Based Expert Systems (The MYC
Experiments of the Stanford Heuristic Programming Project). R
MA: Addison Wesley, 1884,

I
eading

[4] Burton, ed. The world encyciopedia of animals. New York: World
Publishing, 1972,

[8] Chandrasekaran. Building blocks for knowledge-based systems
based on generic tasks: The classification and routine design
axampies, In: Liebowitz/De Salvo, eds. 1889. Structuring Expert
Systems. Englewood C1iffs NJ: Yourdon Press, 1989,

i8] Doukidis/Whitleyv. Developing Expert Systems. Bromley, Kent, U.K.:
Chartwell-Brati, 1988.

[71 Dresig/Kuemmling/Steinbach/Wazel. Programmieran mit XBOOLE.
{(Programming with XBOOLE). Chemnitz/Germany: TU Chemnitz Publication
Series, 199%2.

(81 Forsyth. Inductive learning for Expert Systems. In: Forsyih,
ed. Expert Systems - principles and case studies. London:
Chapman and Hall Computing. Lund/Sweden: Chartwell-Brattl
Studenyiitteratur, 1989.

ig] Frost. Introduction to Knowledge Base Systems. New York:
MacMillan Publishing Company, 1986,

[107 Jackson. Introduction to Expert Systems. Reading MA:
Addison~-Wesley, 1890.

Liehowitz/De Salvo, eds. Structuring Expert Systems. Englewood
C1iffs NJ: Yourdon Press, 1989.

[12] Michie, ed. Introductory readings in Expert Systems. New York:
Gordon and Breach, 1984,

[13] Mitchell. Gener
4

alization as a search. In: Artificial
Intelligence, 18 (1982), pp.203-26.

[14] Wazel. An AI system that plays ’Guess what it is’. Project
paper in SAN 586 at Miami University, Oxford OH, 1981,

121

Further Reading

ey
ey
on

omand

sy
ks
(]

[

oy
s
e

[t

oy
whnlbs
]
| S—

g
[avs
p

| S—

oy
™
o0

S

Frenzel. Crash course in Artificial Intelligence and Expert
Systems. Indianapolis, IN: Howard W. Sams & Co, 1987.

Gupta/Kandel/Bandlar/Kiszka. Approximate reasoning in Expert
Systems. Amsterdam: North-Holland, 1885.

Hayes-Roth/Waterman/Lenat, eds. Building Experi Systems.
Reading MA: Addison-Wesley, 1983.

Hendler, ed. Expert Systems: the user interface. Norwood NJ:
Ablex Publishing Corporation, 1988,

Kruse/Schwecke/Heinsohn. Uncertainty and vagueness in knowledge
based systems. Berlin: Springer-Veriag, 1991.

Levine/Drang/Edelson, AT and Expert Systems - a comprehensive
guyide. New York: McGraw-Hil1, 1880.

"ent

oA

s

artin/Oxman. Building Expert Systems. Englewood C1iffs NJ:
ice Hall, 1488,

McDaniel. An introduction to decision logic tables. New York: PBI,
1878.

Neguita. Expert Systems and fuzzy systems. Menlo Park CA: The
Bendamin/Cummings Publishing Company, 1985,

Parsaye/Chignell. Expert Systems for Experis. New York: John
Wiley & Sonsg, 1888,

Padersen. Fxpert Systems Programming. New York: Wiley, 1989.

Reichgelt. Knowledge representation: An Al perspective. Norwood
NJ: Ablex Publishing Corporation, 1881,

Rich/Knight. Artificial Intelligence. New York: McGraw-Hil1l, 1861,

Steinbach/Dresig, XBOOLE/XB_PORT - Informationen fuer den

Programmierar (XBOOLE/XB_PORT ~ Programmer’s Guide). Unpublished.
T4 Chemnitz, Germany, 1989.

Wazel. Der Einsatz von FIRST CLASS in der computergsstuetzten
Lehre und Ausbiidung am Beispie] des Fachs Betriebswirtschaft -
Jahresarbeit. (The application of FIRST CLASS to computer based
training for the example of business management courses - term
paper). TU Chemnitz, Germany, 198%.

(*¥°9 UDLIDBS JO pue Y} 1B PaIBA0D)

mwﬂﬁmxm mawwwm 404 wwﬂ,ww 1004 : Mwm‘mm@&ww%xm
LIH 3LVINDNN
LIH HOdWIL
LIHT37IS
LIH O¥L3010
LIH HSIZON
LIH TYHRYRH
LIH HSI4
LIHNYI0YL30
LIH HOAINYYD
("7 y UOL]DBS UL PBUBADD) LIH"0YIg
wmm%wxw 185404 404 mwmmu 1004 M Mwmﬁwwg&m%xw
il disy Jo4 8ltd LOJUOD - NOJ"SSYT0IH
we1sAs Joj el diey - dIH SSYIDIH
SSYI0IH wedboud I¥3°85YI0IH
LICAIH wesboud : 3¥3°LIQ3IH
we3sAs 8yl 4o uoLididaosep jeLJq - IX1 3Wav3d

ys1p wedboud 8Yyy uc seiid JO ISt

¥ xipusddy

Appendix B
The Software Engineering aspect of the project

Report fTor Independent Study

—— e e USSR WD I BN S BN

—

Tabhle of contents

0. Introductory comments

1. The traditional softwarse 1ife cycle

Py

Characteristics of good design

2.1, Modularity

2.2. Levels of abstraction, Information hiding
2.3. Coubling

2.4. Cohesion

2.5, Control issues

LeN]

System design

3.1. Process-orientad design techniques
.1.1. Modular Programming

2. Functional Decomposition
.1.3. Data Flow Design Methods
.1.4. Datsa Structurs Design Methods

by
a

L3 (e a3 G

2.1.4.1. Jacksen’s Design Methodology

3.1.4.2. Warnier’s Methodology
3.1.5. HIPD
3.2. Data-oriented design technigues

4. Prearam design
4.1, Top-down design
4. Za Nucleus extension
4.3. Bottom-up desigh
5, Implementation and Testing
6. Object-oriented development
Introduction
Basic concepts
6.2.1. Objects
§.2.2. Classes
.3, Inheritance
.2.4, Polymorphism
.5. Messzage gassang
5.3. Obgeetwor?erted software 1ife cvcle
8.4, Some advantages of object-orientation

-&-

[
o -
(S
6.2.

mmm
MV\')?\D

7. The HICLASS project

Refersnces

(o)

Hon

SO0 -3 O O O

o

[Y
o OO

19

=
19
20

20

]
o

)

ERR N AV LS A
I A e

o
N

P
o

| —— — WP —— T Y ——

(5]

0. Introductory comments

"Systematic software development practices are applicable to virtually any
class of computer-based svstems which will have a lifetime considerably
Tonger than its develcopment time and which requires more than a single
person to carry out the design and development” [13, p.27]. The following
discussion will be concerned about systematic software development
methodologies. The traditional software 11fe cycle with its several stages
will be introduced. The objsci-oriented software development methodology
will be covered. Due to the fact that the HICLASS system has bsen
developed by ’a single person’, the features of the 1ife cycles concerned
about management and communication during the development of the system
will not be addressed in detail. The discussion below will mainly be
focused on the methods and techniques which had to be considered and/or
which have actually been applied while developing HICLASS. It should be
understood that this 1s not a complete overview about all software
engineering methodologies and concepts, but a selection of issues
important within the scope of the HICLASS project. Finally, a brief
discussion will show which methodologies have actually been used Lo create
the HICLABE system.

— — L B Y ——— —_—— - & L —— L L\ L T L

1. The traditional software 1ife cycle

Back 1in the 1880s, "every piece of software for every information system
was a ‘custom design’, with no consistent pattern to follow and little
experience from previcus efforts” [13, p.251. Thers was no systematic
approach to system design and development. This was one of the reasons for
research on Sofiware Engineering with the idea to apply an
“engineeringlike form of discipline” to building software systems. A
number of concepls were developed including top-down design, modularity
and structured programming. One of the most important steps though was the
development of a softwarse 1ife cvele, with which 1t became possible to
merge technigues for software production with adeguate management
technigues. Several stages of software davelopment are defined within the
framework of the 1ife c¢cycle including requirements analysis and
definition, design and maintenance. Aspects of managsment and
communication play an important role throughout the whole process serving
to "tie the stages together and provide the organizational environment in
which the technical procedures can be made effective” [13, p.28].

"Tdeally, we would like to derive our programs from a statement of
requirements in the same sense that Lheorems are derived from axioms in a
published proof”, but "we will never find a process that allows us to
design software in a perfectly rational way.” {8, p.251]. Thare ars a
number of reasons for that. Users might not be able to exactly specify
their nesds, many details become clear during the implementation, projects

re subject to change due to external reasons, errors will occur, parts of
the software might be shared with other projects and therefore not be the
ideal software for the current project, and so on. Parnas/Clements [8]
suggest that nevertheless an ideal process should be assumed, and that
documentation should be produced that makes it appear as if the software
was designed in an ideal manner. They talk about "faking a rational design
process’.

The traditicnal description of the software 1ife cvcle is based on the
"waterfall” model. It "attempts to discretize the identifiable activities
within the software development process as a linear series of actions,
each of which must be completed bafore tne next is commenced” [5, p.14371.
There are several levels of detail with which the model is described. At
the most general level there are three phases defined [5]1:

analysis
design
construction/implementation

During the analysis phase, the neesds of the user are analyzed and a
feasibility study is done. The design phase includes various concepts of
design (system and program design}. In the Tlast phase of the model,

programs are written and tested, the system is delivered and maintained.

\
N S I T SEE O S N W Uay T BEE SRE BEw O wEE e

5

Several authors use different approaches 1o subdivide the ithrae phases
[5,9]; these approaches only differ in the level of detail. The following
description 1s used in [5].

user reguirements analysis
user requirements specification
software requirements specification
Togical design (system design)
physical design (program design)
implementation/coding
program festing: units
program testing: systems
program use
software maintenance

e
e

The first two stages try to answer a WHAT-guestion; the attempt is to
identify the problem. Starting with the software reguirements
specification, the guestion HOW is beginning to be answersed, moving the
process towards a solution. "The design stage is perhaps the most loosely
defined since it is a phase of progressive decomposition toward more and
more detail and is essentially a creative, not a mechanistic, process” [5,
p. 1447,

There are several problems with a traditional approach using the classical
1ife cycle. These problems include that there is "no iteration, no
emphasis on reuse and no unifying model to integrate the phases” [6,
p.40]1. Alternative models Tike the spiral and fountain model (as described
in section 6.3) have been developed to overcome these problems. aAnd, as
described above, ithe idsal process can be "faked”, while for instance
repeating some steps, and performing an iteration back to a previous
stage.

2. Characteristics of good design

There is no method developed for software design which can claim to be
complietely systematic. Method-independent guidelines have emerged to
suppliement the design methods in providing guidance during the process of
design, and to allow Jjudgments on the guality of the designed software
[2]. The characteristics of a good software design discussaed below center
around the idea of modularity. The discussion is based on [2,%,12,13,161.

2.1. Modularity

Modularization can be defined as dividing a program into parts on some
systematic basis. A module is "a functional entity with a well-definad set
of inputs and outputs. ... A module is well-defined if all inputs to the
module are essential to the function of the module and all outputs are
produced by some action of the module” [9, p.1401. "The term module is
used to refer Lo a set of one or more contiguous program statements having
a nama by which other parts of the system can invoke it and preferably
having its own distinct set of variable names” [12, p.244]. When each
activity of the system is performed by exactly one module, the system is
said to be modular.

There are different points of view on how big a module should be. Some
authors suggest thalt a module should occupy no more than one page of text,
others prefer even smaller modules (seven Tines or less). The smaller the
module, the higher is the number of modules, and so s the number of
tevels, which may result in more confusion. On the other hand, small
modules are much easier to comprehend, since we only should Took at one
module at a time. One could also argue that small modules increase the
overhead of subroutine Tinkage. "The question here i3 whether it 1s more
important Tor a program to be eazy Lo understand or whether it i3 more
important for it to run gquickly”™ [2, p.28]. One idea is to develop the
software using small modules, and to rewrite particular procedures which
are invoked frequently, although it is not very 1ikely that the subroutine
Tinkage has a big impact alt all. Rather, 1t has besn shown that about 50%
of the execution time of a program is spent on executing about 10% of the
code. Hence, it is important to optimize these parts of the code.

Modules with the same number of program Tines can have a diffearent
complexity. One among many attempits to measurs complexity is Mclabe's
cvclomatic complexity. McCabe asserts that complexity depsnds on the
decision structure of the program. If the cyclomatic complexity of =
particular module, derived by counting the numbsr of predicates and adding
cne, 18 greater than ten, then it is too complex. Criticisms of this
mathod include that the measurs ignores, for example, references to data.
{2, pp.30~-31]

LI

2.2. Levels of abstraction, Information hiding

Usually, the modules at one Jevel refine those in the level above; the top
level is the most abstract one. The modules are arranged in levels of
abstraction. High-level modules give the opportunity to view the problem
as a whole, while hiding the details of the functional components.

A similar didea i3 that moduyles could hide the internal details and
processing from one another. Information hiding, or encapsulation,
suggests that for each data structure the structure itself, the statements
that access the structure and the statements that modify it should be part
of a single module [2, p.32]. The encapsulated data cannolt be accessed
directly, only via one of the procsedures associated with the data. This
principle supporis an easy changeability, independent development and
hetter comprehensibility. The concept of information hiding is one of the
undertying principles of object-oriented design.

2.3. Coupling

Independance between modules 1s desirable because it is easier to
understand a module if its function 1is not tied to others, and it is
gasier to modify an independent module. Additionally, the spread of damage
may be limited, 1¥ an error cccurs in one module. Two criterias have been
developed to measure the degree of module independence: coupling and
cohesion. The goal is to create modules in a way that there is a minimum
of interaction between modules {(Jow coupling) and a high degree of
interaction within a moduile (high cohesion).

Coupling measursas how much modules depend on sach other. Highly coupled
modules are very dependent on each other, Toosely coupled modules have
some independence, wheresas uncoupled modules have no interconnection at
all. Coupling depends on several things [9, pp.143-145]:

The references made from one module to another.

The amount of data passed from one moduie Lo another.

The amount of control ong moduls has over another.

The degree of complexity in the interface belwsen modules.

Coupling represents a rangs of dependence, some types of coupliing are less
desirable than others. Content coupling is the lsast desirable. It occurs
when one module actually modifies another. This might occur when one
module modifies an internal data item in ancther module (or even worss,
when the code of the other module is altered), or when a module branches
into the middle of another module {(alsc referred to as "entering at the
side door™).

Common coupling appears when data items are put in a global or common data
area to which two or more modules have access to. A number of problems
rise doing so. Adding new data to the shared data may cause a name clash

sl

> - — — — e . S |

R VNGRS TNy Emy $ wwe

8

with an existing local data item within one of the involved modules. In
order to understand an individual module it is necessary to understand all
of the shared data. Additionally, it can be difficult to determine which
module is responsible for having set a variable to a particular value.

Control coupling beltween two modules appears when one module passes flags
{(als0 called switches) to control the activity of anothar module. It is
impoessible for the controlled module to function without direction from
the controlling one. In order to minimize control coupling, it should be
tried to split a single multi-purposs module into several, each carrying
out a single action.

A better way than passing a set of control flags and data items ig to use
a data structure to pass information from one module to another. The data
structure allows an argument 1ist to be used. Stamp coupling occurs when
the data structure itself is passed, whereas data coupling 1s performed if
only data are passed.

The most desirable coupling is achieved without anv transfer of control
betwaen modules. One module passes a serial stream of data to another. The
outputting module has no access to the data, once it has relsased them.
This option though is not widely available 1n most programming systems,

2.4, Cohesion

The nature of the interactions within a module s described by cohesion.
"The more cohesive a module, the more related are the internal parts of
the module to each other and to the functionality of the module” [9,
p.147]. The goal is to make a module as cohesive as possible. Again, there
are several types of cohesion, ranging Trom Tess to most desirable.

Coincidental cohesion describes the fact thalt the parts of a module ars
completely unrelated to one another. With TJTogical cohesion, several
Togically but not functionally related functions are placed in the same
module. Temporal cohesion occurs, when a module performs a set of
functions that are only related 1in time, such as initialization
operations. A module is procedurally cohesive, 1T functions are grouped
together in a module Jjust to insure a certain order of performance. If
functions acting on common data are grouped together in a module, this
module s saild to be communicationally cohesive. Seguential cohesion
occurs, when the output from one part of the module i3 the input to the
next part. The ideal type of cohssion is Functional cohesion, 1in which
avary single opsration in the module contributes towards the performance
of 2 single well-defined task.

o,

o

2.5. Control issuss

Another aspect in measuring the guality of a piece of software s focused
on the control of several modules by a single module. "Fan~in 1s the
number of modules controlling a particular module, and fan-out is the
number of modules controlied by a module” [9, p.1801. Modules with a Tow
fan—out have to bs preferred, becausse a high fan-out can indicate that a
module is performing more than one function. It is often useful to create
a set of utility modules which can ba called from many other modules.
These utility modules have a high fan-in. In general, the attempt is to
create modules with a high fan—in and a low Tan-out.

Another aspect is that modules should not effect other modules over which
they have no control. "The scope of control of a module is that module
plus all modules that are ultimately subordinate to that module. ... The
scope of effect of a decision is the set of a1l modules that contain some
code whose execubtion 1s based upon the outcome of tThe decision” [12,
0,250, No module should be in the scope of effect if it is not in the
scope of control.

Summarizing the above discussion, the characteristics of a good design ars
the following [9]:

Tow coupling of modules

highly cohesive modules

minimal number of modules with high fan-out

scope of effect of a module Timited to its scope of control

10
3. System design

This stage of the classical software 1ife cycle is also be referred to as
logical [5] or architectural [15] design. "A design is a determination of
the modules and intermodular interfaces that satisfy a specifisd set of
requirements” [9, p.140]. Various design alternatives are analyzed, and
different sclutions are evaluated according toc the existing constraints,
such as machine resources, development time or costs, and operational
costs. In the system design, "the emphasis is on determining the structure
of the system, decomposing the system into modules, and precissly
specifying the interfaces between modules” [13, p.30-31]. Data items and
structures are described in a relatively abstracl way.

There are different wavs of classifying techniques developed for ths
system design stage. Pfleeger [9] divides the approaches into
decomposition and composition, while VYau/Tsai [15] emphasize the
distinction between process-oriented and data-oriented approaches. The
Tatter definition will be used further on. Some of the methodologies
described below are not Timited to an use for the system design stage, the
attempt is to use one consistent approach throughout several stages of the
Tife cycie.

32.1. Process—oriented design technigues

"The process-oriented design technigue emphasizes the process of
decomposition and structure 1in creating a software architecture” [15,
p.714].

Important process—oriented design techniques are:

modular programming
functional decomposition

data flow design methods

data structure design methods
HIPO

In the next sections, these technigques will be discussed in more detail.

2.1.1. Modular Programming

A complex system is divided into several parts, and each of the modules
only performs a single function. The module size 1is small to allow an
efficient testing. Following coding and test of single modules, they are
integrated. Then, the whole system is tested. Advantages of this approach
are that 1t 1s easier to write, test and maintain the programs. Most of
the other methods desribed below use modular programming.

11

3.1.2. Functional Decomposition

Functional decomposition [2,5,15] focuses on the functions thalt a program
has to carry out, The system is viewed in terms of what it is intended to
do. The techniqgue is a fop-down method; it starts with the overall task of
the program. But it is also called stepwise refinement. At any stage of
decomposition "the solution is expressed in terms of operations that are
assumed to be available and provided by an abstract (or virtual) machine”
[2, p.46]. "...each module is characterized by a designer’s decision. Only
certain information of this module 1is needed by other modules, and
communications between modules are through well-defined interfaces.” [15,
n.7141. The method can also be viewed at as a variety of structursed
programming.

There are two basic approaches to functional decomposition - breadth first
and depth first. Using a breadith first approach, the design is refined
tevel-by~level, growing a tree structure. With depth first, the focus is
diracted on only one branch of the tree at a given time, developing the
branches one after ancther. Design tools used for functional decomposition
include data flow diagrams, data dictionaries and structure charts.

The functions of the system play a more important role than the data. The
data structures are derived during the decomposition as they are needed,
and when it becomes clear what nesds to be done with Them. Thus, the data
are tailored to the operations. System developed this way are very Tikely
to be unable to take new data structures or new functions into account.

Functional decomposition is very flexible and generally applicable. It is
most useful though 1f the procedural steps of the desired system are
clsarly evident. The method "guides our thinking but allows us plenty of
scope for creativity”. It reguires "significant creativity and Jjudgement
to be employed” [2, p.50].

Disadvantages of ths appreoach include that 1t is somewhat unpredictable
and that 1t is hard fo know, if the best possible design was created; in
fact, it is complicated to choose between different designs. The method is
not so well-defined as othars. This might be on of the reasons that it has
not been marketed yet.

3.1.3. Data Flow Design Methods

With a data flow design method, information flow is the driving force for
the design process. Various mapping functions are used to transform
information flow into software structure. The wmethod suggests that
software should be build from paraliel programs, even if it is widely used
for designing seguential programs,

Structured design [2,12,13,15] was originally developed by Constantine,
and advanced by Yourdon and Myers., It has iis origins in the era of
modular programming, and it suggests a "definite procedure by which ths
structure of a large program or software system could be expressed in

iz

terms of consistent modules” [2, p.B81]. It tries to overcome the
shortcomings of functional decomposition since 1t provides criteria to
compare alternative designs, and to determine their relative quality. The
method does not automatically Tead to a unigue, ideal solution.
Alternative designs are possible,

In structured design, the data flow of a problem is mapped into iis
software structure using some design analysis technigus. 8ome of the
characteristics for a good design as discussed in section 2 of this paper,
have their origins in the research for this methodology. One of the key
issues is modularity, which is mainly measured in terms of cohesion and
counling. The "goal of structured design is to create system structures in
which the modules have high cohesion and low coupling” [13, p.32]. The
method is not very helpful in the detailed design and implementation
stages.

In a data flow design, the flow of data and the transformation that wiil
act upon these flows is examined. A vital step is to draw the data Tlow
diagram with bubbles representing a "transformation that converts an input
flow into an output flow”. There s "no definite, systematic way" [2,
p.747 of doing this. Working in a non-parallel environment, the data flow
diagram has to be transformed into a structure for a sequential program,
since the bubbles can be seen as programs that input a serial stream of
data from one bubble and output a serial stream to another. The end
product of the method is the structure chart for the software showing the
modutes and the interaction between these modules.

Besides the fact that data flow design attempis To create a design with
the best possible modularity, the method is based on the idea that most
programs have a similar overall structure as shown in figure 2.1.3.1. "In
general, a piece of software will reguire that several transformations arse
carried cut on its input data streams and that, after the main processing,
several transformations are carried out on its output data streams”™ [2,
p.787.

Process

o
i i

Input Output

Figurs 3.1.3.1. Overall structure of most programs

Structured design is c¢losely related to the Structured Analysis Design
Technigue, which 1s based on Structured Analysis. Structured Analysis "is
a graphical language used for explicitly sexpressing hierarchical and
functional relationships among any objects and activities” [15, p.714].
The Structured Analysis Design Technigue includes management planning and
configuration control procedures, and is most effective in the early and
tate stages of the software Tife cycle.

,mudmmmmgwmmgwﬁﬁMxmmummasmwmwmwﬁwmmﬁwmmammwwxw
subLsap amumWOsu 1L pue ‘esn 031 Ases pue eldwls ‘juelsLsSucs ‘slgeyocesi
‘leuotled ‘leuoiledidsul-Ucu 8g 01 PLBS SL 11 "pesn ussq A|LAesy
ea0j8d8Yyl sey pue ‘[z] 8igelieAe A[QUSJUNnD poylew uBLsep DLIBRWeLSAs
1sow syl se peziubooed sSL poylsw syl -ubisep 1seg 8yl ALLJBSS8O8U 30U
SL UDLYM ‘pelesds SL uBLSSD S[geXJOM B ‘pOUISW UOSHOEP 8yl Ullm BULYIOM

“[ge-d
‘e1] .84n3ondis 1ndano syl pue andul BYY UIOG YILM 80BLISIUL AL NLSSBOONS
UBD QEBUL SUNIONJLS S1BLDBUUSIUL UL 218840, 01 SL 8UC ‘YSBID 2 Uons salosad
01 pedo|sAsp useq sAey $syoroddde [BUBASS "YSB/D 8JNJONJIS B SB UOLIBNLLS
SLUT SBQLADSSR UOSYORP "BUNn30NnJYS wedboud o(BuLs v oluy psddew eg qouuen
S8UNIONATS BB SJ0W JO OM] eyl ‘ubnoyl usddey ues 31 TsweubeLp UBUSLLLD
8yl [LB 40 s3ioedse [eunionuils eyl (LB $81eJ0diodul YDLUM pauLelgo st
84n3on43s wedboud e pur ‘uMmedp BJB B[L4 3ndIno pue qndui yoee Uoi sweabelp
B4N30N418 BlRQ "P8sSss00dd 8(O 8ABY S8 L} |BJBASS JL ‘8SiJe UBD Swe|qodd

"oLBo| oilewsyos peled spooopnesd 03Ul WeJdBBRLD SLYl WAOLSUBJY O
SiL dels [eUij 8yl -wesBelp 8J4Nn3on43s wedBoudd eyl UL suoritsod sjriudosdde
JLsyl ut peoe|d sJe suoljedsdo essyl pue ‘peonpodd sL 100 AdJed 01 8ABY
LLEM wedBodd 8yl deyy suoliededo Auejusuws(e [[2 JO 38L| © ‘axeN ‘uwedbeip
24n3on43s wedbodd B OUL PBUMO4SUBJLT UBYL SL wWeubelp 8J4niOnJls B3P 8ul
"uoijileded ‘uoliosies ‘eouenbes - Buluwuwedboud PBINIONLLS L0 S$10NLLSUOD

Yyl 01 puodssddos 8[QelLBABR SBJNISNJLS BYL UOLYSBL [eSLYDJRIBLY
B up peziuebio ‘peonpoud sL wedBeRLD BUNIONILS BIRD Y ,wmw aoud 8g
03 spesu YDLUM BLED 83U 10 SJNIoNJIS 8yl BurzAleuw UilM sS3483% m‘xw Bul sy

“wedboud 8yl J0 84n1oNJS BY3 YILA ALuo ‘suoiivdedo peileisp
IN0ge pauJsOuULD J0U $L poyasw uosyoer Bul "sssooud SLyUl UL 1SLSSE 0%
pesn 8Je $8UNn31oNnJ1s elep syl mou 1ng ‘aor(d sayey uoLlisoduwonep [eUOLIOUNS
Alleiuesse jeyy penBue st 3t [1] ur -[giL°d ‘gi] ,elep indino ojuL
psuiojsuedy eJde eiep ndul YoLuM AQ WSLUBYDBW © SB PBMBLA $L 8JBM1L0S DU®
‘sesseoodd 3t 23ep 8Y3 10 muwwwmgwm BUT AQ PBULWIDISD S WB1SAS 8JEM1}0S
B 40 84niondiys oiseq ey}, t[zg-d ‘2] ,uo 30 03 Butob st wesBoud syl 1wyl
$81L4 J0O BLL mxu wm 2NI0N418 BUYT uUdYeW pLnoys wesbBoud B 40 24n1onJ1s
Yl 1'Yl, st [SLeLfg'e]l poyisw uosHoRr BYl pulysq eepL OLlseq 8yl

ABojopounsy uBiseq $,U0MoRC “LTPTLCE

gseyd ubisep wesbBodd BYl UL SE [[8M SB WalSAS 8yl UL pesn 8q

O Jsluden pue uosyoer Ag padoleasp ssyoevoudde qususiilp OM1 B8Yl "we|qoud
$0 BUNIONULS syl szisevyduwe UBLS8p 8JNIONJLS BIBD JO) satBolopoulsu eyl
spoyisy ubLssg SJnIonNJIg BB TPCLCE

i

AR] AT _— Anneh ==Y — [T, —

14
3.1.4.2. Warnier’s Methodology

The methodology developed by Warnier 1s very similar to Jacksons approach.
Warnier though provides more detatled procedures to software design. Four
kinds of design representation are used: data organization diagram,
Togical sequence diagram, instructicn Tist, and pseudocode [15].

2.1.5. HIPO

HIPO (Hisrarchical-Input-Output) [11,13,15] was developed by IBM primarily
as a documentation aid. It consists of two basic components: "a hierarchy
chart, which shows how each function is divided into subfunctions; and
input-process-output charts which express each function in the hierarchy
in terms of its input and output” [11]. The design process is an iterative
top-down activity, modular decomposition is achieved; the hiesrarchy chart
and the input-process-output charts are developed concurrently. HIPO has
the "ability to represent the relationship betwsen input/output data and
software process” and the ability "to decompose a system in a hierarchical
way without involving logic details™ [15, p.715]. The technique can be
used in system design as well as in program design, testing and
maintenance. It is easy to learn and use and has widely besen applied.

3.2. Data-oriented design technigues

"A data-oriented design techniguse emphasizes the data design components of
a software system and the technigues for deriving the data design” [15,
p.718]. Process-oriented design techniques are focused on the functional
azpect of the problem. This s also true for the data structure design
methods, which use the data structures to assist in the process. Data-
oriented design technigues, on the other hand, favor the data and derive
functionality to transform data. Yau/Tsai [15] discuss the object~oriented
design technigue as beslonging to this category of methodologies. A
different point of view is that the object-orientaed method is more a blend
of process- and data-oriented design techniquaes; 1t attempts to achieve a
balance between both. The latter approach will be followed here, thus
ohisct-oriented design 1s undersiocod as a third category. This can alsc be
Justified by the fact that a completely different 1ife cvcle is used for
the object-oriented case. One example of a data-oriented design s the
conceptual database design methodology. This technigue is related to the
formal specification method, which describes how "programs can be built
systematically from a formal specification of the data they deal with”
[18, p.718]. Technigues of automated programming and the proof for
correctness of a program can be developed based on formal specification.
The conceptual database design methodology can "guide a designer in the
process of translating data and reguirements specifications intc =
database conceptual schema” [15, p.715]. The aim is to establish a unified
conceptual model, such that the sofiware design process is procesding
while building 2 data model.

15

4, Program design

This stage of the software 1ife cyvcle is referred to as physical [E],
detatled [13,15] or program [2,¢,18] design. "During detailed design, the
emphasis is on the selection and evaluation of algorithms to carry out the
Togical steps specified for the individual modules”™ [13, p.31}. "Program
design defines modules and intermodular interfaces so that sach module of
the system corresponds fto a new set of modules containing program
spacifications™ [9, p.185]. The specifications describe the input, output,
and processing to be performed; they are technical and detailed,
raferencing specific data formats and describing the steps of the
algorithms, In program design it is fine~tuned what should bs done before
it is considered how to do it. Modularity is a key factor in good program
design; characteristics of a good design have been described in section 2.
Well-known design tools are flowcharts, pseudocode and Nassi-Shneiderman
charts [9,18]1. There are basically threse approaches Lo program design
[181, which will be discussed below in more detail

4.1. Top~down design

The first step in top-down design [9,16] 18 a statement of the function of
the program. The subfunctions are than identified in a recursive fashion,
such that each of the subfunctions may be further subdivided until a level
is reached where the parts are easily comprehended. Only data and control
information and structures necessary for a particular module are defined,

while details of the design at Tower levels remain hidden. Top-down dGS?gn
{also referred to as functional decomposition) includes the strategies of
stepwise refinement and transactional analysis.

With stepwise refinement, the decomposition stages ars treated “%s
programs in successively Tower level and more procedural programming
Tanguages” [16, p.72). A pseudocode notation with structured programming
control structures can be usad. This pseudocode, also known as & program
design language (PDL) may be viewed as a very-high-level programming
tanguage. There are formal PDLs, which impose a programming language- %1%
syntax upon the user, and informal PDLs. The PDL is used to describe t
interfaces between the given module and other modules, fo give a b%ief
statement of the function performed by the module, and to describe the
Eﬁg%c used in realizing thai function. There are several advantages of
ing a PDL compared to flowcharts, among others the fact that they are
achine-processable. At eauh stage @f the fsfinemeﬁt process, detatls of
h@ data manipulation sare suppressed, and will be addressed later.
ions regarding control structures though caﬁngt be postponed. One
age of stepwise refinement s that attention 1is focused on
ing a correct program, not Jjust on understanding the problem
on. A disadvantage is that later stages may uncover the need for
ural changes, which might result in changes in earlier designs.

¥ ~;_:5 x;
ff‘k

s bassed on the analysis of data flow through the
that transmit and transform a single input element

i6
are analyzed. The steps involved in identifying data streams and processes
are similar to those followed in the data flow design methods for system
design

4.2. Rucleus extension

Rather than starting with the function of a program as a whole, the
starting point in nucleus extension [18] is a collection of contributery
functions. Two main strategies have been dsveloped: Parnas’ module
specification and Jackson’s hierarchical modular design.

The module specification strategy was developed as a means of providing
building blocks ¥ar defining families of system programs. The strategy
starts with identifying areas of design decision where thare are competing
solutions. These areas are isolated in separate modules. Some of the
moduies might be reused in cother programs or systems, whereas others are
specific to the program specifications. The decisions are further broken
down intc parts identifying Tower-level decision areas. After algorithms,
data structures, and access modes have besn selected, the flow of contr
is designed, and the modules are recombined.

With hierarchical modular design, program structure is based on the
structure of the input and output data. The sirategy works best with
highly structured data, and 1t is based on hierarchical diagrams. Its
philosophy is basically the same as described in 3.1.4.1. The input and
output charts combine elements of Togical structure with elements of
physical structure, with major focus on a logical description of the data.

4.3. Bottom—up design

"Bottom~up design starts by identifving what might be called the utility
functions nesded by a program” [16, p.89]. The utility modules are vary
Tow-Tevel and they are generally useful, and might therefore be reused in
othar programs or systems. Once the Tow-Tevel modules have bsen designed,
they are used in the definilion of higher-level functions. These modules
in turn contribute to a higher level, and so on until the entire program
design has been built. Since a utility Ffuncti can be s? red by several
higher level functions, coupling among m@db;;4 uysually increases [9].

17
5. Implemeniation and Testing
In the traditional software Tife cvcle, the phase of design is followsed by
implementation/coding, by a test of units, and then by a test of the whole
sygtéﬁ, 411 modules are designed and coded; the low-level components are
tested first. Then, modules are combined into subsystems, which are tested
again. And so on, until the complete system is built and tested. There are

a couple of Qrﬁbéemt connected with this bottom-up approach [2]. & ot of
time has to be spent on the construction of test data and test harnesses
(programs to invoke a component under test), which are often simply thrown
away. 1T there are errors concerning the integration of subsystems, the
whole process of designing, coding and unit testing has to be rapeated.
Major flaws in the design of the whole system are not discovered until the
very end, and there is no working system until the very last stage.

An alternative approach is top-down development [2,12]. It can be ssen as
a blend of the differant stages mentioned above. The process proceeds from
high—-level components down. The high-Tevel components are coded before
towar levels are designed. Program stubs are designed to stand in for
invoked but velt unwritten lower-level components. As necessary, test data
are constructed. The system is assembled and tested. "Implementaltion
pf@ﬁeeé% by selecting Tower-lesve]l c@mgsneﬁts {formerly stubs) for design
and coding and incorporation into t%e system” [2, p.198]. Some varialtions
of the method seem to be necessary. "In practice some low-Tevel componenis
nead to be designad, coded and tested at an early stage” [2, p.1%8]. On
the other hand, 1t might be useful in some cases to Tirst complete the
design of the entire program before starting top-down coding and testing.
And, some componants are easier to ftest in isolation. There are a number
of advantages of top-down development as described in {Lg. Major flaws are
detectaed at an early stage of the process. The reliability of softwars
components (especially the high-level components) increases, since they
are tested again and again. It is esasier to locate a fault, since faulls
can be found in the single new component just added or in the interface
with higher-leve] modules. It has been said that top-down development is
well-suited to projects that are undertaken by a team of programmers.
Studies show that coding takes up approximately 20% of developing time,
while 50% of the development effort takes place after the code is written.
Top~down development seems to be a way to change these proportions.

Another approach is to construct a prototype. Prototyping is a technigue
for requirements analysis. A prototype is a working version of a piece of
software, constructed to identify the major characteristics of the system
to be built., "The purpose is to aid the analysis and design stages of &
project by enabling users to see very early what the system will do” [2,
p.201]. The question arises if the prototype should simply be thrown away
after serving this purpose, or 1f it should be tried to transform it into
the final system, for instance while looking at the construction of the
system as an optimization of the prototype (this approach is generally
dangerous)

18

Yau/Tsat [15] Tist a number of useful guidelines for a good programming

style:

modularize the system

strive for program readability

avoid programning tricks

restrict use of global dats

use dats abstraction concepts

minimize the number of paths through programs
give preference to static data structurss

Although a number of *hese guidelines might not be applicable under
certain conditions (the last cne, for dnstance, 13 not useful if the
nroblem to be solved is qéff dynamic), these poinis are important for ths
suppoert of not only testing and verification, but also for program
maintenance., A decision has to be made concerning the program language in
which the aygfe% gshould be dmplemented. Constraints for this choice
include the availability of compilers, the compatibility with other
subsystems, and the availability of modules written for other systems
which can be reused to reduce davelopment time.

According to [12, p.28]1, testing "1z a series of controlled experiments
that seak to grovzde empirical evidence that a program bshaves properly
{and provides the dssired results for broad blas ses of anticipated
inputs).” Verification, on the other hand, can bs "a formal, mathematical
proof that the program is in conformity with its specifications” [13,

381, The cost of this kind of verification 1z quite high. Thare ars
other manual or automated veri ?*Aaiiar and wvalidation techniques,
including walkthroughs and inspections. A walkthrough i1s an organized but
informal §9€i§ﬁ§ at which a program is examined; the programmer presents
his/her code and the documentation to a review team. Frogram inspection,
on the @%aar hand, 18 a formal review in which the review tzam checks the
program against a prepared list of concerns.

There are several methods to perform a test [2]. With one method, a
selection of input data values is devised, and the actual ocutcome is
cempared with the expected one. A better method would be to use all
possible input values, and to check the outcome. Cbviously this approach
iz very dmpracticable, because of the usually large number of possible
values. The First two methods consider the program as a black box., It is
beg*@” though to use knowledge about the internal structure of the
orogram, considering the program as a white box. One suggestion is fto uss
egt data thalt causes every path fo be exscuted in &1l possible
ombinations. Again, this process is too lengthy. A more practicable
pproach is "to devise test data that causes exscution of svery program
ath (though not all combinations of paths), at least once in the festing”
2, p.195]1. ng might also view of testing as making sure to test the
ctions that a program takes in spscial cases.

o f“‘“"ﬁf"ﬁ o

Dijkstra stated that "testing can only show the presence of bugs, never
their absence”. Consequently, 1t might be more appropriate to look at a
test that reveals no bugs as an unsuccessful fest!

19
§. Object-oriented development
5.1. Introduction

In section 1, some of the problems with a traditional software Tife cycle
have been addressed. One most recent approach to overcome these {(and
other) problems is the use of an object-oriented paradigm. It is important
to note that object-orientation is more than Jjust another software
development method or another programming style. The way of how systems
are viewed 1is fundamentslly different to other approaches. One way of
explaining the distinction between the traditional and the object-oriented
view 18 given in [7]. Traditionally, a project-based approach is used; the
subject of discourse 1is the project, starting with a certain
specification, and ending with a delivery of a program. With object-
orientation, the subject of discourse is reusable components rather than
individual projects.

Another way for a discrimination is to investigate what the basic focus of
the methods is [1,2,5,6]. There are traditional methods focusing on the
functional aspect of the system with minimal consideration given to data
in earlier development stages. Other methods favor the data and derive
functionality to transform data. "The object-oriented mindset allows a
developer to see systems 1in terms of active components made up of data
fused together with associated functionality” [1, p.3]. Process driven and
data driven approaches place their emphasis on either processes or data.
The object-oriented approach applies a world view based on active,
interacting entities, called objects, which encapsulate both data and
procedures. These objects are grouped into c¢lasses. An inheritance
relation is added to the traditional dependencies between data slements.

The goals of object-orientated development are not new, and so are many of
the concepts used within this framework. The intent is to "simplify the
generation of Tlarge, complex software systems, and to encourage the
production of software that is modular, easily understood, reusable, and
adaptable to change” [2, p.122]. The evelution of the object-oriented
saradigm started with a purely procedural approach, and was enhanced by an
object-based approach. Both of the "older” approaches basically utilize
functional decomposition to develop the architecture of a system. The
object-oriented approach though gives emphasis to data by utilizing the
relationships between cbjects.

§.2. Basic concepts

There are a number of concepts crucial to an understanding of thes object-

riented approach to software development. Most of the concepts are not
new in a sense that they have exclusively been developed for this
paradigm. "It is the blending of inheritance with the other ... concepts
in specific ways that characterizes object-oriented programming” [6,
p.42]. The discussion will mainly be based on [1,2,6]. The concepts
covered are objects, classes, inheritance, polywmorphism, and messags
passing. Other concepts like composition and generic typing will not be
discussed.

6.2.1. Objects

An object 1is a "thing" with an identity, with a state and a certain
behavior. The behavior is defined by the services, or operations, 1t can
perform. Some methods have to be defined to carry out these operations.
Ohjects have a boundary. They offer their services to other objects,
clients in this case. A client requests the services of another objsect by
sending 1t a message. Each object can be thought of as a small virtual
processor whose behavior is defined by how it responds to receiving a
mess 8§c The objects are independent, active agents., Meaning and behavior
are internal to the objects,

§.2.2. Classes

A class defines a set of possible objects. Its definition describes the
form and behavior of all obijects of that c¢lass. There ig an "is-a”
relationship between an objects and its class, an object is an 7nstance of
its class. Therefore, a class defines the structure and function of a
potentially infinite set of individual objects. Ideally, a class is an
implementation of an abstract data type. Implementation details and all
data of a class are private to this class, enforcing the principle of
information-hiding; the boundary of the abst?aft data tvpe 1g established.

Two Kinds of methods can be found in the public interface of such a class.
There are functions that return meaningful aésifaﬁtzans about the state of
an instance, and there are transformaltion procedurss ussd to move an
instance from one valid state to ancother. Other objects rely only on the
interface of a ¢lass, independent of its implementation.

£.2.3. Inheritance

"Inheritance 13 a relation between classes that allows for the definition
and implementation of one class to be based on that of other existing
classes” [§, p.43]. Once ithe base class is understood, there is only the
need to understand how a derived class differs from the more general base
class, aince derived c¢lasses are described only in terms of these

differences. Inheritance supporis reuse acress systems and it directly
facilitates extensibility within a given system. It minimizes the amount

21

of new code needed whan adding additional features. Given a derived c¢lass
Y and a base class X, Y has a derived and an incremental part. The derived
part is inherited from X, whereas the incremental part iz the new cods,
espaecially written for Y. Classzs Y now has all the features of X. Y is an
¥, but s it more than an X [8].

6.2.4. Polymorphism

The term polymorphism in gensral means the ability to take mors than ons
form. A polymorphic reference in the context of object-oriented languages
is one that can refer to instances of more than one class. The idea of
polymorphism is coupled with the nature of inheritance. If "Y inheriis
from X, Y is an X, and therefore anywhers that an instance of X is
expected, an instance of ¥ is allowed” [6, p.45]. There are several forms
of polymorphism, the one used above 1is referred to as 7nclusion
polymorphism. Other forms are parametric polymorphism (procedures work
uniformly for a range of types), overloading (a single operator or
function name may be applied to multiple types), and coercion (values of
different types are used in the same sxpression) [1].

8.2.5, HMessage passing

As stated earlier, an obisct reguests the ssrvices of anocther object by
sending 1t a message. The service corresponds to an internal metnod of the
called obiect. Message passing s different to simple function calls,
which are rescived at link time. A message is a request for action, not a
functien call. It might happen that the code associated with a call is not
known until the moment of the call at runtime, and 1L may be the case that
one of several different responses are possible. "The process of
determining which of the possible responses is aporopriate then finally
invoking the appropriate function s called dynawmic binding” [1, p.10].
bvnamic binding 1s associated with polymorphism and inheritance. A
orocedure call associated with a polymorphic reference may depend on the
dynamic type of that reference, and dynamic binding is only reguired in
the presence of inheritancse.

22
6.3. Ohbiect-oriented software 1ife cvcle

Several authors identify the three fraditional activities of analysis,
design, and implementation within their description of an object-oriented
software 11fe cycle [5,8]. The main difference to traditional approaches
is that the distinct boundaries betwsen the phases are eliminated. This is
hased on the fact that the items of interest in esach phase are the same.
"Beginning 1in the requirements phase, objects are identified. By
developing specifications of the entities found in the problem domain a
clear and weli-organized statement of the preblem is actually built into
the application. These objects form a high-ltevel layer of definitions that
are wWritten in the terminclogy of the problem domain. During the
refinement of the definitions and the implementation of the application
entries, other entities, or classes, are identified. ... In one phase Lhe
analyst identifies problem domain objects while in the next phase, the
designer specifies additional objects necessary for a specific computer-
based sc?uiéaf The design process is repeated for thess implementation-
Tevel objects” [6, p.48].

The object-oriented development process s iterative. Henderson-
Sellers/Edwards [58] therefore replace the waterfall model by the fountain
model. The fountain model represents both iteration and overlap. The
starting point is the requirements analysis and specification, following
stages include system design, program design, coding, unit testing, system
testing and program use. The 1ife cycle "grows upward to a pinnacle of
software use, Talling only in terms of nscessary maintenance. This
effectively reverts the stage of the cycle to a Tower level” [5, p. 151].
Or as stated in [6, p.41]1: "Development reaches a high Tevel enéy to fall
back to a previous level to begin the climb once again”

There are two separate components in object-oriented design, class design
and application design. Each dentéf%eﬁ entity leads to a <lass
description. Once these descriptions have been developed, the application
can be designed while connecting instances of the classes. The pattern of
interaction between these instances provides the structurs of the
application. The development of an object-oriented application is a blend
ss description and application configuration. ... since an object-
oriented program will be developed essentéﬁ?“y as an interacting system of
classes {...), the stages of the 1ife cycle model can be applied more
accurately to the ﬁevs?@@meﬁt bycge of each individual class rather than
the system as a whole” [5, p.152]. A special 1ife cycle for a tightl
related group of classes, or cluster, has been developed. The cluster
model [5,7] has three phases: 1) specification, 2} design and
implementation, and 3) validation and generalization. The cluster model is
significant as a branch of the systems specification in the software Tife

. "
cycie.

/s
G
&

Resides the fasct that special object-oriented scftware Tife cycles are
developed, other authors argue i?a% the object-criented paradigm can be
used with traditional 1ife cycles, serving as a consistent underiving
theme, and preserving a higher conceptual integrity throughout the
development process.

™
o

6.4, Some advantages of object-orientation

There are a number of advantages one can gain while applying objsci-
ariented thinking and methods [1,8]. The special paradigm provides natural
support for decomposing a system into modules, classes in this case.
Information hiding 1s supported through the separation of the class
interface and the class implementation. Weak coupling and strong cohesion
are other important resulis of object-oriented design. Easily extendable
designs are produced, and reusability is strongly supported. The approach
helps to control complexity, and it helps to preserve conceptual integrity
in all aspects of software development.

24
7. The HICLASS project

Thae HICLASS system was developed by a one person team. Hence, management
and communication problems could not arise. As a result of the thecorstic
development of the system’s functions, some data structures as well as

algorithms have been developed beforehand. Basically, the traditional
software 11fe cyels has been applied with modifications such as adding
iteration and repeating some siteps. In system dasign, a depth-first
functional decomposition has been applied, with the modification of
already having some data structures defined 1in advance. A top-down
devalopment as described in section 5 was used for the next stages of the
Tife cycle. Testing was done using a white box apprecach, taking spscial
care of special cases. Due to the dynamic nature of the problem, almost
all data structures were developad in a dynamic way, which resuited among
other things in numerous fheu«fgﬁn 3 to insure a s&f@ exacution of the
orogram. Lots of thought was given to a graci?cdb}e and esasy-to-use user
interface, achieved through the usse of pull-down menus and spreadsheets.
Global data has been defined, restricted though to variables needed by
many modules of the system. The programming was eaae in TURBO PASCAL 6.0
{approximately 16.000 Tines of source code). The decision to choose PASCAL
was influsnced by the fact that a number of ubtility tooiboxes wers
available, and that the programmer was most experienced in this language.

The HICLASS system was divided intc two major parts: HIEDIT, the table
editor program, and HICLASS, the application program performing
hierarchical classification based on tables chained fLfogether 1in a
hierarchy. For a brief discussion of the software design process performed
the focus will be on HIEDIT.

HIEDIT was developed in a modular fashion. Four different screens have
baen identified, sach of those performing special actions. The screens
have been designed one after another, following a depth-first functional
decomposition. Low-Tlevel modules Tike a library of basic utility functions
and pull-down menuy functions have been identified. These utility modules
ware designed, coded and tested at an early stage, using especially
designed test harnesses and test data. Then, a top-down development
strategy has been applied. The high-Tlevel components were coded hefore
3%@@? Taevels were designed. Program stubs were used to stand for invoked
but vet unwritten Tower-level components. Test data did not have to be
consiructed, since the Tlow of data in the system is very linear, and the
output of one screen is the input for Lhe next. Hence, if one screen was
coded, the data produced within this screen could be used as test datas for
the development of the next screen.

in figure 7.1., th ?O&i of the tree stands for the overall task of the
system. The aev* 3 el shows the two program which had to be devoioped., AL
the third Eev@g3 the four screens of HIEDIT are shown. In the
implementation, the functions of sach of those scresns are grouped in a
separate PASCAL unit. The next Tevel shows the decomposition of the FILES
scraen. Each of the functions identifiad corresponds to A
procedurs/Tunction implemented for this screen. The tree structure of
Figure 7.1. 15 not complete, it oullines the basic design of the system.

e T L —_— — —— e—

25

Systen
|

i i

HIEDIT HICLASS

i i I i

FILES DEFINITIONS EXAMPLES SPECIAL

| i | { i { 1
Load Chdir Hew Print Export Save o5 Guit

Figure 7.1. Parts of the functional decomposition of the HIGCLASS projsct

The system is modular, it is built from well-defined modules. Appendix C
includes almost all modules designed for the project. Most modules are
smaller than one page of text. The modules are arrangsd in levels of
shstraction. Information hiding is realized to a high degres within the
boundaries of units as well as single procedures and functions. Content
coupling does not appear, whersas common coupling does because some
variables used by many modules are defined globally. Control coupling
appears for some of the utility modules. Some modules use stamp coupling,
whareas the majority of modules is data coupled. Coincidental cohesion
does not appear. There 18 some logical, temporal, procedural, and
communicational cohesion. Most of the modules though are either
seguentially or functionally cohesive. The majority of medules has medium
fan—in and fan-out. Ut11ity modules though have a very high fan—in, and a
Tow fan-out. Only some of the higher-level control modules have a high
fan-out. The scope of saffect of the modules s Timited to the scope of

control.

Az the softwars 1ife cvcle needed to be chosen, some thought was given to
apossible implemsntation using the object-oriented paradigm. And in fact,
this would have been a fruitful idea only considering the amount of code
written for the user interface with all ils menus, message boxes, estc.
and the implementation of a best-first search in HICLASE. But practi
constraints prevented the use of the object-oriented methodology. Seve
toolboxes were already in place, and the programmer had Tittle practi
experience with an object-oriented language such as C++, or the object~
oriented Teatures of TURBD PASCAL 6.0.

— T

— T — L] — ——

I T .

Referances

ical analvsis
inal report for the
1 University, 1991

Ames. A comprehensive description and crit
of object-oriented software development. F
degree of Master of Systems Analysis. Miami

gy
b
I

23 Ball/Morrey/Pugh. Software gﬁg%neéfing - & programming
approach. Englewood C11ffs NJ: Prentice/Hall, 1887.

(3] Caine/Gordon 1975, PDL - a tool for software design. In:
Freeman/Wasserman, eds. Tutorial on Software Design
Technigues. New York: The Institute of Electrical and Electronics
Engineers, 1980,

T41 Fournier. Practical guide to structured system development and
maintenance. Englewood C1iffs NJ: Yourdon Press égéi‘

[5] a@aéeyasﬁ~8eéﬁersf§§wa;ﬁs= The cbject-oriented svstems
1ife cycle. In: Communications of the ACM, Vol.33, No. 9,
September 1680, pp.142-1590,

iregor. Understanding object-oriented unifying
&raézgm; In: Communications of the ACM, Vol. 33, No.9,
1980, pp.40-80.

7] Mandrioli/Meyer, Advances in object oriented software engineering.
New YG;K: Prentice/Hall, 1982.

i8] Parnas/Clements. A rational design process: how and why to fake it.
In: EEtE Transactions on Software Engineéring, Vol. SE-12, No.2
February 1988, pp.251-2857.

I'g] Pfleeger. Software Engineering. New York: Mac Millan Publishing
Company, 1887.

(101 Ross/Goodencugh/Irvine 1975. Software Engineering: Process,
Principles, ard Goals. In: Freeman/Wasserman, eds. Tutorial on
Software Design Technigues. New York: The Institute of Electrical
and Electronics Enginesrs, 1980.

[11] Stay 1978. HIPO and Integrated Program Design. In:
Freeman/Wasserman, ads. Tutorial on Software Design Technigues. New
York: The Institute of Electrical and Electronics Engineers, 1880.

[12] Stevens/Myers/Constantine 1974. Structured Design. In:
Freeman/Wasserman, eds. ?uﬁ@;% 3 on Software Design Technigues. New
York: The Institute of Electrical and Electronics Engineers, 1880.
[13] Wasserman 1980. Information system methodology. In:

Freeman/Wasserman, eds. Tutorial on Software Design Techniques. New
ork: The Institute of Electrical and Electronics Engineers, 1880.

]
fes]
d

27

Wirth 1971. Program development by stepwise refinement. In:
resman/Wasserman, eds. Tutorial on Software Design Technigues. New
(8]

;.‘
York: The Institute of Electrical and Electronics Enginesrs, 1980,

Yau/Tsai. A survey of software design techniques. In:
IEEE Traﬂ actions on Software Engineering, Vol. SE-1 No.§,
June 19886, pp.713-721

Ziegler, Programming system methodologies. Englewood C1iffs NJ:
Prentice/Hall, 1983,

JE— —

Appendix C

Modules

NOTE:

The HICLASS system was decomposed into two main
programs {(HIEDIT and HICLASS)., Both programs were
further decomposed inte PASCAL units, each
consisting of a number of modules. Additional
utility units provide Tow-Tevel functions used by
the higher-level wmodules. This appendix lists
aimost all modules designed for the system. For
the units, ot the interface and the
implementation parts are shown in the shape of
constant, type, variable and module definitions.
Nested moduls definitions are indicated as such.
If a module definition 1is declared 1in ths
interface definition of a unit, it 1is repeated

only if Lfhere are nested modules within the
particular module. For the utility units, only
the interface definitions are included.

Ry VNN WY WSS EE e —

. L 1

Tahle of contents

unit hiall
program hiedit
unit hiedfile
unit hisddef
unit hiedex
unit hiedspsac

program hiclass

4

[

unit hicifil

@

)

{1

unit hicllos

¢

unit hiclask
unit hiclutil
unit hiclread
unit himenu

unit hispread
unit hieditor
unit LSuti]

unit Lshelpk

Ciy

ke
o

- . _ _ _ -“

o E— —— — N . W . .

unit hiall;

g ey ey o, g o e b, gty o gy ey iy

ok R dRR ok R Rk ok kR R kool ok kol ok ol il olok ok do ko sk dolok sk ok okl doloiolool kool ok ok ok Rk g
] %
¥ Thig unit is part of HIEDRIT,HICLASS {(c} 1982 %
% Program author @ Jens Waze’ #
* Programming environment @ Turbo Pascal §.0 *
* *
kiR ok ok dok ok ok Eokod skodokolok ok ook sokodok ok ok dokdok ok okl ok sololok sk ook ok ok okl ok SR ok dololoiok ok ok
#* Services : Declarations for both systems *
Ed Messages and error messages *
* Initialize help sysisn #
ok Rckokck gk ok dolokod solok ok solokok ok dokok dokadok S0kl ook olok dolo ok ook okoloiok ok ok ok Rk koo F
* fctions Get calling path *
FdpkdkEiksrkpkpdookdok ok sk ok kR ook Rk Rk ook kR kRl ok ok dok Aok ok

interface

uses «rt;isheipk,lsutil;

const

CMrahm = Black + LighiGray*i8, ipull down menu colors:
CHihead = Black + LightGrav®is:
Citext = Black 4+ LightGrayv#1§;
CHhigh = Black + Green%i6,
Chhot = Yellow + LightGray®1i6;
CHhotZ = Yellow + Gresnkif;
Dirahm = Black 4+ LightGrayx18: idizlog boxes colors}
Dinsad = Black + LightGray*%i6;
Ditext = Black + LightGray*®ig;
DInigh = Black + Green®if,
EXhead = Black 4 LightGray%18; {HIEDIT exampie menu colorst
EXheadc = Yeliow + LightGray*i6;
EXnum = Black 4 LightGrayv*i§:
Extext = Lightgray + Blue%if;
Exnigh = Black + HMagenta%is;
Exmove = Black + LightGray#®16;
Valirahm = Black + LightGray*16; J{HIEDIT def menu colors}
Vathead = Black + LightGray%i§;
Valtext = Black + LightGray#16:
Vaihigh = Black + Green®1g;
vatnum = Black + Lightgray*ig;
Yalheado = Black 4 Cvardeif:
Qshad = Magenta; {Golors for guestion & result)}
Qranm = Black 4 LightGray%is;
Ghead = Black + LightGray#i8;
Qtextn = Black + LightGray*16;
Gtexiuy = Black + Gresn%i8;
texts = Yellow + LightGrav®is:
Gmove = Black + Magenta%i§;
anum = Black + Hagenta*if:
Surahm = Yelliow + Black®1§; {Colors for History & Conclude}
Suhead = Yellow + Black¥16;
Sutext = Yellow + Black*16;
Sunum = Yellow + Black¥1g;
Sumove = Yeliow + Black*16,;
errco’l = ¥ellow + Red#¥16; {error coior
hintcol = Yeilow + Gresnkif: {hint color}

gt Sy ol Sl e ol ot gt S e Begul s g

[#¥]

< -

l
[
|
|
l
l
|
,l‘

— P X - L} —]

type

Framaosl
sframeco]
cframeco’

Dackool
taxtool
fibackcol
Fi¥farecol
commcol

Kb_suff =
rot_suff =
file_tag =

Black + LightGray*i6; {big frame coior}

White <+ Blua¥®ig; {gingle frame oolor}

Rad + LightGray®i86,; {control messages top}

Blue; {background of normal text}
Yaliow; inorma’l text}

Lightlray; {background of F1 message]
Black: {foreground of Fi1 message}
Yellow + Black®18; {short screen explanation}
FLHITY {File suffix for table files}
'LHIRY {File suffix for report files}
THIGLASE (c)18827; {file tag for table files}

{Editor settings}

ab=74; {maximal number of text columns}

ah=20; Imaxinal numbsr of text rows)}

2pnii; {text rows per page}

max_hervorz=240; {maximal number of accoentuated sbrings}

{HIEDIT settings}

abs_max_sttr = 13;

main_val

main_sx

main_exlsarn = record

imaximal number of atiribulss per itable}

abs_max _val = 2§; {maximal number of values per attribute}
abs_max_ex = 255 {maximal number of examplies}
attr_pointer = "main_atir;

val pointer = "main_val;

texi_pointer = “main text)

ex_paointer = Tmain_gx;

axigarn pointar = “main_sxlisarn;

tabie_pointer = “main_table;

history_pointer = Tmain nhistory;

global_attr_pointer = "main_global;

control_pointer = “main_control;

restore pointar = "main_restore;

mam pointer = Tmain_num;

main_attr = racord fattribute}

name:string(2];

text:text_pointer;

askfirst:byte; {0=no izaskfirgt 2=no askfirst}
max_val:byte;

values:val _pointer

min_certibyte,

next:attr_pointer

end;
= record ivaiue}
name:stringls];
textistringl74];
textres:text_pointer; {only for vaijuss of RESULTE
cartibyis;
next:val_pointer;
end;
= record {exampial
viarrayil..abs _max_atir+i] of byte;
nextiex_pointer;
and;

{imarned sxanpisl
{3F numeric then Teft interval Timit or unigue}
viarrayll..abs_max_attr+2] of byte;

{if numeric right dinterval Timit or 0; elise O}
viiarrayli..abs_max_attr-1] of byts;
rnextexlisarn pointer;

JE—_

main text =

numeric_tabie

madn_num

main_table

main_history

main_global

main_restore

main_control

record

=

record

anzherv:byte;

text Formatl

text:array[1..eh] of stringleb];
herv:arraylt, .max_hervor,1..5] of byie;

el ;

max:byte;

{supporting table for numeric value handling}

viarravlil,.abs_max_vall of bvte
end;

arrayii..abs_max_atir-1] of numeric_table;

record

name:string{8];
max_atir:integer;

max_gx integer;

Firgt atitriatir_pointer;
First_axex_pointer;
unknown_allowed: boolean;
dont_soptic_ailowsd bonisan;
predefined: booiean;
Favored_strategy:byte;
treshhold byte,
interval.byte;

shortout 'boolean;
strategy_used byte;
prior_certainty byte;
reader:pointer;

no_gues byie;
no_unknown:byie;

num s num_pointer;
numeric:booiean,

end;

r

ecord {session raport}

table_name:string{9];
table guestion:stringigl;
answer gtringl8].
certainty byte;

next: history_pointer;

and

record {1ist of giobaj

attrigstringis];
vatug:istringis];
rumvalibyte;

caribyie;

nextigiobal _atir_pointar

end;

&

record

table _name:string(il,
tabie _guestion stringls];
answer: stringlsl;
next:restore_pointer;
s

#

record {giobal control
iname of tLable}

{sibiings in hierarchy active}
{catltad from attribute]}
{calied from result)

iname of calling table}

{tabie solved compistely}
{prior certainty for tablis}

table _neme stringl(8];
sibi1ings:bociean;
call_atiribocisan:
catl res boolean;
call_table:string[8];
@

{HICLASE tabls Tormat}

{table name}

{number of attributas}
{number of exampies}

{atart of attributes}
Istart of examplies}
funknown allowsed?

fdorn’t apoiicabie aliowed)
{predefined ordsr?}:
{favored loosl strategy}
treshho’ld for uncertainty}
{interval numeric values}
{shortout allowsd?}
{istrategy ussd}

{prior cert. for tablie}
{reader for table}

{number of guestions}
{number of answers UNKNOWRG
{iist of numeric values}
{resuyits numeric}

aittributes and valuss}

Tist of answers For restorel

instance}

P TS N Ny W G WS e —— — e— —_——— ey —

oy i
el
%

Definitions for HIGLASS HIEDIT:

haelp_avail booliean;
cpathistiring:
apath:string;

kb File:teaxt;
kb_filename:string,;
saved: bouiean;
overwrite:boolean;
gave _reqguest booisan;
toad_kbboolean;
guit_total:iboolean;

ipefinitions for HIEDIT}

deietee: booiean;
first_attriattr_pointer;
First_ex:ex_pointer;
First_ex_dist:exiearn_pointer;

First_ex_norm:exisarn_pointer;

max _atir:integer,
max_gx integer;
max_sx_dist!integer;

max _ei_normintegser)

tearn distibociaan;
Tearn_norm:booisan;
unknown_allowed: boolean;
dont_applic_aliovwed: poclean;
predafined. booisan,
‘a;&re@_séfaﬁegy.byte;

trashhold i byie;
interval:byte;

shortout bonlaan;

{Daefinitions for HICLASS}

first_history: history_pointer;
max_historyinteger;
interrupt_session boolean;

{help system availablis}
{caiting path}

{ourrent path of current drive}
{file holding a tablie}

iname of table}

{file succesfully saved}
{overvwrite existing file?}
isave current tablis or report}
{1oad new table or report}
{quit program}

{delete items}
{start of atiribute definitions}
{start of examples}
{start of exampies from

distinction orientad Tsarning}
{gstart of sxamplss from
non~distinction oriented Tearning}
{number of attributes defined}
inumber of examples defined}
{number of rows from

gistinction oriented Tsarning}
{number of rows from
non~distinction oriented Tearning}
{distinction orientied learning?}
non-distinction crisnted lsarning?}
newar unknown allowsad}

wer not applicable allowsed]
dafined ordsr}
ored tocal strategyl

NORE

MATCH

LEFYT TO RIGHT

HEURISTIC:
eshold for uncertainty}
erval size for numeric vaiues}
0..501% O=unigus values}
hortout in control strategyl

L
&

{
{
&
1
{
{
i

oo 1'0 fﬂ

e ooy

25;”?

an
an
2
kil
o
i
Z
]
t
{
i

{
{4
{
{

{start of session report}
{number of history sniries}
{interrupt current session}

First_global_atir:gicbal_attr_pointer; {Tist of giobal attributes}

First_control:control_pointer;
advice_at_all:booliean;

rpt File:text;
rpt_filename:string;
rastorshooisan;
First_restors: restore_pointer;

1

function message(fall byie) ichar;
{~Reads answers io messages)
{~Returns <(CR> or: TR, {(Fall=0y

rocedure errigrror_nribyte)
< g

foontrol tist}

{was advice possibie}

{report file}

{name of report file}

{answers come from report file}
{position in restore}

FoRRRRARRREERERRERAERRIRREREARIERA R TR RS F AR AR R RFF AR F LG AREA AR R B H R R e AR SRR R

YLy (Fali=i)

{~Displiays error message and reads user answer if appiicable}

procedureg indt_help;
{~Initiatize help systen}

3

T e

b i

{$4 18000,150000,200000}
program hiedit;

*
¥ Program author | Jens Wazel

%

oy g s it gy ey o,

uges dos,crt,lsutil,niall himenu,hiintr,hiedfite, hisddef hiedex, hiedspec;

var screen noibyls;

procedurs init;
{initializes gliobal system variables}
bagin

indt:

screen_no:=1;
rapsat
case soreen no of
Tiscresen_no:=7File_socreen;
2isoreen norzdef _scresn
3 8creen_no:sex_screen
4:bagin spec_screen;screen_no!=3;
end
unti? soreen_nos=90;

RestoreConfig;
clirscr
and.

* This program is the main program for HIEDIT

¥ Programming environment @ Turbo Pascal 6.0

{c}

1882

HEFREERREEEREF R RARRRA R E R RS AR A AR AR LR BN AR R AR RE R R AR R R R R R R e R kR e kb kR k%

LK S5 2 2%
gt gt gt St gl St g

sddododok ok doR dodolokoiok ok s R ook ok ok dolokob ok olokdok oo dokolokdoiolok ok ook R ek ok Rk ok ok sk kok B R R

unit hiedfile;

O R R R R R e R e L L L i e et s e R St i L L EL et L
{ * 3
{ % This unit is part of HIEDIT (¢} 1882 E
{ % Program author | Jens VWazel * 3}
{ % Programming snviromment | Turbo Pascal 6.0 % 3}

% E 2
? sEkddkdikkdkeitorkddiokidonkioiok ik ik ok ok ok dokok ko p kol ok ok %
{ * Sarvices ! Load a table 3
i #* Change the current dirsciory E
i % Start a new table * 1
{ % Save a table % 1
{ *® Leave temporarily for DO E
£ o Guit the program * 1
{ sRdbddlbbopkbpikE bbbk E Rk R kR o R Rk R R R R Rk R Rk]
{ % Actions * 3
O R R e el e e e e ey SRR e i EE s ettt i it sttt e Lt

wt
)
o
®
-y
=
W
¥
»

uses cri.dos,isutil,hiall,himenuy,hispread,hisditor. hieddef hisdex hisdspec;
var File_mery active:booisan;

function File _scresn:byte;
{~returns 0 if end of program
1 3F definition attribute screen is next}

{ ERpRRRrERRRdRE R bdask Rk R e R bRk Rk R kb k kb ak bRk kR p kb kb EkeRy

imptementation

var ok,exit_left,exit_right:boolean;
¥9le_screen_pointer: pointer;

function get filenams (mode bytse) byvte;
{-Ask user Tor filsname, used in menu_new and menu_save}
{~Returns 0 if filsnhame

1 if out of memory

z if no filename}

functicn wsi{striistring) bocizsan;
{~write a string Lo the File}

Ffunction save _atir:bocisan
{~save atbributes and valuss}

function save_sx:booiaan;
{~save examples}

fFunction save_exlearni{which: byie) boolean,
i-save Tearnad exampies}

orocedure save tabls;
{-save the current table}

procedure init;
{~initialize file screen}

procedure init _menu;
{-inititize menu on file screaen}

orocedure Menu Fi)
{~provide context-sensitive helip}

——

— — — — —— eI R —— — - . = | o)

procadure menuy_savs !
{~initiate saving the current tablse}

procedure dispose_all;
{~-digpose a1l active menus and spreadsheets in sysien
f~re~initialize global variables}

Nt

procedure menu_dir;
{~initiate Tpading a table from disk}

procedure meny_chdir;
{~changs the current paih}

procedurs meny_new;
{~start a new table}

procedure menu_print;
{~print the contents of a table}

procedurs menu_export;
{~asxport the contsnts of a table)}

procedurs menu_08;
{~temporary exit to DOSY

progedure menu_nuit;
{~initiate quitting the program}

L ___ 4 — L] — p— —— ———— —— g— —— er— - a— — ——

unit hieddef:

ARERFERERFRELREFRE LA RFE AR R SRR A AR BRI R R TR E R A AR R AR R A RA KRR R Rk h kR ke gk

H ¥
{ * This unit is part of HIEDIT {(c) 1882 ¥
{ % Program author @ Jens Vazel *
{ % Programming enviromment @ Turbo Pascal 5.0 %
{ % *
% F gk dddokddd skl bk sk lks Rk skpkolok ok dkok sk kb bk k kg k ko k kb ek kg
{ % Services ! Edit attributes and values *
[% {Add, Change, HMove, Texi, Delsts} E
{ ERRRRRRERRRRRRRE R ORREROE R R R R R R R R kR R R R o R R R R R R Rk
{ % Actions N
{

sk sk ok ok ok oK s ok ok o ok R o o ok ok o o ok ok ok ok ok sk ok ok ok ke ok ok ook sk ok kol ok ok ok ok ok s skok sk sk s ke ok skokok ok skekok ok
interfaces
uses ort.dos,isutil hiall himenu,hispread,hisditor hisdex;

var def_menu_active 'booliean:
def_screen_pointeripointer;

function def_screen.byte;
{ ~-returns 1 if back File scrazen
3 4f §e$1h?g?3ﬁ valiug scrasn i3 next}

abi

pr&ceﬁu?e disposs_ta
i bwt@s and valuesl

=
~digpase all at

k2
&
{ FRkRRRkkRaka iRk ok kRl Rk ok Rk kR Rk Rd R bR R R Rk e kR kR ok Rk kR kb kb %

impiementation

var ok,exit Teft,exit_right.action:booigan;
men pregerve Longint;

pr eé ”a cazw mem

i~ u&é te memory to be presearved for screen}
procedure define head;

{~defing headlings of columns for spreadshest msnul

i

procedure init_menu;
{~initialize spreadsheet}

unction rbi{mode byte var by!integer .var stri:string) boolsan
3@&& a sﬁring and aaﬁvgrt if ﬂecessary tﬂ value}

Function Toad stir: boolean,
{~1oad a1l attributes and valuss}

function Toad_ex:booiean;
{~load sxamplies}

Function Toad_sxiearn(which:byie) booliean;
{~Toad Tearned examplies}

procedurs load_table;
~toad a tablis}

function get_attr_name{var st string;var akf:byte) byte;
{~get attribute name}
{-returns 0 4f no atiribute was defined 1 otherwisel

procedure init _attr,
{~imitiatize atiributel}

Sl St g o) St R ol Sl g ong? B gl

-

procedure add_atir;
{~add an attribute}

procedure change_attr;
{~change the name of an attribute}

procedure move_attr;
{~move an atiribute to another Tocation}

procedure del_attr:
{~dalete an atiribute}

procedure text_atir;
{~text for attribute}

procedure dispose_table;
i~dispose all atiributes and vaiues}

procedurs init;
{=initialize definition screen}

function get _val_name{which_atir byte,var stistring):byte;

{-get the name for a valus}
{=returns 0 if no new valus was defined

procedurs move _val;
{~move a vaiue to another Tocation}

procedure add_val;

{-add & vaiue for an attribuis}
function chack_val:boolsan,
{~chaeck 17 new value 18 ok}

procedure change_vat;
{~changs the name for a valusa}

procedure del_val;
{~dejete a vaiue}

procedurs text_val,;
{~text for value}

unit hiedex:

I T e R R st g st ss
{ % *
{ * This unit is part of HIEDIT {c) 1382 *
{ % Program author : Jens %azeﬁ *
{ % Programming snvironment | Turbo Pascal 6.0 £
[% *
E sk ok kol ok ook kool ok R ok sk ok ook ok ok ok ok okl loioloR ok ook dokokoi ok ok ok ok ok ol R lok ok dokolol ook ok deokdok
{ % Services | Edit exampies *
[% (Add, Change, Replicate., Delete) %
[skEkkRRRRkaRRpbRiE Rk R R ook kR R R R R R R R R kR R R R R kR R R Rk
{ % Actions &
{ EdsddEERERRRRRERR AR R R R R R R R R Rk R R R R R kR R RO R R R R R R
interface

yses ori,dos,sutil, hiatl himanu, hispread;

var sx_#menu active boosisan;
ax_screen _pointsripointsr;

Ffunction ex_screen byie;
{-raturng 2 if back to definition screen
4 iF gpecial screen is next}

unction attr_ussd{which_atir byie) boolean,
Tes& if étt?:bute is usad in examplies}
~rgturns true if used}

.m - *h

function val _used{which_attr,which_valibytse) boolean;
{~Test if value is ussd in exampies}
{~returns true i1f used}

Function num_val_used{which_attr:byie) boviean;
{~Test if numerical value is used in exampliss}
{~returns trus if used}

procedure del_attr_used{which_attr:byte);
i-Delete an attribute in all axamples}

procedure del _val_used{which_attr,which_val:ibyte);
{~Deiste a vaiue in a1l exampies}

procadure reset_val_used{which_atir:byte);
{~Reset all values For an atiribute in 311 examples}

procedure add_attr_ex{which_atir:byte)};
{-add an attribute in a1l sxamplies}

procedure add _val_ex{which_attr,which_val byte};
{~8dd 2 valus in 211 sxamplas}

procedure nove_attr ex{source.dest . byte);
{~Move an attribute in 217 examples}

procedure move_val_sx{which_stir,source,dest byte);
{-HMove a value in 211 sxamples}

procedure dispose_ex;
{-Dispose all examplies}

procedure update sXx|
{~updats sxample menu}

oo St S B ognd Aol S gt oo Sl g Aol

§ sEpdskiibhiik ok ok k ko bbb d ok bk gk kool ok bR R R ok ook b ok kR

implementation

var ok,exit_lefi,exit_right,action boslean;
mem, praserve: Longlnt;

procedurs calc_mam;
{-calculiate memory Lo be pressrved for screeny

procedure define_head;
{~-defing haadlinses of columns for spreadshset menul

procedure dntt_menu{which byts numsber _of _atiributes . byte);
{~initialize spreadsheet for screen}

procedure init;
{-init example screen}

function get_valusi{name:string:sex_va byvie) byis;
{-get a value {numeric input}}

Function select_value{which_ attr:integer var ex_value bylis)} boclean,
~get a value for an atiribute for an examplie}

oy

o

funotion get_weight{which_attribyte;var ax_valus:byte) boolisan;
{~get weight for an exampie}

procedure init_sx;
{~initiatize examplies}

procedure add_sx;
{~add an exampie}

procedure changs_sx{which:byte};
{~change a value for an attribute of an examplie}

procedure replicalte _ax;
{~repiicate an example}

procedurs del_sx(which:ibyte);
{~delete an examplie}

procedure check_exampies;

{~check exampies for consistency}

H

13

unit hiedspec;

I R R e Rt bRt LR Lt et b n s it L
{* # 3
{ ¥ This unit is part of HIEDIT (c) 1882 % 1
{ % Program author : Jens Wazel 3
{ % Programming senvironment : Turbo Pascal 6.0 * 3
{ * * 3
{ Rk EETERRREREF SRk ERE SRR RR SRR R R R R SRR R R AR R R R R R R R R R)
{ % Bervices ! Changs a number of settings for the table * 3
ik Provide learning features * 1
{ FEREERRRRREERRERRRRbRRE R R R R Rk R R R R R R Rk Rk kR R Rk R R Rk Rk R R bR R)
{ * Actions ¥ 3
£ omkkdRRE kR Rk Rk R R Rk R R R R R R R R R ok bR R R kR R
interfacs
uses crt,dos,isutii,hiall,himenu,hispread;
var spec _meny aotive boolasn;

spes menu_poes!intager;
spec_screen_painter:pointer;

procedure Spec_scrasn;
orocedure dispose_ex_dist;

{-Dispose all distinction oriented sxamples}
FE L e e e L e et e R PSR E 2t R s Lt B e a it L Ll L s St L
impiementation
type

group_pointer = “main_group;

main_groun = recoard

viarray[l..abs_max_stir+i] of byts; {group contsnis}
e integer; {# of examples for group}

W

1Y

nextgroup pointer
&)

2r num main num;
mem preserve: Longlint;
rogedura Isarn_distinction-orientead

provadure check _for_rumseric;

{~detect numeric valuss in examples and store unigus ones}

function make_inite:booisan;
{~initialize learning process}

function store_group:boolisan;
{-store a new group}

function check_ex_and_builid _group:booiean;
{~check generated group with examples and butld group i ok}

function make_group{offset byte) booiean;
{~gsnerate groups in a recursive fashion and check with examplies}

procadurs bulld_nsw_sxanmpies)
{-build a2 non-redundant set of distinction oriented examplies}

procedure Took for_max;
{~check which of the remaining groups substitusg the most exampies}

14

— — - _— — —-——] —— —— — — ——— [om—

Function check_in:boolsan;
{-check if succeding group is already included in new sxamplie set}

Function append_sx:booiean;
{~append a nevw example to the distinction oriented exampls seil}

procedurs diSpose _groups;
{~dispose a1l remaining groups in the group set]}

procedure build_interval,
{~build intervals of numeric vaiuas}

procedure shov_ex _dist;
{show distionction~oriented examples}

procedure define _head;
i~define attribute names for spreadsheet}

procedure init _spread;
{-initialize spreadshset}

procedure init;
~initiaiize special screen)
i

orocedure get_Treshhoid;
{~get threshold for uncertainty}

procedure get_interval;
{~get interval range for numeric values}

orocedure get strategy,
{~get Tocal forward strategy to be used}

procedure init_spec_menu;
{~initialize menu on special screen}

0

{84 40000,0,888360}
program hiclass;

sk ke ok o oo ok dedokoiolok sokoloiol skokokok ok dokok ok ok ook dickolioiokiolo ok kool ok R b R iR ik R ek iolok ok kol g

ks

This program is the main program for HICLASS {cy 1882
Brogram author | Jens Waze]
Programming enviromment © Turbo Pascal 8.0

L
gt oot g g g St S

ey gy ey ey ety by oo
B 9 9

T T i IS I e R R e R R R L e R R L P e PR S L
uses cri,des,Tsutii,higll,hicifile,hiclask,hicticad,hiciutil;

var guiga;
begin
kKb_Filename:

rpt_Filename: g
saved: shrug;

while File_screen do begin
first_global_attri=nii;
Firgt _controlionii;
advice_at_all:=falss;
Firgt history:=nil;
max history: =0;
mata (T ROOT kb_fFilenams,10,false . false,. qn))
saved: zfalse
iF {not {go.ang in [0,2881)land{not advice_at_all) then err{25};

and

Regtorabonfig:

cirsor

end.

unit hicifile;

interfacs

uses ori.dos,.lsutil,hial’l himenu. hiseditor,hictiocad;

function file screen:booisan;

{-returns false i quit program, 1 otherwiss}

K

implemantation

var ok,exit,quit :booisan;
File_scresn_pointer pointer;

procegure Init_menu;

{~initialize menu}

g menu_save;
te saving a report fi

cedure menu dir;
nitiate Tvading a root tablie}

procedurs nenu_restors;

{~initiate raestoring a former session}

procedure menu_chdir;
{~change the current path}

procedurs menu_guit)
{~initiate quitting the program}

{

i *

{ % This unit is part of HICLASS {(c) 1882

{ % Program author © Jens Yazel

{ #* Programming snvironment : Turbo Pascal 6.0
%

% *EE

{ % Services : Load a main tabls

{ % Change the current dirsctory

{ % Restore an interrupted session
ik Save a report file

{ # Guit the program

H

{ ¥ Actions

{

HEREERREERRE LR AL R R AR F AR AR ERR R RN EF R AR AR R R R RFRRERRRRR LA B R R R R Rk

W W 9 W

FREFRRRFERRLRE AR E LRI SRR AR KA R TR ERAF R LA F R R R AR R G RR AR B R R R AR h RS

L)

ek ok ok R R sk R kokoR SOk ok ool ok ok B sokoleoakolodololololok kol kol sokob ok i R iokok dokiok ok dolokdoR defoRdodokok

*

FERRFEREREFRRERREA SRR E R R B A RARS RN RS R AR AR R R R AR R R R LR R R R R R R AR R ek A kR

{0 kol Rk R dolololoRokokodoRgok B ol ok ok R doR doliolok ok dokok ok s ook koo ool ok ioloolok okl okl kR

Sl Srnd Ko gt Yot Vgt S i Sad g gl Snged o Bgd gt

t

H

17

unit hiclload;

[FRRsEpRRRsRRkRbRR R R Rk R R RO o bR R R R R Rk R R R R R R
{ * }
{ % This unit is part of HICLASE (o) 1882 % 3
{ % Program author | Jens Wazel * 3
{ % Programming snvirorment @ Turbo Pascal 8.0 * }
{ % * 1
{ FsmepkErdadkpsrikiribipibiik bkl ichnoboi ke ok Bk Rk bRk}
{ % Services ! Load a table %}
i % Save a session report File * 1
{ % Load a sassion report file ® 3
{ EdRakkbkrRRRkE bR R R R R RO O R kR R Rk R R R kR R)
{ % Actions N
§oEsEsRRRRRkER kRO R R R R R R bR R R R R R R R R R e ok)
interface

uees ort,dos, lasutit, niall hieditor;

function load_table{kb_name:string;var table:table pointer) bociean;
{-Load & fable and store in tablis record}
{~Return true if succesful}

procedure save_report;
~Jave a report file}

function l1oad_report:bosliean;
{~Load a report file and store in history}
{~RBeturn true if succesful}
implementation
[FRsmRsddrdkkakiRRs kiRt ok bbb ER R R Rk kbl ok R R R R R Rk kR ok]
var mem _prasarve:lLongint;

function load_table;

function rb{mode:byte;var by:integer var stri:string):boolean;
{~toad a string and convert if necessary to value}
{-returns string (mods=0) or valus {(modez1)}

Ffunction Toad_attr:boolean;
{~1pad a1l attributes and values}

function Toad_ex booisan;
{~1pad examples}

procedure save_report;

procedurs prepare;
{~prepare a string to be storsd in report ¥ile}

Funchion toad_report;

function rb{var stri:string) boolisan;
{~Towad a string}

function load_snt boocliean;
{~load entries of restore fils}

— -_—— —— - —__— R b L A — —— —— ——— — — — — —— —

unit hiclask;

{
{
{ ¥ This unit s part of HICLASS {(c) 1882

{ ¥ Program author : Jens Wazel

{ % Programming snvironment | Turbo Pascal 8.0
I %

{
{ % Barvices ! Parforas lecal control stratsgies
{
{
1

% Actions

interface
uses ori,dos,isutil,hiall hiciread,hiclload, hiciutii;

procedure metaicsli_name,thame string cert byie;call bonisan;gib
var gb:g.a);
~Toad new table with tname}
~provide results of table}
{~with prior certainty cert}
-i¥ cali then called from result elsse called from attribulel
ams of calling table: cali_nans}
f there are active siblings in the hierarchy then sibs=true}
ng = 0 if user wants to guit
1..28 numbaer of answers
a8 Unknown (no answer)
g8 Mot applicable
255 if memory problem
numeric = true if answers are numeric
val = strings for answer values
B T numeric answars
cer = certainty for answer}

e T

MMM’P‘%M«MMW)W~

w
ol

implismentation

3

type stringd = stringl8l;

procedure ask_user{table table_pointer;guestion:byte ;var ga g a);
{~ask a qguestion from fable and provide answer valuss}

{~or dinvoke other table to answer}

{~or take answer from gliobal Tist}

procedure Toad_texts:
{~1oad guestion and answer texts}

procedure user _choice;
{~give selection To user and process answer}

procedure update_global;
{~add answer to global Tist}

procedurs add_history;
{~add to history}

procedure process_called_table;
~procass input from table oalled}

[o %

procadure check_restore;
~take answer from restore iist}

v 13

~apply metarules and user’s choice to decide about control strategy)

s skl ok ok kb R ookoR R ok ook ok ok ook gk ok doRololoRo ok o okl ok ek ok ko ok sk ok sk siolololoidolo ok doloioliok

W W W W

Bl g g o Sy St Sl gt g g S

s ok ik sk sk olokolok ok okl b ok sk R iR sekodoksioR kol okl dol ok R ok R R R dkor ook ol lok sk ik dolok deokokoolol o

E

e e sk ok ok kil odolok dok ok doioloiololok dokok ool Rk kool B ol ek ok kol dokokdoksk ok ok ol kR R ok ke ok

ES

Fedgok gk ok gk Rk R Rk Rk PRk R R Rk kR kR Rk ol lok ok R g Rk dollolok ok R kb kR dkdokkok

£ ok kR ok ko ARk sk s ook ookl sk sk kol ok R ook sdok olok ok doloiok olotolol doloioloR ok iR ok doiolok

1

i

procedure lefi_right(table:table_pointsr var ga:1q_ &}
{~perforns lTocal strategy LEFT-TO-RIGHT}

{ans = O if user wants to guit
1..28 number of answers
g8 Unknown {no answar)
89 Mot applicablie

ZE8 if memory probiem
numeric = true if answers are numeric
val = sirings for answer valuss
rum T numeric answers
cer = ggriainty for answer}

procedure match{tabls: table_pointsr var ga:q. a};
{~performs jTocal strategy MATCH}

fans = 0 if user wants to guit
1..28 number of answers
a3 Unknown (no answer)

9% Mot appiicable
285 if memory probiem
numeric = true if answers are numeric
val = strings for answer valuss
num = numeric answers
cer = ceriainty for answer}

nrocedure heuristic(table:table_pointer var gaiq_ a);
{~performs local strategy HEURISTIC)

fans = O if user wants to guit
1..28 nunmber of answers
a8 Unknown {no answer;
e Hot appiicabls

288 if memory probiem
numeric = trug if answers ars numeric
val = strings for answer values
aum T numeric answers
cer = certainty for answer}

Ffunction find_best.byte;

{-Find best question}

{~returns number of guestion]}

{-0 3f no more guestion can be selscted}

procedure meta;

Function add_control:boolisan;
{~adds & new control field}

function update_controliboclean;
{-update controi fields}

procedure init_control (which:byte)
i-inits a nsw callad table}

procedurs call_tables;
{~invokes new tables from Teft to right}

Mo

unit hiclutil;

§okExgElrkEbprR bR R SRR kR kR kR ok R R R R R R R R R R R R
i k3
[* This unit s part of HICLASS (o) 1882 #
{ % Program author @ Jens Wazel *
{ % Programming environment @ Turbo Pascal 8.0 *
{=* ¥
{odRRFERRRRRRRRR R kR bRk R
{ % Services : Support lecal control straisgies &
{ skddbkdpbbilik ik ponk kbR kR R s kR R R R ok R R R R Rk R R R R RS Rk
{ % Actions *
[RRksdRkR Rk kR R kR R R R R R R R O R R R R R R R R R R R R Rk Rk Rk R

interface
uses ori,dos,isutil,kiall hiciread, hictioad,;

type g_a = record
ans byte:
numeric:booiean;
val:arrayli..abs_max_vall of stringl?];
numarrayll..abs_max_val] of byte;
cararraylt. .abs_max_val]l of byis;

{hotlds answers to a question after ask _user or ask_tabls}

{ans = O if user wants to quit
1..26 numbsr of answers
98 Unknown {(na answer)
83 Not applicable

2558 if memory problem
numeric = true i¥ answers are numsric

val = sirings for answsr valussg
mim = numeric answers
ey = certainty for answer}

{multiple answers for interface contrpl strategy - reduce table}
mansizarrayil. .abs max_attr¥28] of string(8]; {answer valus}
mansfzarray[l..abs_max_attr¥26] of byte; {numeric answer}
mansdzerrayil. . abs_max atir¥28] of byte; {gusstion’

procedurs dispose _garbags (tabie:table_pointer);
{~digpose 811 of the table content}

procedure show_results{table:table_pointer,var ga:g aj;
{ans = 0 if wuser wants to guit
1..28 number of rasults
a8 Unknown (no result)
88 Mot applicablie
Z55 if memory probiem

numeric = trus i answers ars numeric
val = strings for result valiuss

num = numeric results

cer = certainty for resulits}

procedure check_for _numeric(table:table_pointer);
{~detects numeric values for attribute}
{~and stores them in ascending order for later use}

function update_history{table table_pointer;
phiattr_pointer ans byis numer:boolean;val:string nu,.cer:byie) boolean;
{~adds new information to the history}

procedure show history;
{~zhows the complete history of the current session}

St S T g By g gl S R g

procedure check_global(table:tabls_pointer;prattr_pointer var cgig a);
{~sesarch for answer to a guestion in global list}
{~raturnsg g a with ans=254 ¥ not found}

function add_global(attr,valus:string:numval,cert:byte) bovlean;
{~adds the valus for a global attribute to the global Tist}
{~returns false if memory problem, true otherwise}

function check _unique_vaiues{tabis:table_pointer question:byte) boolisan:
{~check if there is only a unique value Teft for current guestion}

Function check _unigue_result{table:table_pointer):boolean,
{~chack if there isg a unique result left}

Ffunction check_table_soived(tablse table_pointer) : booliean;
{==check if only one result with one weight {(if shortocut) left}

procedure delete_nonvalid_valuss{table:tablis_pointer);
{~Delsetes values not valid anymore}
{~Update exampies accordingliy}

Function reducs _table(table:table_pointer max,question:byte;numsr booiean,
valus manst numval inans? gues mansd) [boolsan;

{--reduce the table according to the result of a guestion}

{~~return true if table is solved, falise otherwise}
en{table:table_pointer);

procedurs init_scre
z he soraent

{~Initialize

o
e
t
procedure disposs Tists;

{~Dispose a1l control lists}
implementation

{ FRkEdRbRRoRRR R oo Rk ko R R R Rk R sk ook Rk ke R R kR ok R R bRk dok ok R R kR ok Rk

procedure conclude(tabls:table_pointer);
{~concludes other values of the resulis}

procedure find_ex;
{-Ffind oorresponding sxample of original tablie}

procedure add_val;
{-add values of atitribuiss}

procedure add_result;
{~add resuii}

procedure shovw_results;

procedure update_num;
{~Update numeric fields for result}

procedure make_certainty(table:table_pointer);

{~Make certainty calculation for resuits}

Function minitbyts;
{~Find mininum certainty for example valuas}

procedurs reduce_resuit
{~reduce rasult ssi fo

procedurs update_re
ry For

5

{~update histo

function check text
{-check 1F result texits should bs givan}

22

procedurs check_and_replace _dollar{var st:etring;hhji,pos:byte);
{~adds cartainty values to the next if necessary}

procedure add_result _texttl;
{~add result texis to readsr not numeric}
procedure add_resuit_textl;

{~add result texts to reader numsric}

procedure buiid result;
{~build result set}

procedure delete_nonvalid values;
funcltion check_sx{question,value:byte} booliean:
{~chack if value is 3ti711 wvalid in sxamples}
{~raturng Ttrus if value i3 stil1l 9n uss}
Function reduce tablie;
procedure reduce_table_numeric;

{~butid value ranges for numeric values in examples}
{-delete sxampies with a rangs not appropriats for answer}

unit hiciread;

B R P VA

ook ek g ok dokok ok ok ook koo b dokock sokolok doioloiolobiok R ok ok kR R ok Rk kdookk ke odok dob ok dok dokdok g

* %
* This wunit is part of HICLASS {(c) 1982 B
Program author @ Jens Wazel ¥
% Programming snvironment @ Turbo Pascal §.0 *
* %
agddpiokpdkdkkkekddihkkkkk kb kd e ddikkddadkkdk ik adikdok ki kkkkkkrdkkh bk kg
Sarvices | Install new reader E
* Dispiay reader *
* Remave resader #
sk doR Rk R R ok R kol ook ok ook dor ol kb ok R ok kolok Sk Rk ok dok ok ok ok ok ks R R ok ok R
¥ Actions *

Aok R AioR ok ookl ok kol g ok ook ok sokok A ok b ok doiol solo dok Solekok Bkl ookl ol ok ok ok sk ok ok ok

interface

uses ort,lsutil;

type exitread = {rno,resc,ror,rF1,rF2,rF3,rF4,rFE,rFE,rF7,rFB,rFe ,rFi10)

fways to exit menu selection}

var readexiltiaxitread; {way of exit readsr}
readpos: intaeger) {selected pogition in reader}
readval:byte; {numeric valus returnsd}
function install_read
{var name:pointer; {Identifier returned}
xpos:byte; {Upper Teflt corner}
ypos i byte)
rovibyie imaxima’l number of rows on scrsend
width:b te; {width of rows}
neadline: string {Title for reader}
Jibooiean; {Returns true if successful}

{~ATlocate and initialize, but do not display, a new reader}

procedure install_read_oco?

{name pointer;

pack byte; {Color of shadow}
frame:byte; {Caior of Frame}

ntext :byie; {Color of normal text rows}
text ibyte; {Cotor of unseiected row}
highlight:byte; {Golor of selected row}
pa.byte; {Color of Pglp. ..}

numbcol i byte, {Coior of numbsring}

nead byie): {Color of headline}

{~Dafine the colors for a menul

procedure add_rov_read(name.pointer;rtext :stringreelsct,rrow; integer);

{=&dd a row to readesr identified by name at row rrow}
{-3if reelsctz=? then row 18 selectable, slse reelsct=0}
{~if rselsct=2 then numeric valus is neaded}

{~if rrows0 then append row}

procedurs delete_read from screen(names:.pointer);

{~Dispose heap space for window}

procedure delete_read_from_memory{(name:pointer);

{-Digpose a1l of reader heap spacs}

procedure reset_reader(nams:pointer);
{~Deactivate reader, erase rows, leave reader on screen}

Ko Aoyl s gt Sl K gt Baged Songd Bl B S gt

Function showrasd
(nama:pointar
shadowed: bonlean;
detafiershow boolsan
y:iboolean;

{~-Digpiay rsader, let

{true if a shadow s wishead}
{trug if reader should be erased after sslection}
{Return frue if succesful}

user browse it if provided, return readpos and way of exity

25

unit himenu;

uses cori.lsutil,hiintr;

type exitmenu = {(no,esc,cr,F1,F2,F2,F4,F5,F6,F7 ,FB,F8,F10,%efL right},

{ways to exit menu selsction}

var menuexit:exitmenu,
menupas byte;

Function instal’l_menu
{var name:pointer;
xpos i byts)
ypos:byte;
row:byta;
colibyte;
width:byte;
dyna:booiean;

headiinestring;
hxpos i byte;
hypos:byte;
hiength:byte

cbhoosiean;
Tocate and initialize,

procedure install _menu_col
{nama . nointer;
pack byis)
frame byte;
textibyis;
highlight:byte;
pyibyte;
head byte;
hooloribyte:
hotecoloribyte:

hotoniorZ byte)

¥
{~Befine the colors for a menu}

procedure add_iten {(name!pointer nitem,helpitem i siring;positionibyte};

-

{way of exdit menu}

{seliected position in menu}

{Identifier raturned}
{Upper Teft carner}

{number of itsems per columnd

{number of columns}
fwidth of items}

{dynamic reduction of row according

to # of items allowsd}
{Title for Manu}l

{&tart position for help to

{ swdkkkiidiiiddibdkdsdiddd ik ek drh kbbb tak itk ki apd
{# ®
{ % This unit is part of HBICLASS, HIEDIT {(cj 18%2 ¥
{ % Program author | Jens Wazel *
{ % Programming environment | Turbo Pascal 6.0 *
i ¥ *
% R s e e e e s s e R SR E S S L LS 2]
{ % Services ! Install new pull down menus *
§ % Display pull down menus ®
{ % Change content of pull down menus *
{ * Remove pull down menus *
{ % Scresn saver routines #
{ FFFFERFFRRRRRRRRRE R R R AR AR R R R R R R R R ek R b RO R R Rk R R
{ ®% Actions : Disable screen savar *
§OEERRERRERERRRER AR SRR SRR I IR HERRRRERFRER R ERR BRI O R R R R RERRE R RES

g o o g gl Yool o B g Vi g o S ol g

{maximal length of background for help to item

hiength=0 ~> no helpitems at all
{Returns trus if successful}
but do not display, a new pulldown menul

{Color of shadow}

{Coior of Frams}

{Color of unseiected item}
{Colior of selscted itewm}
{Calor of Pglp...}

{Golor of headiine}

{Color of helip to item}
{Color of hotkey unseliected}
{Cotor of hotkaey seiscted}

{~hdd an item and help to menu fdentified by name at position}
{~Hotkeys will be identified by a heading
{~1f pogition=0 then add at end}

orocedure move Sitem{name pointer;source . dest ibyvis);

item(name:pointer position:ibyte
tem Trom position pos, retu

Hove an item from position source to dest within the menu}

YU (ALY +248)}

St

26

)
)

procedure change_item(name: pointer nitem,he’ipitem:stiring;positionibyte);
{~Charge the content of an item}

procedure resel_menu{name:pointer reset_pos:bosiean);
{~-Dmactivate menu, erase items, Teave genu on soraend
~iF reset_pos then set positions] else Teave old position alone}
- H

i

procedure reset_headline(name:pointer headlinestring};
{~Enter new headiine for menu, used in conjunction with reset _menu}
f-Order: reset_menhuy -> reset_headline - showmsnu}

procedure delete_menu_from _screen{name:'pointer),
{~Dispose heap space for window}

procedure delets_menu from _menory(name.pointer)
{~Dispose all of menu heap space}

Funchion showmenu
{name.pointer;

shadowed bonlean: {true 17 a shadow is wished}
dgatafitershow: boolean {true ¥ menu should be erasad afier selsction}
ihoolean: fRgturn trus 17 succesful}

3
i-Displiay menu system, Tet user browse 1T, return menupos and way of exit}

procedure resst_screen saver)
{~8tart screen saver waiting time}

procedure set_scraen saver time{Iime:integer);
i~Zet time scresn saver waits (in ssconds)}

onoff byiel
rean Saverd

4§
T ey

screen saver and performance}

unit hispread;

BERFEEEERERRE LR R AL AR B R RRE R RE R AR R RRHF R AR R AR R REF PR AP AR IR AR R R AR AR b kR bk

% Actions
$$%$$$%*%i%%%%**%$$*$$%*ﬁ$$$3%$$$$*$$$$$$$$$$*$$$$**$$$*$*$$**$*$$*¥***$$%

{ }
i % ¥ 3
{ % This unit is part of HIEDIT {(c) 1882 %}
{ % Program author @ Jens Wazel % 1
I % Programming environment @ Turbo Pasca’l 6.0 % }
i % ¥ %
I okkkkgrRrdkdrasikpiki kbR Rk koo ik sk ok d %
{ % Services : Install new spreadshset menu E 2
i * Disnlay spreadshesl psny * %
i % Change content of spreadsheet menu % 3
{ % Remove spreadsheet menu ¥}
{ *xw@x%%ﬁ*ﬁ%$*#s$%k*sg*#*%***%*ﬁ*$$$*%$*$$$*$$*#**#**&gx*x%$****$x**x*$$**$ 3
! }
{ H

intarface
uses cori, lsutil;

type exitspread = (sno,sesc,scr,sFl.sfZ.s FZ,uF4,8F8,5F6 ,8F7 ,sF8,8F8,eF10)
{ways to exit menu selection}

var spreadexitiexitspread; {way of exit menyl
spresdopes,
spreadrpos:byte; {selacted position in menu}

Ffunction install_spread

{var name pointer; {ldentifier returned}
Xposibyte; {Upper Teft corner}
yposibyte;
row: byte; {maximal number of rows on screen}
colibyte; {maximal number of columns on screaen;
width:byte; {widih of dtems}
headiine string; {Title for Menu}
nrpos i byie; {8tart position for help to ocolumnl
hvpos byte
hiength:byte {maximal length of background for help to column
hlength=0 -> no helpitems &t all}
) :boolean; {Returns true if successful}
i~AT1locate and initialize, but do hot display, a new pulldown menu]
procedure install_spread_ool
{(name pointer
back:byte; {Color of shadow}
Frame byis: [Color of Frams}
text:byis; iColor of unselected item}?
righlight ibyte; {Cotor of selected item}
pgibyte; {Color of Pglp. ..}
headibyie) {Cotaor of neadline}
noolor i byte, {Color of help Lo jtem}
headon byte; {Cotor of column headings unselected}
“egé%égﬁ‘agﬁ:* {Color of column headings selected}
numbool byte {Color for numbered option}
cz,@ﬁ? ﬁ;?w;, Coloer for clirscr {(not fulli}
{~Defing the colors for a menul
procedure add_column_headline_spread{rame pointer headl heipitem string;positionibyte);
i-add a2 hsadline and a help for a column}

{~Change the conitent of a column headline}

procedure change_column_headline(name pointer headi helipitemistring;position:byte;;

spread{(name pointer;rrowibhyte)
dentified by name at row rrovl
I

{
3
ppend row}

procedure delete rov_spread{name pointer) drow byt
{~Delete row drow in menu identified by mame}

procedure add_item_spread {(name:pointer;nitem:string ncol,nrowibyte);
{-Add an item to menu identifisd by name at column nocol and row nrow}
{~4f nocel=0 then append item in row}

procedure changs_item_spread{name:pointer;nitem:string;choo’l,chrow byte)
{~Changs the content of an item}

Ffunction delete itenm_sprezdiname:pointer;doo’l,drow byle) byte;
{~-Delete an item fFrom position dool,drow; return & of items

-

feft in rovw}

procedure move_item_spread{name:pointer;scol,srow deol drowibyte)
{=-Hove an ttem from position scol,srow Lo deol.drow within the menu}

procadure delete_spread from_scressn{name pointer);
{~Dispose heap space for window}

procedure delete_spraad _from_memory{name:pointer);
{~Dizpese 817 of menu heap space’

procedure reset_spread{name:pointer;reset _pos boolean);
i= ﬁ&avtav& menu, erase itens, 18ave @meny on scraend
{~if reset @@3 then set position to first row,column}
{~é§ae Teave old position alone}

procedure dnc rovw_spread{name pointer)
{~inc current row 17 possibie}
{~provided an addition took place}

ad{name pointer)
if possible}

procediinr snre

{~ine current ool

.,m;z,gciusw dec_ ool _spread(name. pointer);
~dec current col if possibiel

procedure reset ool spresdiname:pointer),
{~sat current col to 1}

procedure reset_row_spread(name:pointer);
f-sat current row to 1}

dec_rov spread(name;pointer);
o current row if possibie}
provided a deletion took place}

procedure reset_headline_spread{name:pointer;headlineistring);
{~Enter new headline for menu, used in conjunction with reset_spread}
{-Order: rsset_spread -~> reset_headline_spread ~» showspread}

procedure cliear_the_screen(name: pointer
{~in case of fullzfalse, a clirscr 3

Function showspraad
{name :pointer:

Fuld hoolean; {truge if frame/lines stc. should be shown}

Justshow boolean, {true if mehu should be shown w/0 selection}

rnumbsred: boolsan {true 37 rows should be numbsred}

ghadowed boolaan {true if a shadow is wishad}

ﬂm?&‘?urshvv noolean {true if menu should be erased afier ssisction}
bosisan {Return tr i succesfull

{-Display menu systen, lel user browse it, return menupos and way of exit}

25

unit hieditor:

{oEsgEaseERRER R OR Rk R R R R R Rk o R R R R R R R R R]
{* * 3
{ % This unit is part of HICLASS,HIEDIT (g} 1882 %
{ # Program author | Jens Wazed * 1
[% Programming environment @ Turbo Pascal §.0 ¥ 3
{* M
£k R ERREEEER R RO RN R R R R R R R R R R R RO R R R R O R R R R R R]
{ % Services : Edit a text ¥}
{ % Display directory menu #* 3}
[* File handling for text ® 3
I RFEER R RRR AR R AR RO RE R R AR R R R R R R R R R R R R R R R R AR R R R R R AR)
{ % Actions ¥}
{ kR ERREERER AR R AR R R R AR R}

interface

usas dos,ort,printse,lsutil, ishelpk, himenu, hiall,

function editi{table_st
is

”» attribute_str,vaiue_stristring;var htextimain_text):boclean;
{~~Edit htext and di E

ri
ay table_str and attribute_str and value_sir at the top}

function topdir_menu(modus,xl,yi,rows,colu,backeol framecol textool highool byte;
suffistring; var dir_string,dir_of_file:string) byte;
{~-Display directory with rows rows and colu ocolumns with colors *col

at xi1,y1, let user browse through and select filename dir_string

with suffix suff in path dir_of_file, modus: i=vwide Zznormal

returns

01 3F succesful

if there is not enhough memory
20 4 there is a disk srror}

-y

procedure init_text{var te:main_text);
{~~initiatlize text}

Function save_text (te:main_text,var Fi:text) booiean;
. S - 7 7 B
{~~append te to fi}
Function load_text{var te:imain_text: var fi:iexi):bonlissn;
o v ¥ i
{~~Toad te from Fi}

untit LSutil;

{ FwdckikiRERk s R RRR Rk R R R R R kR R kR R kR R R R R R Rk R R R R ok R Rk]
{ ¥ %3
{ * Program author : Jens Wazel ER
{ ¥ Programming enviromment @ Turbo Pascal §.0 * 3
i % E
; %$*$*%$$$*$$$**%&*s$$$$$*$&$*$$$*$@%*#%*s*%*%z$$$$$3%*%***$$$**$%%%$**$$%§ %
{ ¥ Services : A1l Kinds of useful routines * }
{ *%*ﬁ$$#$#*%*&*ﬁx*$*£3$#$*$*%ﬁ*%x*x*&#%xx**xz*****#gx****x$$gg$;%%i%*x***z% 3
{ % Actions : Detect pressent graphic card mode (grafik/mono} * 3
{ # Detect memory Jocation of text screen % 3
i % Zave configuration glemenis * 3
{ dRRkkRbR o R kR R R R R R R R R R R R R R R R Rk ok Rk kR

interfacs

type Buffir = "Bufferfirray;
gufferirray = arrayll. . MaxInt) of byte; {for SavsWindow}
display card = {(mono,grafik);
color mods = {farbe.svw)
gdirptr = "HHrRec;
dirres = precord

Attr: Byte;

Time: Longint;
Zize: Longintg
Mame: stringli12];

end;

diriist = array[0..MaxDir8ize~1] of DirPir,

var present_card:display_card; {FPragent display card}
start_of _buffer:longint; iStart adress of display pagse}
video_mode:color_mode; [Present color mode}
copt,copZistring;
ins_mode boolean; {true 3F INSERY 3s active}
DispMode:byte; {Frazent video mode}

procedure RestorsConfig;
{~Restore display mode, window, TextlAtir, Cursor which are automatically saved}

fFunohion SaveWindow{xl, v¥1, %2, ¥2 @ Byie: Allccats | Boolean;
var Pscrstore ! pOz@a&?} 1 Boolean;
{~Save the specifisd window in and allocate buffer space if requested}

rocedure RestoreWindow{xl, v1, %2, vZ2 Byis
yie;
Deallocats | Boolean: var Pscrstors | Pointer),
{~Restore specifisd window and deallocate buffer space i regquested}

procedure print{wort:string;e,ribyte;whzah’integer ;attribut:ibyte);
{~-Print a string at e,r whzahl times with color atiribut}

procedure rahmen{x1,x2,vy1,¥2, 1 ine farbe,fhead byle headling string};
{-Draw a frame around the window spec ed by x1,y1,%22,y2 with
Tine type in color farbe and printe a headline in color fhead}

Ffunction ropistring,
procedure Cooo)

procadure read ou msode)
{~Read the pr nt coler_mode and save 1t in oy tines}

procedure ou

f
i
Urn Curse

or off {(controi=0)}

procedure SaveWindowlursor{var pipointer};
i=-%ave present window, curscor coordinates, cursor status and textatiribuis}

procedure RestoreWindowCursor{var s:gaz&%ev,'
~Ragtore window, cursor coordinates, cursor status annd textatiribute}

Function 1

te_name_string{Filenam string) bonlsan,;
{-returns ir

e
us if Filenanm could be a Filenamel

Function printer ol boclisan;
f-raturns true iF printer is ready for working}

procadure sound message;
{~Make a special sound}

ring:1,textool ibyte)
as? with maximal 1 characters from the keyboard}

procedure reads{var s:!st
{~Read a2 string in Lext

a kevsetroke and do not affect any kKeyboard dinput in the background:

Function os_shellibyis;
{~Call os_shell and raturn

G AF call was sucoesful

1 iF COMMAND . COM is not present

Z: AF there is not enough memoryl
function topchdir{xi,yi . framecol, col,tedtooihibyte) ibool

ean
{~Display a message and changs into E?dd directory if possi
pr%ﬂt Frame at x1,yt with framecol, normal text with textc
intensive text with textooth, returns trus 37 succssfull

ble
o1 and

Ffunction topdir{xl,y1,framecot,textenl byte) byte;
{~Display directory with framecol and textcol at xi,y1, returns
3. if succesful
10 if there is not encugh memory
2: if there is a disk error}

function textarcundocursor{(max_len,xg,yg:byte) string,;
{~Returns the string around position xg,yg with maximal lTengith max len}

Function ggi_g;;?4ﬁg path(hiifstristring) string;
{~Returns the calling path of the pr

unit LShelpk:

oy iy gy gy ey pohey gy e gy ey g

A FREEFFFRIRFREEFEARE AR AR AR R AR IR R R R AR RS AR AR R R R R R R LR R AR AR R AR AR K%

* *
% Program author @ Jens Wazel Ed
% Programming environment ! Turbo Pascal 6.0 %
s *
PP T E e Pt T Py e e R e e a T L T
* Sarvicaes | Provide a context sensitive help systen %
* (help Files created with HELPEK (¢} 1981 by Jens Vazel) *
T e e R e e e et
Actions . Detect present graphic card mode {(grafil/mono)

e kok ok dokoR ok okl dod ol ok ok kool ok sk dokoloioloololok dob ok R R R ook Rk R oo Rk R Rk R R okl ok R

interfacs

uses dos,ori,l8menu,lSutil;

songt absmaxhelp=i20; {maximal numbar of halips in 3 sysien}
max File=§; {maximal number of help _files in a syslienm}
xa=16; {Goordinates}
yaz=8; {of nelp window}
%xb=65;
yh=Z22Z;

=xXD~xa+T1 {maximal number of texit columns}

eh=yb~ya+i; {maximal number of text rous}
max hervorzzi; imaximal number of accentuated strings}
max_guersg; imaximal numbsr of cross connsctions}
EEE {maximal number of pages par help}

typs name stiring = stringli0]
1

var coltothalp colors:

halp_colors = array(1..12] of byte,

controi_main = record {Control table for help system}
name: hame_string;
seek: integer;

end;
dispiay_card = {(mono,grafik);
color_mode = {farbe,sw),

{Cotors for dispiay help}
guernum:bytse; iChoosed cross connection
{mode guaron=falise) }
help oorarrayll. . max_file,1. . abenaxhe’lp] of control _main
{Control table of system}

endcol byte; {cotor of ands request}
ievel.byte; {level of difficulity}
sdslay word; fdeiay in show_nods}

{Present display card}
{Present color mode}

present_card:display_card,;
vidaeo _mode:color_mode;

function detect_and init

{(hfilte:string; {Filename of heipfile}
status:siring; {Status J1ine}

stx,sty:byte {Position of status line}
y:boolean; IReturns true 1f successfull

{~Look for halipfile and initiatize help system}

T Rt R Tt gl Bogst ol gt S S gt

[N}

Funotion hilfe
{kenmung name_string;
asavebaforsa boolean;
cirpefore boolean;
shadowed: boolean
drawheipscreen:booisan;
show_dslay booiean;
showsignal boolean;
gugran: booiean
startpags byte
FPogexitibooliean;

procedure set_helip_colors;

{Hame of helip}

{true if save Tast screan}

ftrue iF olrecr before displiay help}

{true for drawing a shadow}

{true for cirscr and draving a frame}

itrue if shov_mode with delaye is active}

ftrus ¥ Pglp/Pgdn information should be given

itrue if cross connsction work is gl lowed?

{figure of first shoun pags, last page=8}

{true if exit at last page is allowed with Pg
and exit at First pages is allowed with Pglp}

e T

P

total_ende_request_at_esc!boolean {true if Tthis request should be dons
yibvie; {~Digpiay help and returns

0 if Successtul

z if user escapsd with Pglp

3 4F user escaped with Fgln

4 if Disk grror

E 4F Help is not availabis

G i Heap Overfliow

7..14 if user escaped with ESC

{page number:= ~ 6} }

~Sgts all colors of the help-scresn [(basic sstiings)}

The HIEDIT/HICLASS package provides the means to build an Expert System
for any problem which can be solved using hierarchical classification.

Copyright
*x (c) Copyright 1992 Jens Wazel
x 331 Oxford College Hall Oxford, OH 45056 (513) 529-6522

x E-mail: JWAZEL@MIAMIU

Program type
¥ HIEDIT : Expert System Editor.
* HICLASS : Expert System Shell.
Hierarchical Classification for any problem type.

Written in

x TURBO PASCAL 6.0 (16.000 lines).

Programming language

* Not required to use HIEDIT and HICLASS.

User interface

¥ Pyll-down menus, spreadsheets.

¥ Full screen editor.

%x Context-sensitive help system (over 100 help screens).

Knowledge representation

¥ Tables in a hierarchy.

x Several descriptions for one concept.

x Several concepts combined in one table.

* Concepts described by attributes with values.
*x Certainty values (weights) for each concept.

Size of one table

x Up to 12 attributes, 26 values per attribute.
¥ Up to 255 concept descriptions.

Size of hierarchy

* Almost unlimited.
x Tables only invoked when needed.
¥ Minimal amount of information kept in main memory.

Data types

x Logical and numeric (interval-based).

Global attributes

¥ Attributes can be defined globally.

Don’t care

% Concept descriptions can include "Don’t care” values.

Questions

¥ Are asked to acquire data using customized text screens.

Answers

¥ Can be entered by the user (multiple choice, numeric).
¥ Can be provided by a subtree of tables.

"UNKNOWN", "NOT APPLICABLE"

x Two special answer options.

Global control strategy
x Depth-first, several paths.
* Tables can be used several times in the hierarchy.

tocal control strategies

x Goal: minimum amount of questions asked.

¥ Chosen by user or automatically.

¥ MATCH: ask all guestions and compare to table content (database search).
LEFT-TO-RIGHT: ask questions left to right, reduce table content.
HEURISTIC: heuristic decides which guestions to ask, reduce table content.

Uncertainty handiing

* Based on certainty and fuzzy set theory.
x Derived from weights of concepts and amount of answers UNKNOWN,

* Certainty values combined for paths.
x Thresholds for path termination.

Session report

*x Session report file built automatically on disk.
x Interrupted session can be resumed.

History

¥ A1l questions, answers, and conclusions of current session.

Conclude

¥ A11 values for results.

Inductive learning

¥ Inductive learning algorithm for creating a distinction-oriented
knowledge representation used by hierarchical hypothesis matcher
HIHYPO (c) 1992 Jens Wazel.

Example

¥ ’%_ HIT’ on your program disk; root table: *EXAMPLE1’.
¥ Have a look at the table definitions with HIEDIT.
x Load *EXAMPLE1’ into HICLASS and classify animals.

More information
% Access the help system.
x Write, call, or send an E-mail to Jens Wazel.

J@wg " Flesis

Revision as of 1/26/93

1. Rethinking the evalustion of answers UNKNOWN

in section 3.10. it was explained why it 18 necessary Lo
incorporat the information about answers UNKNOWN into the
certainty of the result{s) of a table. The approach developed there
was to count the number of anawers UNKNOWN for a particular table,
and to weaken each result by the ratio

T questions - Z UNKNOWN

ek

t.

ek

while multinlying this ratio with the certainty of each resu
This approach of incorporating the amount of answers UNKNOWN is
justified, if t table has more than one result. If, on the other
hand, the result set of the table only consists of one result, then
the certainty of this result should NOT be weakened. This is due to
the Timited world view applied for each table. Lel us consider an
example:

type size Tocation creature waight
cetacsaa 25 ft at sesa whals 1.0
cetacea 6 ft near coast porpoise 1.0
cetaces & ft at sasa doiphin 1.0
fish 1 ft. n.pacific salimon 1.0
fish 8 ft at sea shark 1.0

I the answers of the user are

LUNKNOWNY . CUNKNOWND, <(at sea>

then the result set would be the following

type size location creature waight
catacea 25 ft. at sea whale 1.0
cetacea & ft, at sea doiphin 1.0
fish 6 ft. at sea shark 1.0

I+ sghould be clear ithat these three results cannct be given with
100% certainty. The fact that 2 out of three guestions could not be
answered weakens the oguality of the results. Therefore, 1t is
totally correct to derive

3 =0
wd o A e

98]

r= (3 - 2

S
o,

and to give the resulis

whale 0.3
dolohin 0.3
shark 0.3

1f, on the other hand, the user answers with

s

CUNKNOWN> , <25 ft.>, <at sea’

ot

217

result set would only consist of one elemsnt, a <wh
e o
i

nite the unknown type, a unigue resuit could be found. We
e that the animal to be classified is in fact a <whale>, e
it is unigue with respect to its size. In this case, the certainty
of the result should NOT be weakened.

0 o

onse?

k)

17 3

E™

ollowing changes have been made ©LO

~h

Given the above reasoning, the
the HICLASS system:

The amount of answers UNKNOWN weakens the certainty of the
results 1T, and only if, there are several results.

If there is only one result of the table, the amount of
answers UNKNOWN 1s NOT incorporated in the calculation of the

certainty for that result,

2. Providing a command Tine option Tor HICLASS

le working on an implementation of HICLASS (a topic advisor for

Whi

the German department) it bescame clear that in some cases it 18 not
necessary, or even desired, to allow a user to have access to the
fFull power of HICLASS. This is true for the first FILES screen as
well as for options Tike CONCLUDE and HISTORY. Therefore, the
following changes have been made to HICLASS:

The program CAN now be called with the following parameters:
HICLASS [thame] [~-Telilclli] [+headline]
Explanation of paramsters:

1. Lname

tname = name of root table to be called

FILES screen is not shown

a report file cannct be stored

after an interrupt or an advice the program halts

the name of the help file is changed from HICLASS . HLP
to a customized help File tnamse.hlp

[R]

. o=eic

following the '~’, the following options can be
disabled:

a: disable EXPLAIN

1: disable HISTORY

c: disable CONCLUDE

2. headline

the predefined headline showing root and actual tables
is replaced by headline, which follws a '+’

vstem

ing HICLASS without any parameter, nothing changes. The s
z ca 1 three of

ed by calling the program with one, two or al

The HIEDIT/HICLASS package provides the means to build an Expert System
for any problem which can be solved using hierarchical classification.

Copyright
x (c) Copyright 1992 Jens Waze)
* 331 Oxford College Hall Oxford, OH 45056 (513) 529-6522

* E-mail: JWAZEL@MIAMIU

Program type
x HIEDIT : Expert System Editor.
¥ HICLASS : Expert System Shell.
Hierarchical Classification for any problem type.

Written in

*x TURBO PASCAL 6.0 (16.000 lines).

Programming language

* Not required to use HIEDIT and HICLASS.

User interface

¥ Pyll-down menus, spreadsheets.

¥ Full screen editor.

* Context-sensitive help system {(over 100 help screens).

Knowledge representation

¥ Tables in a hierarchy.

¥ Several descriptions for one concept.

¥ Several concepts combined in one table.

* Concepts described by attributes with values.
*x Certainty values (weights) for each concept.

Size of one table

¥ Up to 12 attributes, 26 values per attribute.
x Up to 255 concept descriptions.

Size of hierarchy

¥ Almost unlimited.
x Tables only invoked when needed.
x Minimal amount of information kept in main memory.

Data tvpes

* Logical and numeric (interval-based).

Global attributes

x Attributes can be defined globally.

Don’t care

x Concept descriptions can include "Don’t care"” values.

Questions

¥ Are asked to acquire data using customized text screens.

Answers

x Can be entered by the user (multiple choice, numeric).
x Can be provided by a subtree of tables.

"UNKNOWN", "NOT APPLICABLE"

¥ Two special answer options.

Global control strategy
¥ Depth-first, several paths.
x Tables can be used several times in the hierarchy.

tocal control strategies

% Goal: minimum amount of questions asked.

% Chosen by user or automatically.

x MATCH: ask all guestions and compare to table content (database search).
LEFT-TO-RIGHT: ask questions left to right, reduce table content.
HEURISTIC: heuristic decides which questions to ask, reduce table content.

Uncertainty handling

% Based on certainty and fuzzy set theory.
¥ Derived from weights of concepts and amount of answers UNKNOWN,

x Certainty values combined for paths.
x Thresholds for path termination.

Session report

* Session report file built automatically on disk.
x Interrupted session can be resumed.

History

[PRp—— -

¥ A1l questions, answers, and conclusions of current sessijon.

Conclude

* A1l values for results.

Inductive learning

x Inductive learning algorithm for creating a distinction-oriented
knowledge representation used by hierarchical hypothesis matcher
HIHYPO (c¢) 1992 Jens Wazel.

x Have a look at the table definitions with HIEDIT.
x Load 'EXAMPLE1’ into HICLASS and classify animals.

More information
% Access the help system.
x Write, call, or send an E-mail to Jens Wazel.

