
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

A Simulation Tool for the Manufacturing

Engineering Department’s Flexible

Manufacturing Cell

Don Anderson
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/15



 

 
 

DEPARTMENT OF COMPUTER SCIENCE  
& SYSTEMS ANALYSIS  

 
 

TECHNICAL REPORT:  MU-SEAS-CSA-1996-002 
 
 

A Simulation Tool for the Manufacturing Engineering 
Department’s Flexible Manufacturing Cell     

Don Anderson  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928 
 

 



A Simulation Tool for the 
Manufacturing Engineering Department's 

Flexible Manufacturing Cell 
by 

Don Anderson 
Systems Analysis Department 

Miami University 
Oxford, Ohio 45056 

Working Paper #96-002 April, 1996 



Systems Analysis Master's Project: 

A Simulation Tool for the Manufacturing Engineering 

Department's Flexible Manufacturing Cell. 

The flexible manufacturing cell in the manufacturing engineering 

department's computer integrated manufacturing systems lab is used to 

study manufacturing processes. A loop conveyor, an automated storage 

and retrieval system, robots and a lathe station are configured to 

exemplify a manufacturing process. This software was developed to 

allow the user to alter, modifjr and/or expand on the manufacturing 

process represented, and to conduct simulation studies relative to it. It 

presumes that the basic structure of the cell is to remain intact, while 

the type of and number of stations, and the behavior of the conveyor a t  

each of the various stations, can be modified. 

Donald W. Anderson 

April 23,1996 



Table of Contents: 

1.0 Introduction 

2.0 The Manufacturing Engineering Department's Flexible 

Manufacturing Cell 

3.0 Simulation Software 

3.1 An Overview of Simulation Software 

3.2 Classifications of Simulation Software 

3.3 Desirable Features of Simulation Software 

3.4 Problems Associated with Computer Simulation 

4.0 The CIMS lab's FMC Simulation Software 

4.1 Design Alternatives for the CIMS Lab FMC Software 

4.2 Specifications for the CIMS Lab FMC Software 

4.3 Description of the CIMS Lab FMC Software 

4.4 Verification 

4.5 Conclusion and Future Works 

5.0 Bibliography 

6.0 Appendices 

6.1 Siman Test Case Code 

6.2 CIMS Lab FMC Simulation Software Source Code 



1.0 Introduction 

"Given the rapidly emerging and highly competitive global market- 
place, industry is constantly seeking methods of enhancing their competitive 
postures. For manufacturers, the certainty that a product, process, or machine 
will function exactly as intended prior to its actual implementation is an 
enormous potential advantage in terms of cost, reliability and lead time 
to market. Lengthy product testing and prototype construction is prohibitively 
expensive. Computer simulation offers an alternative to traditional design and 
testing methodology. What is needed is a more efficient process of concept 
and design testing. 

Formerly reserved for large-scale military and scientific projects, 
computing power has reached a level of exceptional performance coupled 
with such low costs that complex machining processes, facility layouts and 
material performance characteristics simulations can be conducted by almost 
any commercial enterprise in the United States. The impressive accuracy 
obtained by these simulations and the inherent cost savings make computer 
simulation, or computational modeling as it is also known, a force to be 
reckoned with in the coming years." 

-Nwoke and Nelson [I9931 

Engineers, technologists and managers of manufacturing concerns have long 

sought tools and techniques to assist with the consequential, costly, and often 

troublesome analysis and design of manufacturing systems. Whether designing a new 

manufacturing system or seeking to modify and improve an existing system, computer 

simulation can be a desirable, useful and cost-effective technique. 

Empirical methods and mathematical models can sometimes provide the required 

information, and actually have the advantage in some cases of finding an optimal 

solution. But as systems become large and more complicated, these methods become less 

desirable. Modifying and experimenting with the actual system can be very costly and 

time consuming, and most mathematical models require simplifying assumptions which 



can limit the model's effectiveness. In some cases, computer simulation is the only 

viable means of conducting a comparative performance analysis. 

It is not my intention here to develop a detailed comparison of various analytical 

techniques. For such a comparison, the interested reader is referred to Winston [I9911 or 

Hoover and Perry [1990]. My purpose here is to loosely define computer simulation and 

explore how it can be exemplified and utilized with respect to the Flexible Manufacturing 

Cell (FMC) in the Manufacturing Engineering Department of Miami University's 

Computer Integrated Manufacturing Systems (CIMS) lab. 

Musil and &bay [I9891 define simulation as ". . . the process of designing a 

mathematical-logical model of a system and performing experiments with this model on a 

computer." The reasons or rationales for conducting simulation studies are varied and 

diverse. In a manufacturing setting, one might be interested in evaluating alternative 

configurations for a group of machines, considering alternative material handling 

equipment, or determining the required size of or location of storage facilities. Perhaps a 

decision as to how to best increase the capacity of a certain manufacturing cell, or how to 

alter the cell so that the output is more constant, or faster, or less expensive. Maybe 

defective parts are causing problems downstream, or an assembly line or flexible 

manufacturing system (FMS) cell is to be evaluated to determine if it can accommodate 

an additional item or process. 

Law and Haider [I9891 describe two major types of manufacturing analysis for 

which simulation is used. In a high-level analysis the system is modeled at an aggregate 

level and details of the control logic are not included. High-level analyses are often 

performed in the initial phases of system design, when detailed system information is not 

yet available. Typical objectives of a high-level analysis would be to determine the 

required number of machines and material handling equipment, evaluating the effect of a 

change in product mix, and determining the storage requirements for work in process. 

Detailed analyses, on the other hand, are performed on existing or proposed 

systems, to fine tune or optimize the system's performance. In a detailed analysis, 



variations in control logic and processing strategies are evaluated to determine optimum 

approaches for material handling equipment and servers, and to determine the most 

suitable product mixes and queuing priorities. At this level a precise system description 

is needed. 

The particular topics or areas of study are determined largely by the specific 

manufacturing task and manufacturing system being considered, as well as specific time 

and budgetary constraints. This paper will examine various simulation techniques and 

methodologies, and survey the simulation s o h e  that is currently available. Desirable 

features of simulation software will be identified which are particularly applicable to the 

Flexible Manufacturing Cell (FMC) in the Manufacturing Engineering Department's 

Computer-Integrated Manufacturing Systems (CIMS) lab. Requirements for the 

simulation tool will be determined and alternative designs developed and evaluated. 

Specifications for the proposed system will then be presented and the software developed. 

Validation of the software will be accomplished via comparison with an existing 

simulation software system. 



2.0 The Manufacturing Engineering Department's 

Flexible Manufacturing Cell 

The Manufacturing Engineering Department's Flexible Manufacturing Cell 

(FMC) is used primarily to demonstrate and exemplifl a manufacturing process. The cell 

consists of an automatic storage and retrieval system, two RM-501 Mitsubishi robots, a 

Span Tech XL loop conveyor, and an Emco Maier CNC lathe (see figure 1). Currently, 

the cell is automated in that the storage and retrieval system and the lathe station are each 

individually PC controlled. For the storage and retrieval system, an operator specifies 

using a PC which storage location's contents are to be loaded onto the system, and which 

storage location should house a piece being removed from the system. The PC that 

governs the lathe is programmed by the user to produce parts with specified dimensions. 

..... '0.'. ;.. ..A,...... 

Storage L Retrieval 

Loop Conveyor 

figure 1 the manufacturing engineering department's FMC 



Parts are transported along the conveyor on pallets. When a pallet arrives at the 

work station (lathe), the part is unloaded from the pallet, loaded onto the machine, and the 

pallet remains on the conveyor. Two features of the system are unusual, and noteworthy: 

first, the conveyor stops and waits while the part is processed on the lathe, and second, 

pallets must be placed onto and removed from the conveyor by hand. 

Dr. Ettouney (Associate Professor of Manufacturing Engineering) recently 

proposed changing the configuration of the manufacturing cell. He hopes to extend the 

conveyor to allow for additional service stations so that the cell can be used to 

demonstrate more compIicated manufacturing processes. While considering alternative 

configurations for the new manufacturing cell, Dr. Ettouney realized that his students 

could benefit from the exercise of considering and evaluating alternative cell designs. 

The manufacturing engineering students, however, are not well-acquainted with computer 

simulation. They are not familiar with simulation methodologies or with the various 

simulation languages and software that is available. 

It was proposed to me that a simulation tool be developed exclusively for use in 

the CIMS lab. The notion being that by limiting the scope and flexibility of a simulation 

system, and by making it easy to learn and understand without requiring a strong 

background in simulation methodologies or languages, some of the benefits of simulation 

could be exemplified and an appreciation of simulation developed. By devising a system 

where the students could make use of a simulation tool prior to actually learning about 

the methodologies, the terminology, the various languages and such, simulation could be 

incorporated into the manufacturing curricula. The students could then take courses in 

computer simulation if they were so inclined. 

The goal of this paper then, is to explore various simulation techniques, 

methodologies and products, and to tailor an existing system or develop a new system 

specifically for simulating the FMC in the manufacturing engineering department's 

CIMS lab. 



3.0 Simulation Software 

3.1 An Overview of Simulation Software 

According to Haider and Banks [1986], "Over 100 simulation software products 

are currently available on a wide variety of computers, from micros to mainframes." 

Indeed, the number of simulation software products is staggering. In this section, we'll 

examine and classify some of the more popular software types and identify their strengths 

and weaknesses. 

Law and McComas [I 9921 identify two major classes of simulation software, 

simulation languages and manufacturing simulators. A simulation language, according 

to these authors, "is a computer package that is general in nature . . . but may have special 

features for manufacturing such as work stations and material-handling modules." Some 

examples of simulation languages are GPSSIH, GPSSIPC, MODSIM 11, SIMANICinema 

IV, SIMSCRIPT 11.5, and SLAMSYSTEM. A manufacturing simulator, "in its most 

basic form, is a computer package that allows one to simulate a system contained in a 

specific class of manufacturing systems with no programing." Examples of simulators 

include FACTOR/AIM, Micro Saint, ProModelPC, SIMFACTORY 1I.S and WITNESS. 

With a simulation language, a model is developed by writing a program using the 

language's modeling constructs. These constructs include entities (parts), attributes (part 

type or due date), resources (machines or workers) and queues (waiting areas). The 

model is then compiled and executed much like computer programs written in a high 

level programming language. The advantage of modeling with a simulation language is 

that practically any system can be represented, regardless of its complexity or uniqueness. 

The drawbacks to modeling with a simulation language are the need for programming 

expertise and possibly the long time spent coding and debugging. 



Manufacturing simulators, on the other hand, do not require programming. The 

particular system of interest is selected (from the domain of the package) by choosing 

items from menus and filling in forms or by the use of graphics. The code is generated 

by the system and executed. The advantages of modeling with a manufacturing simulator 

are reduced development time and ease of use. The major drawback is that they are 

limited to modeling only those manufacturing configurations provided by the package. 

Thus, if a manufacturing system has some unique features or control logic, an accurate 

representation might not be possible. Some simulators overcome this problem by 

providing programming-like commands and allowing the developer to inject his own 

code, but then the "advantage" of this type of system is lost. 

3.2 Classifications of Simulation Software 

In this section we'll explore some of the variations currently encountered in 

today's simulation soha re .  To do so, we'll need to become familiar with some of 

simulation's basic terminology. A system being modeled is said to have various states. 

A system's state is its components current conditions at any one time. For example, a 

machine might have three states (busy, idle, and broken), and a queue might have five 

(empty, one, two, or three waiting, and full). A system will have certain events 

associated with it. Events are situations that cause a change in a system's state (a 

machine breaks, or a part arrives). Lastly, a system will possess certain activities. 

Activities are processes which are performed by the system (loading a work-piece, or 

drilling a hole). 

Haider and Banks [I9861 describe three levels at which simulation software can 

be classified: the system level, the application level, and the structural level. At the 

system level, two types of systems are generally recognized: continuous systems and 



discrete systems. In a continuous system, parameters (usually referred to as state 

variables) change continuously over time. Differential equations are used to depict the 

rates of change of the state variables. These equations are solved at specified time 

intervals to determine the current values, and the current values are assessed to determine 

if certain events should be scheduled. The system then processes the scheduled events 

and calculates the desired performance statistics. 

In a discrete system, state variables change only at discrete points of time (usually 

referred to as event times). The simulation is conducted by scheduling these event times 

and monitoring the system states with respect to an internal clock. The scheduling and 

processing of events and activities are handled internally by the system when the model is 

run, and numerous performance measures are available. Most manufacturing systems are 

modeled using discrete time units and for our purpose (the CIMS lab's FMC), this 

approach is preferred. 

At the second level of classification, the application level, the authors devise two 

categories: special purpose software and general purpose software. 

This distinction was covered in the previous section. Basically, special purpose 

software is designed to model specific types of systems. Software products of this type 

are typically referred to as simulators. General purpose software allows one to model any 

type of system using the system's constructs. Software products of this type are generally 

referred to as simulation languages. 

Classification of software at the structural level requires an understanding of how 

the simulation is conducted, as opposed to what can or is being modeled. At this level the 

modeling orientation (referred to also as the world view in some texts) that is employed 

by the simulation software is described. Three orientations or world views prevail: event 

scheduling, process interaction, and activity scanning. 

In the event scheduling orientation, a system is viewed as consisting of a number 

of possible events (instances at which time state changes take place). Some events might 

be the arrival of a part, the completion of a machining task, or a part exiting a conveyor. 



The modeler defines the events and develops the logic associated with each event. 

Events are scheduled via an internal mechanism, and processed in order. When an event 

is processed, its associated logic is executed, creating new events to be scheduled and 

changes in state variables. This is a widely used approach in the simulation of 

manufacturing systems (usually coupled with the discrete time, systems level 

classification). 

In aprocess interaction orientation, the modeler views the system as a set of 

processes. The flow of a part through a manufacturing line might be a process, or the 

loading or unloading of conveyors. The user describes the flow of parts through these 

processes and the system translates this into an appropriate sequence of events. The 

simulation is then carried out in a manner similar to that described as event scheduling. 

In an activity scanning orientation, the user describes the conditions necessary to 

start and stop each activity in the system. Time is advanced in equal increments and, at 

each increment, the conditions are evaluated to determine if any activities can be started 

or terminated. This orientation is most often associated with continuous processes where 

continuous measures such as temperature and pressure are monitored. 

These three levels of classifications are generally not of great interest to the user 

of a simulation software package. For the most part, users are interested in what the 

software can and cannot do, what systems can be modeled and what systems cannot. The 

system level classification and modeling orientation is often transparent to the user - and 

many users, if asked, probably would not know into which classifications their simulation 

software falls. But it is the classification at the systems level and the orientation of the 

software that determines what can and cannot be modeled, and the level of expertise 

required. These distinctions are therefore critical in the determination of specifications 

for the CIMS lab's FMC simulation system. 



3.3 Desirable Features of Simulation Software 

In this section we'll explore what features and characteristics various researchers 

and authors have identified as desirable in simulation software, and identify those that are 

particularly applicable to the proposed CIMS lab FMC simulation system. 

Law and Haider [I9891 separate the desirable features of simulation software into 

six categories: General features, animation, statistical capabilities, material handling 

modules, customer support, and output reports. Within each category, features are listed 

according to the authors' assessment of their relative importance. 

In the first category, general features, the authors identify the following 

simulation package features as desirable: modelingjlexibility, general attributes for 

entities, ease of model development, fast model execution speed, maximum model size, 

and compatibility across computer classes. Modelingjlexibility is the most important 

feature. "If the simulation package does not have the necessary capabilities for a 

particular application, then the system must be approximated, resulting in a model with 

unknown accuracy." It is also desirable for entities to have general attributes which can 

be appropriately changed. Not only does this contribute to flexibility in general, it allows 

for the study of non standard performance measures and can facilitate the modeling of 

more complex control strategies. Ease of model development is particularly important for 

the CIMS lab FMC project. Aside from ease of use, we also require ease of 

understanding. The authors prefer simulation software with interactive debuggers and 

on-line help capabilities. Fast model execution speed, maximum model size, and 

compatibility across computer classes, although important features in general, are not 

particularly critical for the CIMS lab FMC simulation tool. 

"Animation has become a widely accepted part of the simulation of 

manufacturing systems." The authors explain its usefblness in communicating the 

essence of a simulation model, in debugging and verification of a model, and in their 



"suggesting" of new control strategies. Desirable animation features, according to the 

authors, include ease of development, user creation of high-resolution icons, and the 

smooth movement of icons across the screen. I would also include the ability to vary the 

speed of animation, so that the dynamics of a system could be more easily understood. 

Statistical capabilities are inherently important in computer simulation. Since 

sources of randomness are what ultimately necessitate the simulation of a manufacturing 

system, the simulation package being used must provide an ample assortment of 

statistical capabilities. A wide variety of standard distributions should be available, as 

well as the ability to use distributions based on observed shopfloor data. Other desirable 

features listed under statistical capabilities include the ability to make independent 

replications of the model automatically, the ability to specify a warm-up period, and the 

ability to construct confidence intervals for the desired measures of performance. 

Material handling systems are an important part of most manufacturing systems, 

and are often the focus of simulation analyses. It is therefore desirable for a simulation 

system to provide flexible, easy to use modules for modeling transporters, AGVs 

(Automatic Guided Vehicles), conveyors, cranes and robots. The authors note that "the 

existing material handling modules in some simulation packages may not always be 

sufficient due to the great diversity of available material handling equipment". It is 

therefore desirable to allow for user specified material handling components. 

Customer support can be a serious consideration in selecting simulation software. 

Some vendors offer general software training and/or provide technical support for 

specific modeling problems encountered by their users. Good documentation is also 

desirable and should include a wide variety of detailed examples. 

Finally, the authors describe the desirable features for a simulation package with 

respect to its output reports. A simulation package should provide the ability to quickly 

and easily produce standard reports for commonly occurring performance statistics 

(utilizations, queue sizes, and throughput). Tailored reports should also be quickly and 

easily produced. Indeed, the whole point of conducting a computer simulation study is to 



obtain some required information. The nature of and presentation of this information 

should be user determined. High-quality graphical displays and access to the individual 

model output observations (rather than just the summary statistics) are also listed as 

desirable. 

In addition to many of the features listed above, Haider and Banks El9861 

identified the following desirable features: inputjlexibility, syntax, structural modularity, 

and modeling conciseness. The authors describe inputflexibility as the ability "to 

develop models either in a batch mode or in an interactive environment . . . where the 

system prompts for information on pre-formatted screens." By syntax they refer to the 

software's modeling scheme. The system should be "user fiiendly (convenient for a user 

to follow and understand), consistent and unambiguous. A good syntax scheme 

facilitates rapid development of the model and reduces mistakes . . .". Structural 

modularity refers to the software's modeling constructs. The authors feel that simulation 

software products should allow modular development of a model. "Meaningful modules 

are system layout by segments, equipment characteristics, product flow schemes, product 

requirements, initial conditions, statistics collection and output report requirements. In 

such an environment, each component of the model can be changed without altering the 

others." By modeling conciseness they intend that the software have powerful 

block/node capabilities and commands which allow for the concise modeling of complex 

decision rules and flow patterns. 

Some additional features worthy of mention are that the software "take into 

account issues like the speed of conveyors and automated guided vehicles . . .", Norman 

[1992], and that "One should be able to read and write external files directly fiom the 

simulation package without using external routines", Law and McComas [1992]. 



3.4 Problems Associated with Computer Simulation 

"Historically, simulation has been used primarily as a planning tool 
for new projects in manufacturing or major renovations. Recently, however, 
some organizations are applying the technology for the purpose of optimizing 
current operations. The whole application of simulation is going to grow and 
extend beyond these current uses to become integral with the daily operation 
of factories. 

Today, simulation models are developed and managed by a select group 
of individuals, quite often Industrial Engineers. Everyone in the organization 
comes to these individuals for answers fiom the model." 

- Norman [I9921 

"Have we developed languages and approaches best suited to the 
skilled practitioner, languages that take months or years to master?" 

- Smith, Cypher, and Spohrer [I9941 

Aside from the aforementioned problems with simulation languages and 

manufacturing simulators, the problems most often cited with respect to simulation 

software concern the products' complexity and the level of expertise required to make use 

of it. As simulation software has become more versatile, it has also become more 

complicated and laborious to use. In this section we'll look at the problems and pitfalls 

associated with simulation software, and identify those problems that are most significant 

to the CIMS lab FMC project. 

Regardless of what type of simulation software is used, a certain amount of 

knowledge and expertise is required. Law and Haider [I9891 state that they believe 

"model coding will represent only 30 to 40% of the total required work in a typical sound 

simulation study." Other important activities they identify include project formulation, 

data and information collection, statistical modeling of system randomness, validation of 

the model, and the statistical design and analysis of the simulation runs. "Furthermore, 



these tasks are, for the most part, not performed by existing simulation sofhvare, 

regardless of how easy these products are to use. Thus, it is incumbent on the simulation 

developer or user to have a fair amount of expertise in simulation methodology per se, in 

addition to the use of one or more simulation products." 

In an article on software reuse, Charles Krueger [I9921 introduces the concept of 

cognitive distance, and defines it as "the amount of intellectual effort that must be 

expended by software developers in order to take a software system from one stage of 

development to another." This is an important notion to keep in mind, as we desire a 

simulation tool requiring little background knowledge or methodological expertise. 

Smith, Cypher, and Spohrer [I9941 advocate systems with a property they dub 

minimum translation distance, which they describe as the conceptual distance between 

people's mental representations of concepts and the representations the computer will 

accept. They also advocate a familiar user's conceptual model. By this, they mean that 

concepts used in a system should be cast into terms the user can understand. Indeed, 

instead of using the standard simulation terminology such as entities, resources, attributes 

and queues, the engineering students might be more comfortable with terms such as parts, 

machines, properties and waiting areas. 

Most of the forgoing was applicable to simulation languages, where the user 

writes programs in a particular language and must, therefore, understand the constructs 

and methods implored. But what of the simulators? In fact, the use of simulators still 

requires knowledge of simulation terminology and methodology. Models are constructed 

by specifying the entities, resources, processing times, etc. Simulation terminology and 

methodology must be understood in order to select the appropriate model components. 



4.0 The CIMS lab FMC Simulation Software 

4.1 Design alternatives for the CIMS lab FMC Software 

Three alternative designs were conceived for the implementation of the CIMS lab 

FMC simulation tool. One option would be to develop a code generator - a software 

package that would prompt the user for the required information, and generate the code 

necessary to conduct the simulation in an existing simulation language. Another option 

would be to customize an existing manufacturing simulator - to shield the user fiom 

unnecessary complexity and make the simulator straight forward and easy to use. The 

last option would be to develop a simulation system that stands alone - software that 

prompts the user for the necessary information, carries out the simulation, and produces 

the results itself. In this section these three alternatives will each be discussed, developed 

and evaluated in turn. 

The first design alternative to be evaluated is the simulation language code 

generator. As noted previously, simulation languages provide many features and 

variations of components to allow for the simulation of virtually any type of system. 

Programs are written in these programming languages, compiled and executed. An 

interface could be developed for this type of system, to shield the user fiom having to 

learn the modeling technique and syntax implored. The interface (code generator) would 

prompt the user for specifics about the system to be simulated (how often parts arrive, the 

number of machines, the processing times and queuing associated with each, etc.). The 

software would then produce the code required to simulate the described system in an 

existing simulation language. The resulting code would then have to be compiled with 

the language's compiler and then executed. 



In considering this approach, I envisioned using the SIMAN language, with which 

I am familiar. One problem became immediately apparent, the conveyor scheme 

presently used in the CIMS lab FMC cannot be easily portrayed. While SIMAN does 

provide two conveyor constructs, neither is appropriate. The conveyor types provided 

are termed accumulating conveyors and non-accumulating (which are, incidentally, the 

same constructs available in most simulation languages). An accumulating conveyor is 

used to model systems where the conveyor keeps moving and parts accumulate at the 

end. Non-accumulating conveyors model systems where the distance between parts on a 

conveyor remains constant (the conveyor stops when a part reaches the end). The 

problem is that parts can only enter the conveyor at one end, and exit from the other. 

There is no construct available for circular type conveyors such as the CIMS lab FMC's 

(conveyors which allow parts to enter and exit at various points along the way). This 

could be modeled in SIMAN, by using a series of conveyors, one between each pair of 

machines, but then the situation of having "the" conveyor stop (to load, unload, or wait if 

specified) becomes problematic. 

I decided that with SIMAN, (and most languages are similar), it is just too 

difficult to model the current system accurately, let alone devising schemes to allow for 

alterations and variations of the system. Even if a representation of the loop conveyor 

were contrived, requiring the user to develop a model with this software, compile and 

execute the resulting code using other software, and constantly have to switch back and 

forth between the two, seems awkward and cumbersome. For these reasons, the code 

generation alternative was rejected. 

The second alternative, customizing an existing simulator for use in the CIMS lab, 

is considered next. Manufacturing simulators are supposed to provide a means of 

conducting simulation studies that require no programming. What I had envisioned was 

providing a subset of the modeling constructs available in a simulator, with default 

parameters preset, so that a novice user might find the system easy to understand and 

utilize. 



To explore this alternative, I considered ProModel, a popular manufacturing 

simulator which is presently available on Miami's Applied Sciences network. The 

interested reader may wish to reference the ProModel User's Guide [1994]. One of the 

problems previously identified with simulators is that they can model only those systems 

which fit into one of the classes of systems for which the simulator provides. The CIMS 

lab FMC's loop conveyor again becomes a problem. The conveyor constructs available 

in ProModel are the same as those available in SIMAN, accumulating and non- 

accumulating types. Entities must enter at one end and exit at the other. As far as 

customizing a simulator specifically for use in the CIMS lab, ProModel seems 

impracticable. 

Arena, another manufacturing simulator (see the Arena User's Guide, 1993), 

provides a feature they call templates. I thought that perhaps by constructing and 

utilizing templates easy simulation modeling for the CIMS lab FMC could be facilitated. 

With templates, one can create specific manufactwing configurations and save them. 

Then, if simulations of these basic configurations, with various modifications and 

changes are desired, they can be developed very quickly. I considered providing a 

number of these templates, to furnish a variety of modified CIMS lab FMC 

configurations from which the user could choose. 

One problem with this approach is that only a limited number of templates 

(configurations) could be made available. Even if an assortment of templates were 

developed and considered sufficient, another problem is that, even with the use of 

templates, specific attributes and properties must be specified by the user. These 

specifications are made via dialog boxes that refer to everything in very jargon-intensive 

language (resource, entity, attribute, route, sequence, queuing capacity, etc.). The user 

would have to be familiar with this terminology in order to utilize the templates. The 

output is also very jargon-intense and cannot be reformulated. For these reasons, the 

'customize an existing simulator' design alternative was also rejected. 



A stand alone simulator, one that prompts the user for information and conducts 

the simulation itself, would need be developed. 

4.2 Specifications for the CIMS Lab FNIC Software 

The basic purpose of the CIMS lab FMC simulation system is to provide a means 

for manufacturing engineering students, not familiar with simulation methodologies or 

terminology, to easily specify a manufacturing system cell configuration and conduct 

simulation studies relative to it. Thus, the desired software requires an interface which is 

very user-friendly and free from any unfamiliar simulation terminology. The output fiom 

the system, likewise, should be readily understandable. In this section, we'll define the 

specifications of the proposed software, describe what features and capabilities it will 

provide, and indicate the form of the interface and output reports. 

At the systems level (see classiJications of simulation software, earlier in this 

report) a discrete systems implementation will be used. The discrete environment works 

well for modeling manufacturing systems, since events of interest in manufacturing 

simulations (start job, finish job, load part on conveyor, etc.) generally occur at specific 

times. It will also be easier for the users (students) to specify service times, loadlunload 

and transport times, in a discrete environment. 

At the application level, the simulation tool would have to be classified as special 

purpose software. Of course, it is being designed specifically for the CIMS lab FMC. 

But the more significant aspect is that the user needn't write programs. There is no 

programming language to learn, the user simply specifies characteristics to be 

incorporated into the model, and the system handles the particulars. 

At the structural level an event scheduling orientation, or world view, will be 

used. Event scheduling is a commonly used orientation for simulation of manufacturing 



systems and it provides for a number of performance measures that might otherwise be 

difficult to derive. It may also be the easiest orientation to implement, and subsequently 

enhance. 

Desirable features for simulation sofmare, which were identified previously and 

are to be incorporated into the software, are now discussed. The desirable general 

features that will be provided include modeling flexibility, general attributes for entities, 

and ease of model development. Both aggregate level and detailed level simulations can 

be carried out, and modeling flexibility will be provided at each level. At the aggregate 

level, the user can specify the number of pallets, the number of machines, and the number 

of various types of machines. At the detailed level, the user specifies the processing time 

distributions for each machine and robot, and the type of station-conveyor interaction 

mode (to be discussed later) for each machine. The general attributes for entities feature 

will be useful to me as I implement the system, but will be transparent to the user (since 

they won't be programming). Ease of model development, as previously mentioned, is of 

primary importance to the CIMS lab FMC project and will of course be accommodated. 

Friendly, easy to use and understand interfaces and reports will also be provided. 

The remaining desirable general features, fast execution speed, maximum model 

size, and compatibility across computer classes, are not considered to be of vital 

importance to the CIMS lab FMC project. Animation capabilities will not be provided. 

Statistical capabilities provided for include a wide variety of standard 

distributions, and the ability to perform independent replications automatically. 

Constant, uniform, normal, exponential, triangular, and user defined distributions will be 

available for specifying robot loading and unloading, and machine service times. The 

user can specify how many replications to be conducted, and if a number of replications 

are conducted, summary statistics and confidence intervals will be automatically 

computed. The length of each replication will determined by the user, as well as the 

length of the warm-up period. The warm-up period will apply to only the first 

replication, subsequent replications will start in the state in which the previous replication 



ended. Output statistics will include, for each replication, the number of parts completed 

and the mean, standard deviation, minimum and maximum values for time-in-system and 

time-on-conveyor. Utilization Statistics will be computed for each of the stations, and the 

conveyor usage will be measured in terms of the average number of parts on the conveyor 

throughout each replication. Summary statistics for multiple replications will include 

mean, standard deviation, and 95% confidence intervals for number of parts completed, 

time-in-system, and time-on-conveyor, as well as average utilizations of stations and 

average number of parts on the conveyor throughout all of the replications. 

The desirable feature of having a wide variety of material handling modules 

provided is of primary importance to most simulation practitioners, since material 

handling systems can be very difficult to represent. In our case, the primary material 

handler, the conveyor, will be alterable in three ways. One option is to have the 

conveyor stop and wait while parts are serviced, as is currently the case. This option will 

be referred to as the conveyor waits statiodconveyor interaction mode. Another option is 

to have the conveyor to stop only while a part is being loaded or unloaded by a robot, 

then continue along (transporting an empty pallet, as well as any other pallets), while 

service takes place. This practice will be referred to as the conveyor continues 

station/conveyor interaction mode. Lastly, the user might specify pallet waiting areas, 

where a pallet would reside while the robot and servicing of parts takes place. This last 

statiodpallet interaction mode, dubbed pallet waits, requires an additional piece of 

machinery, but minimizes the amount of time that the conveyor is stopped. In this type 

of FMC, minimizing the conveyor's stop time is very much desirable. 



4.3 Description of the CIMS Lab's FMC Simulation Software 

Particular characteristics of the CIMS lab FMC Simulation Software are now 

discussed. Manufacturing configurations which can be simulated using the CIMS lab 

FMC Simulation Software will somewhat resemble the FMC's current configuration. 

Parts will arrive via the automated storage and retrieval system, and travel along a 

circular conveyor on pallets. When a part arrives at a station which it needs and is 

available, the conveyor stops and the part is unloaded by a robot from the pallet and onto 

the machine for service (according to the station's conveyor interaction mode). As 

service is completed, the part is loaded back onto the pallet by a robot (again, according 

to the station's conveyor interaction mode), and travels along the conveyor to the other 

stations. 

The length of the conveyor, the speed of the conveyor, and the number of 

machines along the conveyor are all specified by the user, but the spacing of machines 

along the conveyor will be determined by the system (equidistant). Since the 

loadinglunloading robot and automated storage and retrieval system pose a potential 

bottleneck, the user can specify that completed parts be removed from the system via the 

same robot that loads unfinished parts (as is the current practice), or that a separate 

removal station and robot be included. 

The software utilizes three input screens whereby the user specifies the desired 

systems' configuration, the processing requirements of parts, and the simulation 

parameters and output designations. Each of these screens are depicted here, followed by 

descriptions of the input information and verification and limits thereof. 



screen 1 : 

MAIN MENU FOR SYSTEM CONFIGURATION 

Station Conveyor Robot time Service time 
name /Pallet distribution distribution 

behavior (in seconds) (in seconds) 

enter W/W Norm(36,12) 
lathe CIC Norm(36,12) Tria(60,90,100) 
drill C/W Cons(45) Expo(200) 
remove (the load station removes the finished parts) 

I 
1<4> Conveyor Length: 60 feet. 
1<5> Conveyor Speed: 90 seconds to complete one revolution. 
1<6> Pallet loadlunload time (C/W only): 10 seconds. 
I 
1<7> add a machine 
1<8> remove a machine 

I 
1<9> load a configuration (previously saved) from file 
[<lo> next screen 
I<11> quit 
I 
/enter a line number to edit that line's information 
I or to invoke the desired option: 

The first screen allows the user to specify the FMC configuration to be simulated. 

In this example there are 3 stations along the conveyor: the enter station, the lathe station, 

and the drill station. The enter station is always present. The system can accommodate 

up to 9 work stations, as well as a separate removal station. In this example a separate 

removal station is not specified. This is shown by the statement that the load station 

removes the finished parts. If a separate unloader were specified, it's ConveyorIPallet 

behavior and Robot time distribution would be displayed. For each station, the station's 

name, ConveyorIPallet behavior, Robot time and service time distributions are displayed. 



To edit any of the displayed information, or to invoke a desired option (listed on 

the lower portion of the screen), the user enters the integer line number (in norkey 

brackets, 0) preceding the information or option. For instance, the user could edit the 

lathe station information by entering 1, change the conveyor speed by entering 5, or quit 

by entering 1 1. 

A station's ConveyorIPallet behavior is specified as WIW, CIC, or CIW. These 

correspond to the StationlConveyor interaction modes previously mentioned. These 

abbreviated designations were developed to save screen space and describe more 

precisely how the station and conveyor interact (in terms of what waits). Specifically, 

WIW signifies that the conveyor and pallet both wait. Formerly referred to as the 

conveyor waits stationlconveyor interaction mode, this means that when a part arrives at a 

station for service, the conveyor stops and remains stopped while the part is loaded, 

serviced, and unloaded. The conveyor and pallet both wait for the part. CIC signifies 

that the conveyor and pallet both continue. This interaction mode, dubbed conveyor 

continues in the preceding discussion, specifies that when a part arrives at a station for 

service, the conveyor stops while the part is loaded, then the conveyor and empty pallet 

continue along while service takes place. When service is completed, the part awaits an 

empty pallet. When an empty pallet arrives, the conveyor stops and waits while loading 

occurs. The conveyor and pallet are then released. CIW signifies that the conveyor 

continues, the pallet waits. Previously denoted as the pallet waits stationlconveyor 

interaction mode, here, when a part arrives at a station for service, the conveyor stops. 

The part and pallet are pushed onto a pallet waiting area, and the conveyor is released. 

This operation takes 10 seconds, specified in line <6> of the input screen, Pallet 

load/unload time. The pallet remains in the loading area and the conveyor continues 

along during the loading, service, and unloading times. When the part has been reloaded 

onto the pallet, the conveyor is again stopped for 10 seconds, the part and pallet are 

pushed back onto the conveyor, and the conveyor is released. 



The robot and service time distributions available (fiom a separate input screen) 

include constant, normal, uniform, exponential, triangular, and user-defined distributions. 

The user selects a distribution and enters the appropriate parameters. Integer values are 

used (since the simulation is conducted in seconds it was decided that 'whole seconds' 

provided enough precision) and various edit checks are performed to ensure that the 

parameters make sense. For instance, if a- triangular distribution is selected, there are 3 

parameters which must be positive integers and conform to PI <= P2 <= P3. 

Conveyor length, conveyor speed, and pallet load/unload time are all user 

specified, the only requirement being that they be positive integers. 

Options 7 & 8, add a machine and remove a machine were included to allow the 

user to quickly and easily alter the current configuration. The add a machine option 

allows the user to duplicated an existing machine, and place it anywhere along the 

conveyor. This works out well if one is trying to minimize bottlenecking or adding 

machines similar to those present. Option 9, load a configuration (previously saved) from 

file, allows the user to quickly modify all of the displayed information, provided the 

desired configuration has been previously saved. Configurations are easily saved via 

another screen. 

When machines are added or removed, or conveyor length or speed is altered, the 

system automatically recalculates the time required to move fiom one station to the next. 

This calculated value is used by the system to schedule part arrivals, and is not accessible 

or of concern to the user. 



screen #2: 

I MAIN MENU FOR SIMULATION 
I 
1<1> Maximum Number of Pallets Allowed: 4 
I 
1<2> Processing by machines is to be done IN THIS ORDER 
1<3> Machining operations required: enter 
I lathe 
I drill 
I remove 
1<4> Number of Replications: 5 
1<5> Length of each replication: 7200 seconds (2 hours) 
1<6> Warm-up period: 3600 seconds (1 hour) 
I 
1<7> Previous screen 
1<8> next screen 
I 
]enter a line number to edit that line's information 
I or to invoke the desired option: 

The second screen allows the user to specify the number of pallets to be allowed 

in the system, the part's machining requirements, and some simulation parameters. It 

functions as the first screen does (indeed, as all screens do), the user entering the line 

number to edit some particular information, or to invoke a desired option. The first line, 

<1> Maximum number of pallets allowed, allows the user to specify, obviously, the 

maximum number of pallets, which must be between 1 and 20. The maximum of 20 was 

established because of the edit checking required and my belief that with more than 20 

pallets, the loop conveyor and queueless station configuration doesn't really make sense. 

Line <2> Processing by machines is to be done, in this example is set to IN 

THIS ORDER, as opposed to IN ANY ORDER. In THIS ORDER mode, parts are 

required to obtain the services of the stations listed in <3> specifically in the order listed. 

In ANY ORDER mode, a part can obtain service from any available station in any order 



that it finds them available. The system automatically checks to insure that the operations 

listed in <3> machining operations required match stations defined on the previous 

screen. Requiring an operation for which no station exists would result in 0 parts 

completed (the system frozen in a state of having whatever maximum number of parts, 

not needing any of the idle machines, circling around and around...). If operations are 

specified for which no machine exists, the user is alerted to this fact and forced to edit the 

machining operations required. 

The number of replications is user specified, an integer between 1 to 20. It was 

thought that 20 replications would be sufficient to measure the performance of a given 

configuration. 

The length of each replication, and of the warm-up period are shown both in 

seconds and hours. When opting to change either replication length or warm-up length, 

the user enters the duration in hours. The actual value utilized by the system will be the 

in-seconds equivalent, but it seemed adequate for the user to specify in hours. A 10 hour 

limit is imposed because of C++'s integer representation size limit. 

screen #3 

I MAIN MENU FOR OUTPUT SPECIFICATION 

I 
1<1> Output file: not specified 

1 Output will be displayed on screen, but NOT saved 
1<2> Debugger: OFF. 
I 
1<3> Replications: 5 
I 
1<4> Previous screen 
1<5> Run the simulation 
I 
1<6> Save the current configuration to file 
1<7> Quit, DO NOT RUN the current configuration 
I 
[enter a line number to edit that line's information 
I or to invoke the desired option: 



This last input screen allows the user to specify an output file, save the current 

configuration, and/or toggle the debug feature. In this example, no output file is 

specified, so that output will be displayed on the screen but not saved. To save the output 

to file, the user would edit line 1. The system would then prompt the user for a file name 

(or DOS path), and create andlor open the file. 

The debugging feature produces a listing of the system's calendars at each time 

increment. It was useful to the developer, but might not be understandable to the average 

user. This feature was left in for the use of future developers, and an understanding of 

simulation techniques (particularly event scheduling) would be required for meaningful 

interpretation. Debug output is sent to a file named sim0.dbg. 

Given the facts that the debugger produces a large volume of output, and that an 

unaccustomed user might want to experiment with it, the system checks to see how many 

replications are planned when the debugger is turned on. If more than 1 replication is 

planned the user is warned that much output is produced in debug mode and that perhaps 

only 1 replication should be run. The option of changing the number of replications is 

provided again on this screen for convenience. 

Option 6 allows the user to save the current configuration to file, so that the 

current information can be quickly and easily re-used at a later time. If selected, the user 

is prompted for a file name (or DOS path) and all of the information from all 3 input 

screens is saved to the specified file. This can be done prior to or following a run. The 

system echoes back the file name as verification that the configuration was saved. 

The user is allowed to switch back and forth between the input screens as often as 

is desired. Eventually, though, a simulation run is expected. The output, be it displayed 

on the screen or saved to a file, is fundamentally the same. The next few pages describe 

the output screens, and the information they present. 



replication output screen: 

IResults of replication #3: I 
I 
]length of simulation: 
Inumber of parts completed: 
I 
I min 
I 
[time parts spent in system: 1203 
time parts spent on conveyor: 260 
I 
Iaverage number of parts of conveyor: 
]Utilizations of stations: 
I 
I 
I 
I 
[press enter for next screen: 

max avg 

enter: 
lathe 
drill 

The output screen displays the length of the simulation and number of parts 

completed. Of all the parts that were completed during a particular replication, the 

amount of time that each spent in the system, and on the conveyor is observed. Output 

statistics are calculated for these observations and the minimum, maximum, average 

value and standard deviation of each are displayed. We see from this example, that 32 

parts were completed. These parts averaged 1407.2 seconds in the system, of which an 

average of 439.5 seconds was spent on the conveyor. 

The average number of parts on the conveyor is also computed, in this case 

throughout the replication an average of 1.8 parts were traveling along the conveyor at 

any time. Utilizations of the various stations are calculated as well. In this example, the 

lathe station is being utilized 83% of the time. This might explain why parts tended to 

spend 439.5 seconds on the conveyor, and why the conveyor averaged 1.8 parts. By 

adding another lathe, or shortening it's service time or otherwise decreasing it's 



utilization, throughput could be increased and the time parts spend in the system and on 

the conveyor might be reduced. 

overall output screen: 

loverall Results: 
I 
INumber of Replications: 
/Length of each replication: 
I 
IAverage number of parts completed: 
1 Standard Deviation: 
I 95% C.I. for mean parts completed: 

I 
/Average Time Parts spent in system: 
I Standard Deviation: 
1 95% C.I. for mean parts completed: 

I 
/Average Time parts spent on conveyor: 
I Standard Deviation: 
I 95% C.I. for mean parts completed: 

I 
/Average number of parts on conveyor: 
I 
/Average utilization of stations: enter: 
I lathe: 
1 drill 

When multiple replications are run, the system computes averages for number of 

parts completed, time in system, time on conveyor, average number of parts on conveyor, 

and station utilizations. Standard deviations and 95% confidence intervals are computed 

for number of parts completed, time in system, and time on conveyor. 



4.4 Verification 

Verification of the CIMS lab's FMC Simulation Software was accomplished by 

devising test case scenarios and modeling them in both the Siman simulation language 

and with the CIMS FMC Software. A total of six test cases were developed. For each of 

the statiodconveyor interaction modes provided by the software, two test case simulation 

studies were conducted. The first test case was conducted with constant robot and service 

times, the second with random robot and service times. 

While Siman provides for much flexibility and allows for the representation of 

many manufacturing environments, an accurate modeling of the CIMS lab's FMC is 

difficult. To portray the conveyor, which has to service several queueless stations and be 

able to be stopped by any entity at any time, a series of station blocks were used. The 

station blocks used to represent the conveyor are located between each of the actual 

stations, and allow for the delays that one entity causes another in this type of conveyor 

layout. The CIMS FMC software handles things a little differently, with a separate 

events calendar expressly used for scheduling parts along the conveyor and delaying them 

appropriately. 

These different approaches of modeling the conveyor produce slightly different 

timings and orderings of events. The discrepancy is minor and is not evident in the test 

case scenarios where the conveyor is often in a stopped state. Indeed, most of the test 

case scenarios show very similar results. With the conveyor continues statiodconveyor 

interaction mode however, the timing and ordering variations result in noticeably 

different statistics. This is the statiodconveyor interaction where parts are loaded from 

pallet to station by robot and empty pallets circulate around the conveyor. These empty 

pallets are delayed just as full pallets are, but now the delaying, timing, and ordering of 

events is twice as noticeable. In this statiodconveyor interaction mode, a finished part 

has had to traverse the conveyor on a pallet (as it would in any interaction mode) and it 

has also had to wait at each station for an empty pallet to arrive. Despite this 



discrepancy, the CIMS FMC software and Siman test cases compare well, producing 

nearly identical results in the conveyor waits, and pallet waits models, and very similar 

results in the conveyor continues models. 

For each test case, a description of the configuration, a table comparing the CIMS 

FMC software and Siman results, and a statistical comparison of the two simulation 

studies' mean throughputs has been completed. Siman models of the test cases with 

randomness are found in appendix A. The CIMS lab's FMC software in appendix B. 

TEST CASE I 

The first test case consists of a loading station, a lathe, and a drill. The 

station/conveyor behavior is that the conveyor waits. All robot processing times are 

constant, 42 seconds, as are the service times for the lathe and drill, 207 and 526 seconds, 

respectively. Conveyor speed is set to 90 seconds. In this test case, the CIMS software 

and the Siman model produced identical results, which are summarized on the next page. 

Storage & Retrieval 

Robot Robot 

Loop Convicyor 

Robot Drill 



Comparison of results: 

CIMS Software 

Average number of Parts Completed: 22.5 

Average amount of Time in System: 1920.0 

Average amount of Time on Conveyor: 935.0 

Average number of Parts on Conveyor: 1.46 

Average Station Utilization: enter: 0.13 
lathe: 0.45 
drill: 0.95 

Statistical Comparison of mean throuchput: 

CIMS Software Siman 

observations: 

Siman 

Ho: CIMS mean = Siman mean 

Ha: CIMS mean 0 Siman mean 

t-star: 0 

T.S.: 2.101 

Conclusion: fail to reject Ho, concluding with 95% confidence that CIMS mean 
throughput is not statistically different than SIMAN mean throughput. 



TEST CASE 2 

The second test case consists of the same stations as test case 1, a loading station, 

a lathe, and a drill. The station/conveyor behavior is that the conveyor waits (WIW'). All 

robot processing times are governed by the uniform distribution (with parameters 40, 60). 

Service times are governed by the normal(200,lO) and triangular(500,525,600) 

distributions, for the lathe and drill respectively. Conveyor speed is set to 90 seconds. In 

this test case, the CIMS software and the Siman model produced nearly identical results, 

which are summarized on the next page. 

S I 
Lathe 

Robot Robot 

Loop Conveyor 

Robot Drill 



Com~arison of results: 

CIMS S o h a r e  

Average number of Parts Completed: 21.5 

Average amount of Time in System: 2006.8 

Average amount of Time on Conveyor: 967.8 

Average number of Parts on Conveyor: 1.45 

Average Station Utilization: enter: 0.15 
lathe: 0.45 
drill: 0.96 

Siman 

Statistical Comparison of mean throughput: 

CIMS Software Siman 

observations: 

Ho: CIMS mean = Siman mean 

Ha: CIMS mean 0 Siman mean 

t-star: 3213 

T.S.: 2.101 

Conclusion: fail to reject Ho, concluding with 95% confidence that the mean 
throughput is not statistically different in the CIMS Software and the SIMAN results. 



TEST CASE 3 

The third test case consists of a loading station, a lathe, and two drills. The 

station/conveyor behavior is that the conveyor continues (CIC). With the conveyor 

continuing along while service takes place, duplicating stations is beneficial. All robot 

processing times are constant (42 seconds), as are the service times for the lathe and drill, 

207 and 526 seconds, respectively. Conveyor speed is set to 120 seconds. In this test 

case, the CIMS software and the Siman model produced nearly identical results, which 

are summarized on the next page. 

Storage & Retrieval 

Robot Robot 

Loop Conveyor 
*.*a &$$g@@ 

w** 93. F% 
!# %\ .\.q$$@~$?t p4 

*>,. v.: ... :.:. ..:.:w. $3 >.*.Hs:$5::::$::k *>::::s:g$$g*z::& *v:.:.$$sy;ii$ 
:*s::::*:.:::s::*:<:::y* $&.vm<$:~* &.*...&.&.kx* .&*.w& 

Drill Robot Robot Drill 



Comparison of results: 

CIMS Software 

Average number of Parts Completed: 3 1.5 

Average amount of Time in System: 1830.2 

Average amount of Time on Conveyor: 703.9 

Average number of Parts on Conveyor: 1.54 

Average Station Utilization: enter: 0.18 
lathe: 0.81 
drill: 0.77 
drill: 0.69 

Statistical Comparison of mean throughput: 

CIMS Software Siman 

observations: 33,3 1,32,32,30, 33,33,3 1,30,31, 
32,3 1,3 1,32,3 1 32,30,3 1,32,32 

Ho: CIMS mean = Siman mean 

Ha: CIMS mean 0 Siman mean 

t-star: 

T.S.: 

Siman 

Conclusion: fail to reject Ho, concluding with 95% confidence that mean 
throughput is not statistically different in the CIMS Software and the SIMAN results. 



TEST CASE 4 

The fourth test case consists of the same stations as test case 3, a loading station, a 

lathe, and two drills. The stationlconveyor behavior is the conveyor continues (CIC). All 

robot processing times are governed by the uniform distribution (with parameters 40, 60). 

Service times are governed by the normal(200,lO) and triangular(500,525,600) 

distributions, for the lathe and drill respectively. Conveyor speed remains 120 seconds. 

In this test case, the CIMS software and the Siman model produced somewhat different 

results. The discrepancy is due differences in the way the conveyor is represented in the 

two models, and variations in the way scheduling is done. The Siman model does not 

insure that 'leave service' and 'finish service' events are processed before 'arrival' events 

are, and tends to keep parts on the conveyor longer. The results are still fairly similar, 

and are summarized on the next page. 

p4381g@ $>.& q.:.:.: ..:< 

3 .:.:.:.:.,, 
a<:<* . . . .,. . <S*.$$ &+ \\?* @$*$ 

?.....X< <<A<:.% 

8 g:~*,.+~~.*&$ 
j@>gg@@~$: &$$@gzg@!+ <.:.:wa3:w3$>~.$ 

.\..\Y\..\ 

Storage & Retrieval @>$;$g$$@$3 
2g%c.iC;i& Lathe 

Robot Robot 

Loop Conveyor 
333-rn q$.s;Wy . $$ .+ ,A.. :.:& 

$.. 
$83 
y4 $8 

* t ? r n & $ 4  m:::s:$::*i;$ 
rw*<<w 

Drill Robot Robot Drill 



Comparison of results: 

CIMS Software Siman 

Average number of Parts Completed: 31.4 

Average amount of Time in System: 1837.4 

Average amount of Time on Conveyor: 640.4 

Average number of Parts on Conveyor: 1.39 

Average Station Utilization: enter: 0.22 
lathe: 0.82 
drill: 0.81 
drill: 0.76 

Statistical Com~arison of mean throughput: 

CIMS Software Siman 

observations: 30,34,32,3 1,30, 3 1,29,29,30,30 
3 1,32,32,30,32 30,29,30,28,3 1 

Ho: CIMS mean = Siman mean 

Ha: CIMS mean 0 Siman mean 

t-star: 3.041 1 

T.S.: 2.101 

conclusion: reject Ho, concluding with 95% confidence that mean throughput is 
statistically different in CIMS Software and SIMAN results. 



TEST CASE 5 

The fifth test case consists of a loading station, a lathe, and two drills. The 

statiodconveyor behavior is that the pallet waits (C/W). All robot processing times are 

constant (42 seconds), as are the service times for the lathe and drill, 207 and 526 

seconds, respectively. Conveyor speed is set to 120 seconds. In this test case, the CIMS 

software and the Siman rnodel produced nearly identical results, which are summarized 

on the next page. 

.:.:.:.:.. 

.* k; 
ty<::x?t2 >y*2>> ,, <<::::::$:':sm* Storage & Retrieval &&$&@@ 

&x:::::*:::::$::::::*y::$t ~*;<+p$~$$$$&<$ Lathe 
Robot Robot 

Loop Conveyor R$$@$$ 
. . . .*:i''<*3; g a:@$B$ 

%$$y~?.:.::* 
$8 g .' '"@ 
.?r< * ..xv 
$::% @ 

$*>?::y:v&$s 
.,,.:> 

$v!::.:::::>::::?::<$ ,.? :... 
x*s:a>>>*;.i 

k.:b a:g$>@x$g$ 
$$@g*$g$ 

Drill Robot Robot Drill 



Comparison of results: 

CIMS Software Siman 

Average number of Parts Completed: 40.0 

Average amount of Time in System: 1444.5 

Average amount of Time on Conveyor: 399.5 

Average number of Parts on Conveyor: 1.11 

Average Station Utilization: enter: 0.29 
lathe: 0.86 
drill: 0.87 
drill: 0.87 

Statistical Comparison of mean throughput: 

CIMS Software Siman 

observations: 40,40,40,40,40, 40,40,40,40,40, 
40,40,40,40,40 40,40,40,40,40 

Ho: CIMS mean = Siman mean 

Ha: CIMS mean 0 Siman mean 

t-star: 0 

T.S.: 2.101 

conclusion: fail to reject Ho, concluding with 95% confidence that mean 
throughput is not statistically different in CIMS Software and SIMAN results. 



TEST CASE 6 

The sixth test case consists of the same stations as test case 5, a loading station, a 

lathe, and two drills. The station/conveyor behavior remains pallet waits (CIW). All 

robot processing times are governed by the uniform distribution (with parmeters 40, 60). 

Service times are governed by the nonnal(200,lO) and triangular(500,525,600) 

distributions, for the lathe and drills respectively. Conveyor speed is set to 120 seconds. . 

In this test case, the CIMS software and the Siman model produced nearly identical 

results, which are summarized on the next page. 

,..& ,.*s+.+~ 
\$&*+ %. 

& ~ .q$@$Bs$  
&:$$$$w$$ Storage L Retrieval pmg$ 
.v,,Am*& Lathe 
Robot Robot 

......... 
Loop Conveyor 

%$$*$$jgg@ &$::* ...... .v ,$< ...... :<.&tq gj$$ 
& *s> 88 

>::s ......... 
<:x.~.:.>:.:.:<:~> $g??::::::$:::w ..... :...:.:.:. ......... : *........... ox<.... 
Drill Robot Drill 



Comparison of results: 

CIMS Software 

Average number of Parts Completed: 37.1 

Average amount of Time in System: 1555.9 

Average amount of Time on Conveyor: 455.8 

Average number of Parts on Conveyor: 1.17 

Average Station Utilization: enter: 0.3 1 
lathe: 0.82 
drill: 0.85 
drill: 0.84 

Statistical Comparison of mean throughput: 

CIMS Software Siman 

observations: 36,38,36,36,38, 36,40,36,38,38, 
38,36,38,37,38 36,38,38,38,37 

Ho: CIMS mean = Siman mean 

Ha: CIMS mean 0 Siman mean 

Sp-squared: 

t-star: 

T.S.: 2.101 

conclusion: fail to reject Ho, concluding with 95% confidence that mean 
throughput is not statistically different in CIMS Software and SIMAN results. 

Siman 



4.5 Conclusion and Future Works 

The CIMS lab's FMC Simulation Software models manufacturing systems 

resembling the one in the manufacturing engineering department's Computer Integrated 

Manufacturing Systems lab well. It adds a number of stationlconveyor interaction 

schemes not currently available on the actual system, and shows that throughput is very 

much affected by the stationlconveyor interaction used. It allows the user to add 

machines and simulate manufacturing processes that are much more complicated than the 

actual manufacturing system cell could accommodate. 

The software is limited in that it can model only manufacturing cell 

configurations closely resembling the CIMS lab's FMC. The modeling of such cell 

configurations is easily accomplished with the CIMS FMC software, but what of other 

cell configurations? What results could be obtained by providing queuing at various 

stations? Perhaps the conveyor needn't ever be stopped, pallets might be routed off of the 

conveyor at station sites without requiring the conveyor to stop. 

The software could be expanded to allow for numerous part types. The basic 

configuration might be made more sophisticated, with sub-conveyors or shared robots. 

What if the whole loop conveyor arrangement was abandoned? 

There are several ways in which the software could be enhanced. With increased 

flexibility, however, comes increased complexity. The original premise was, after all, to 

provide a tool for the novice user. A software system that would allow someone with 

little or no knowledge of simulation techniques or terminology to experiment with cell 

configurations, design considerations and processing requirements. Toward this end, 

perhaps the most beneficial enhancement would be a graphical user interface andlor 

animation capabilities. 



5.0 Bibliography 

Cheng, T. C. E. "Simulation of Flexible Manufacturing Systems." 
Simulation (December 1985): 299-303. 

Haider, S. Wali, and Banks, Jerry. 
"Simulation Software Products For Analyzing Manufacturing 
Systems." Industrial Engineering 18 (July 1986): 98-1 03. 

Hoover, Stewart V., and Perry, Ronald F. 
Simulation. A Problem-Solving Approach. 
Addison-Wesley Publishing Company, Inc., 1990 

h e g e r ,  Charles W. "Software Reuse." 
ACM Computing Surveys 24-2 (June 1992): 13 1-179. 

Law, Averill M., and Haider, S. Wali. 
"Selecting Simulation Software for Manufacturing Applications: 
Practical Guidelines & Software Survey." 
Industrial Engineering 28 (May 1989): 33-36. 

Law, Averill M., and McComas, Michael G. 
"Pitfalls To Avoid In The Simulation Of Manufacturing Systems." 
Industrial Engineering 21 (May 1989): 28-3 I+. 

Law, Averill M., and McComas, Michael G. 
"How To Select Simulation Software For Manufacturing 
Applications." 
Industrial Engineering 24 (July 1 992): 29-3 5. 

Mott, Jack, and Tumay, Ken 
"Developing A Strategy For Justifying Simulation." 
Industrial Engineering 28 (July 1992): 38-42. 

Musil, David C., and Akbay, Kunter S. 
"Improve Efficiency Of A FMS Cell Through Use Of A 
Computer Simulation Model." 

Industrial Engineering 21 (November 1989): 28-34. 
Norman, Van B. "Future Directions In Manufacturing Simulation" 

Industrial Engineering 24 (July 1992): 36-37. 
Nwoke, Ben U., and Nelson, Ben R. 

"An Overview of Computer Simulation in Manufacturing." 
Industrial Engineering 25 (July 1993): 43-45. 

Smith, David Canfield; Cypher, Allen; and Spohrer, Jim. 
"KIDSIM: Programing Agents Without a Programming 
Language." Communications of the ACM 37-7 (July 1994): 55-67. 

Winton, Wayne L. Operations Research. Application & Algorithms, 
PWS-KENT Publishing Company, 1991. 



6.1 Appendix A 

Siman Test Case Code 



BEGIN; 
CREATE ; 

ASSIGN:STAOBUS=O: 
STAlBUS=O: 
STA2BUS=O: 
PIS=l: 
MPIS=3 : 
INTERSTA=30: 
DT=1: 
STOPREQ=O: 
NEED1=1: 
NEED2=1: 
TCT=O : 
MARK (ARTIME) : 
NEXT ( LSTAO ) ; 

ENTRY ASSIGN:PIS=PIS+l: 
NEED1=1: 
NEED2=1: 
TCT=O : 
MARK (ARTIME) ; 

LSTAO QUEUE, STAOQ ; 
SE1ZE:STAO; 
ASSIGN:STAOBUS=l; 
BRANCH, 2 : 
ALWAYS,STOPCON,NO: 
ALWAYS, LSTAOA, YES; 

LSTAOA BRANCH, 1 : 
IF, ( (NEED1==1) .AND.   NEED^==^) ) I LSTAOB, YES: 
ELSE,DONEPART,YES; 

DONEPART ASSIGN:TCT=TCT+(TNOW-ARCONV); 
DELAY:UNIF (40,60) ; 
COUNT : PARTS, 1 ; 
TALLY: 1, INT (ARTIME) ; 
TALLY : 2, TCT ; 
ASSIGN:NEEDl=l: 

NEED2=1: 
TCT=O : 
MARK (ARTIME) ; 

LSTAOB DELAY:UNIF (40~60) ; 
RELEASE:STAO; 
ASSIGN:STAOBUS=O: 

I MARK (ARCONV) ; 
BRANCH, 2 : 
ALWAYS,LCl,YES: 
ALWAYS,GOCON,NO; 

LSTAl BRANCH, 2 : 
IF,PIS<MPIS,ENTRY,NO: 
ALWAYS, LSTAlA, YES ; 

LSTAlA BRANCH, 1 : 
IF1STA1BUS==1,LC2,YES: 
ELSE,LSTAlB,YES; 

t 



LSTAlC 

QUEUE, STAlQ; 
SE1ZE:STAl; 
ASSIGN:STAlBUS=l: 

TCT=TCT+ (TNOW-ARCONV) : 
NEEDl=O ; 

BRANCH, 2 : 
ALWAYS, STOPCON, NO : 
ALWAYS, LSTAlC, YES ; 

DELAY:UNIF(~O,~O) ; 
DELAY:NORM (200,lO) ; 
DELAY:UNIF(~O,~O) ; 
RELEASE:STAl; 
ASSIGN:STAlBUS=O: 

MARK (ARCOW) ; 
BRANCH, 2 : 
ALWAYS,LC2,YES: 
ALWAYS, GOCON, NO; 

BRANCH, 1 : 
IF, STA2BUS==1, LCO, YES : 
ELSE,LSTA2A1YES; 

QUEUE,STA2Q; 
SEIZE:STA2; 
ASSIGN:STA2BUS=l: 

TCT=TCT+ (TNOW-ARCOW) : 
NEED2=O ; 

BRANCH, 2 : 
ALWAYS, STOPCON, NO : 
ALWAYS, LSTA2B, YES ; 

DELAY:UNIF(~O,~O) ; 
DELAY:TRIA(500,525,600) ; 
DELAY:UNIF (40,60) ; 
RELEASE:STA2; 
ASSIGN:STA2BUS=O: 

MARK (ARCOW) ; 
BRANCH, 2 : 
ALWAYS, LC0 , YES : 
ALWAYS, GOCON, NO ; 

ASSIGN:CONlT=O; 
QUEUE, ClQ; 
SEIZE : C1; 
DELAY : DT ; 
ASSIGN:CONlT=CONlT+l; 
RELEASE:Cl; 
BRANCH, 1 : 

IF,CONlT==INTERSTA,LSTAl,YES: 
ELSE, R1, YES ; 

ASSIGN:CON2T=O; 
QUEUE, C2Q; 
SEIZE:C2; 
DELAY : DT ; 
ASSIGN:CON2T=CON2T+l; 
RELEASE:C2; 
BRANCH, 1 : 



IFrCON2T==INTERSTA,LSTA2,YES: 
ELSE, R2, YES ; 

ASSIGN:CONOT=O; 
QUEUE, COQ; 
SEIZE : CO ; 
DELAY : DT ; 
ASSIGN:CONOT=CONOT+l; 
RELEASE:CO; 
BRANCH, 1 : 
IF,CONOT==INTERSTA,LSTAO,YES: 
ELSE, RO , YES ; 

GOCON BRANCH, 1 : 
IF,STOPREQ==l,ENABLE,YES: 
ELSE, DONT, YES ; 

ENABLE ALTER : C1, MPIS : 
C2,MPIS: 
CO, MPIS; 

DONT ASSIGN:STOPREQ=STOPREQ-1: 
DISPOSE ; 

STOPCON BRANCH, 1 : 
IF, STOPREQ==O,DISABLE,YES: 
ELSE,DONOT,YES; 

DISABLE ALTER:Cl,-MPIS: 
C2, -MPIS : 
CO, -MPIS; 

DONOT ASSIGN:STOPREQ=STOPREQ+l: 
DISPOSE; 

DELENT DELAY : DT : NEXT (LSTAO ) ; 



BEGIN; 
DISCRETE,,8,6; 
PROJECT,TC102,Don Anderson; 

ATTR1BUTES:ARCONV: 
ARTIME : 
NEED1 : 
NEED2 : 
CONlT : 
CON2T : 
CONOT : 
TCT ; 

RESOURCES: STAO: 
C1,3 : 
STA1: 
C2,3: 
STA2 : 
C0,3; 

QUEUES : STAOQ : 
ClQ: 
STA1Q : 

I C2Q: 
STA2Q : 
COQ; 

VARIABLES: STAOBUS: 
STAlBUS : 

1 STA2BUS : 
DT : 
INTERSTA : 
STOPREQ : 
PIS: 
MPIS; 

b 
PARAMETERS: 1,1,110: 

2/1/42; 

COUNTERS : 1, PARTS ; 

)TALLIES:~,TIME IN SYSTEM: 
2,TIME ON CONVEYOR; 

DSTATS:l,NR(Cl)+NR(C2)+NR(CO)+NQ(ClQ)+NQ(C2Q)+NQ(COQ) C O E Y  - UTIL: 
2, NR (STAO) +NQ (STAOQ) , STAO UTIL: 
3, NR (STAI) +NQ (STAIQ) , STAI-UTIL : 

B 4,NR(STA2) +NQ (STA2Q) , STA~~UTIL; - 



BEGIN; 
CREATE ; 

ALTER:STAll,-1: 
STA22, -1: 
STA33, -1; 

ASSIGN:STAOBUS=O: 
STAlBUS=O: 
STA2BUS=O: 
STA3BUS=O: 
PIS=O : 
MPIS=4 : 
INTERSTAz30: 
DT=1 : 
STOPREQ=O: 
NEXT (ENTRY) ; 

ENTRY ASSIGN:PIS=PIS+l: 
I EMPTY=O : 

NEEDO=l : 
NEEDl=l : 
NEED2=1: 
TCT=O : 
MARK (ARTIME) : 

1 NEXT (LSTAO ) ; 

LSTAO BRANCH, 1 : 
IF,EMPTY==l,ELCl,YES: 
IFl(NEEDO==l.AND.S~AOBUS==1),DELENT,YES: 
IF, (NEEDO==~.AND.STAOBUS==O)~LSTAOA,YES: 

1 IF, (STAOBUS==l) , LC1, YES : 
IF,(NEEDl==l.OR.NEED2==1), LC1, YES : 
IF,(NEEDl==O.AND.NEED2==0), LSTAOA,YES; 

LSTAOA QUEUE,STAOQ; 
1 SE1ZE:STAO; 

ASSIGN:STAOBUS=l; 
BRANCH, 2 : 
ALWAYS, LSTAOC, YES : 
ALWAYS,STOPCON,NO; 

b 
LSTAOC BRANCH, 1 : 

IF, ( (NEEDl==O) .AND. (NEED2==0) ) ,DONEPARTIYES: 
ELSE, LSTAOD, YES ; 

DONEPART ASSIGN:TCT=TCT+(TNOW-ARCONV); 
b DELAY:AINT(UNIF (4030) ) ; 

COUNT:PARTS,l; 
TALLY: 1, INT (ARTIME) ; 
TALLY : 2, TCT ; 
ASSIGN:EMPTY=O: 

NEEDO=O : 
B NEED1=1: 

NEED2=1: 
TCT=O : 
MARK (ARTIME) ; 

LSTAOD DELAY:AINT(UNIF(40,60)); 
B 



' LSTAlB 

LSTAlC 

B 

1 

LSTAlD 

EMT02 

LSTAlE 

b 

RELEASE : STAO ; 
ASSIGN:STAOBUS=O: 

NEEDO=O : 
MARK (ARCONV) ; 

BRANCH, 2 : 
ALWAYS, LC1, YES : 
ALWAYS, GOCON, NO ; 

BRANCH, 2 : 
IF,PIS<MPIS,ENTRY,NO: 
ALWAYS, LSTAlA, YES ; 

BRANCH, 1 : 
IF,(EMPTY==l.AND.STAlBUS==O),ELC2,YES: 
IF,(EMPTY==0.AND.STA1BUS==1)ILC21YES: 
IF,(EMPTY==O.AND.STA1BUS==0),LSTA1BIYES: 
IF, (EMPTY==l.AND.STAlBUS==l),DSTAl,YES; 

BRANCH, 1 : 
IF,NEEDl==l,LSTAlC,YES: 
ELSE, LC2, YES ; 

QUEUE, STAlQ ; 
SE1ZE:STAl; 
ASSIGN:STAlBUS=l: 

STAlDON=O: 
TCT=TCT+ (TNOW-ARCONV) : 
NEEDl=O; 

BRANCH, 2 : 
ALWAYS, LSTAlD, YES : 
ALWAYS,STOPCON,NO; 

DELAY:AINT (UNIF (40,60) ) ; 
BRANCH, 3 : 
ALWAYS,LSTAlE,YES: 
ALWAYStEMT02,NO: 
ALWAYS,GOCON,NO; 

DELAY:AINT(NORM(200,10) ) ; 
ASSIGN:STAlDON=l; 
QUEUE,STAllQ; 
SE1ZE:STAll; 
BRANCH, 2 : 
ALWAYS,LSTAlF,YES: 
ALWAYS, STOPCON, NO; 

DELAY:AINT(UNIF(~O,~O) ) ; 
RELEASE:STAl; 
RELEASE:STAll; 
ALTER:STAll,-1; 
ASSIGN:STAlBUS=O: 

STAlDON=O: 
MARK (ARCONV) ; 

BRANCH, 2 : 
ALWAYS, LC2, YES : 
ALWAYS, GOCON, NO ; 

BRANCH, 1 : 



IF,STAlDON==l,DSTAlA,YES: 
ELSE, DSTAlB, YES ; 

DSTAlA 

DSTAlB BRANCH, 1 : 
ALWAYS,ELC2,YES; 

BRANCH, 1 : 
IF,(EMPTY==l.AND.STA2BUS==O),ELC3,YEs: 
IF,(EMPTY==O.AND.STA2BUS==l),LC3,YES: 
IF,(EMPTY==O.AND.STA2BUS==0),LSTA2BIYES: 
IFl(EMPTY==l.AND.STA2BUS==1),DSTA2,YES; 

BRANCH, 1 : 
IFrNEED2==1,LSTA2C,YES: 
ELSE,LC3,YES; 

QUEUE,STA2Q; 
SEIZE:STA2; 
ASSIGN:STA2BUS=l: 

STA2DON=O: 
TCT=TCT+ (TNOW-ARCONV) : 
NEED2 = 0 ; 

BRANCH, 2 : 
ALWAYSlLSTA2D,YES: 
ALWAYS, STOPCON, NO ; 

DELAY:AINT (UNIF (40,60) ) ; 
BRANCH, 3 : 
ALWAYS, LSTA2El YES : 
ALWAYS1EMT03,NO: 
ALWAYS,GOCON,NO; 

DELAY:AINT(TRIA(~OO,~~~,~OO) ) ; 
ASSIGN:STA2DON=l; 
QUEUE,STA22Q; 
SEIZE:STA22; 
BRANCH, 2 : 
ALWAYS1LSTA2F,YES: 
ALWAYS,STOPCON,NO; 

DELAY:AINT (UNIF (40,60) ) ; 
RELEASE:STA2; 
RELEASE:STA22; 
ALTER:STA22,-1; 
ASSIGN:STA2BUS=O: 

STA2DON=O: 
MARK (ARCONV) ; 

BRANCH, 2 : 
ALWAYS,LC3,YES: 
ALWAYS, GOCON, NO ; 

BRANCH, 1 : 
IF,STA2DON==l1DSTA2A,YES: 
ELSE, DSTA2B, YES ; 



BRANCH, 1 : 
ALWAYS, ELC3, YES ; 

BRANCH, 1 : 
IF,(EMPTY==1.AND.STA3BUS==O)IELCOIYES: 
IF1(EMPTY==O.AND.STA3BUS==1) ,LCO,YES: 
IFI(EMPTY==O.AND.STA3BUS==O),LSTA3B,YES: 
IF,(EMPTY==l.AND.STA3BUS==l),DSTA3,YES; 

BRANCH, 1 : 
IF,NEED2==1, LSTA3C,YES: 
ELSE,LCO,YES; 

QUEUE, STA3Q ; 
SEIZE:STA3; 
ASSIGN:STA3BUS=l: 

STA3DON=O: 
TCT=TCT+ (TNOW-ARCONV) : 
NEED2=O; 

BRANCH, 2 : 
ALWAYS, LSTA3D, YES : 
ALWAYS,STOPCON,NO; 

DELAY:AINT(UNIF (4ofio) ) ; 
BRANCH, 3 : 
ALWAYS,LSTA3E1YES: 
ALWAYS, EMTOO, NO : 
ALWAYS, GOCON, NO ; 

ASSIGN: EMPTY=l :NEXT (ELCO) ; 

DELAY:AINT (TRIA(500, 525 , 600) ) ; 
ASSIGN:STA3DON=l; 
QUEUE1STA33Q; 
SEIZE:STA33; 
BRANCH, 2 : 
ALWAYS, LSTA3F, YES : 
ALWAYS, STOPCON, NO; 

DELAY:AINT(UNIF(~O,~O) ) ; 
RELEASE:STA3; 
RELEASE:STA33; 
ALTER:STA33,-1; 
ASSIGN:STA3BUS=O: 

STA3DON=O: 
MARK (ARCONV) ; 

BRANCH, 2 : 
ALWAYS, LC0 , YES : 
ALWAYS, GOCON, NO ; 

BRANCH, 1 : 
IF1STA3DON==1,DSTA3A,YES: 
ELSE,DSTA3B1YES; 

BRANCH, 1 : 
ALWAYS,ELCO,YES; 



ELCl 
' ER1 

ASSIGN:CONlT=O; 
QUEUE, C1Q; 
SEIZE : C1; 
DELAY : DT ; 
ASSIGN:CONlT=CONlT+l; 
RELEASE:Cl; 
BRANCH, 1 : 
IF, CONlT==INTERSTA, LSTA1 ,YES : 
ELSE,Rl,YES; 

ASSIGN:CONlT=O; 
QUEUE,EClQ; 
SE1ZE:ECl; 
DELAY : DT ; 
ASSIGN:CONlT=CONlT+l; 
RELEASE : EC1; 
BRANCH, 1 : 

IF,CONlT==INTERSTA,LSTAl,YES: 
ELSE,ERl,YES; 

ASSIGN:CON2T=O; 
QUEUE, C2 Q ; 
SEIZE:C2; 
DELAY: DT; 
ASSIGN:CON2T=CON2T+l; 
RELEASE:C2; 
BRANCH, 1 : 
IF, CON2T==INTERSTA, LSTA2 ,YES : 
ELSE, R2, YES ; 

ASSIGN:CON2T=O; 
QUEUE,EC2Q; 
SEIZE:EC2; 
DELAY: DT; 
ASSIGN:CON2T=CON2T+l; 
RELEASE:EC2; 
BRANCH, 1 : 
IF1CON2T==INTERSTA,LSTA2,YES: 
ELSE, ER2, YES ; 

ASSIGN:CON3T=O; 
QUEUE, C3Q; 
SEIZE:C3; 
DELAY : DT ; 
ASSIGN:CON3T=CON3T+l; 
RELEASE:C3; 
BRANCH, 1 : 
IF,CON3T==INTERSTA1LSTA3,YES: 
ELSE, R3, YES ; 

ASSIGN:CON3T=O; 
QUEUE,EC3Q; 
SEIZE:EC3; 
DELAY : DT ; 
ASSIGN:CON3T=CON3T+l; 
RELEASE:EC3; 
BRANCH, 1 : 

IF,CON3T==INTERSTA1LSTA3,YES: 
ELSE, ER3, YES ; 



ELCO 
ERO 

GOCON 

I 

ENABLE 

DONT 

1 
STOPCON 

DISABLE 
b 

DONOT 

ASSIGN:CONOT=O; 
QUEUE, COQ; 
SEIZE : CO ; 
DELAY : DT ; 
ASSIGN:CONOT=CONOT+l; 
RELEASE:CO; 
BRANCH, 1 : 
IF,CONOT==INTERSTA,LSTAO,YES: 
ELSE, RO , YES ; 

ASSIGN:CONOT=O; 
QUEUE,ECOQ; 
SE1ZE:ECO; 
DELAY : DT ; 
ASSIGN:CONOT=CONOT+l; 
RELEASE:ECO; 
BRANCH, 1 : 

IF,CONOT==INTERSTA,LSTAO,YES: 
ELSE,ERO,YES; 

BRANCH, 1 : 
IF,STOPREQ==l,ENABLE,YES: 
ELSE, DONT, YES ; 

ALTER:Cl,MPIS: 
C2, MPIS : 
C3, MPIS : 
CO, MPIS : 
EC1,MPIS : 
EC2, MPIS : 
EC3, MPIS : 
ECO, MPIS; 

ASSIGN:STOPREQ=STOPREQ-1: 
DISPOSE ; 

BRANCH, 1 : 
IF, STOPREQ==O,DISABLE,YES: 
ELSE,DONOT,YES; 

ALTER:Cl,-MPIS: 
C2, -MPIS : 
C3, -MPIS : 
CO, -MPIS : 
EC1,-MPIS: 
EC2, -MPIS : 
EC3, -MPIS : 
ECO, -MPIS; 

ASSIGN:STOPREQ=STOPREQ+l: 
DISPOSE ; 

DELENT 
b 

DELAY : DT : NEXT (LSTAO ) ; 



BEGIN; 
DISCRETE, ,11, 15 ; 
PROJECTfTC202,Don Anderson; 

ATTR1BUTES:ARCONV: 
ARTIME : 
EMPTY : 
NEEDO : 
NEED1 : 
NEED2 : 
CONlT : 
CON2T : 
CON3 T : 
CONOT : 
TCT; 

RESOURCES: STAO: 
I C1,4: 

EC1,4: 
STA1: 
STA11: 
C2,4: 
EC2,4: 
STA2 : 
STA2 2 : 
C3,4: 
EC3,4: 
STA3 : 
STA3 3 : 

I C0,4: 
EC0,4; 

QUEUES : STAOQ : 
C1Q: 
EClQ: 

I STAlQ : 
STA11Q : 
C2Q: 
EC2Q: 
STA2Q : 
STA22Q: 
C3Q: 
EC3Q: 
STA3Q : 
STA33Q: 
COQ: 
ECOQ; 

B 
VARIABLES: STAOBUS: 

STAlBUS : 
STA2BUS : 
STA3BUS : 
STAIDON : 
STA2DON : 
STA3DON : 
DT : 
INTERSTA : 
STOPREQ : 
PIS: 



MPIS; 

PARAMETERS: 1,1,110: 
2,1,42; 

TALLIES:l,TIME IN SYSTEM: 
2, TIME ON CONVEYOR; 

DSTATS:l,NR(Cl) +NR(C2)+NR(C3)+NR(CO)+ 
NQ (ClQ) +NQ (C2Q) +NQ (C3Q) +NQ (COQ) , CONVEY - UTIL: 

2, NR (STAO) +NQ (STAOQ) , STAO UTIL: 
3, NR (STAl) +NQ (STAlQ) ,STAI-UTIL : 
4,NR(STA2) +NQ (STA2Q) 3~~2-UTIL: 
5,NR(STA3) +NQ (STA3Q) 3~~3-UTIL; - 

REPLICATE, 10,, 144001NOIYESI 7200; 
I 



BEGIN; 
CREATE ; 

ASSIGN:STAOBUS=O: 
STAlBUS=O: 
STA2BUS=O: 
STA3BUS=O: 
PIS=O : 
MPIS=4 : 
INTERSTA=3 0 : 
DT=1 : 
STOPREQ=O: 
NEXT (ENTRY) ; 

ENTRY ASSIGN:PIS=PIS+l: 
NEEDO=l : 
NEED1=1: 
NEED2=1: 
TCT=O : 
MARK (ARTIME) : 
NEXT (LSTAO ) ; 

LSTAO BRANCH, 1 : 
IF, (NEEDO==l.AND.STAOBUS==l),DELENT,YES: 

I IF,(NEEDO==~.AND.STAOBUS==O),LSTAOA,YES: 
IF, (STAOBUS==~), LCI, YES : 
IF,(NEEDl==l.OR.NEED2==1), LC1, YES : 
IF1(NEED1==O.AND.N~ED2==0), LSTAOA,YES; 

LSTAOA QUEUE,STAOQ; 
1 SE1ZE:STAO; 

ASSIGN:STAOBUS=l; 

LSTAOC BRANCH, 1 : 
IF, ( (NEEDl==O) .AND. (NEED2==0) ) ,DONEPARTIYES: 
ELSE,NEWPART,YES; 

1 

DONEPART ASSIGN:TCT=TCT+(TNOW-ARCOW) ; 
BRANCH, 2 : 
ALWAYS,STOPCON,NO: 
ALWAYS, DP2, YES ; 

DP2 DELAY: 10 ; 
BRANCH, 2 : 
ALWAYS,DP3,YES: 
ALWAYS, GOCON, NO ; 

DP3 DELAY:UNIF (40,60) ; 
1 COUNT : PARTS, 1 ; 

TALLY : 1, INT (ARTIME) ; 
TALLY:2,TCT; 
ASSIGN:NEEDO=O: 

NEED1=1: 
NEED2=1: 

b TCT=O : 
MARK (ARTIME) ; 

NEWPART DELAY:UNIF(~O,~O); 
BRANCH, 2 : 
ALWAYS,STOPCON,NO: 

b 



LSTAOE 

LSTAl 

LSTAlC 
L 

1 

LSTAlD 

b 

LSTAlF 

DELAY: 10 ; 
RELEASE:STAO; 
ASSIGN:STAOBUS=O: 

NEEDO=O : 
MARK (ARCONV) ; 

BRANCH, 2 : 
ALWAYS,LCl,YES: 
ALWAYS, GOCON, NO ; 

BRANCH, 2 : 
IF, PIS<MPIS, ENTRY,NO: 
ALWAYS, LSTAlA, YES ; 

BRANCH, 1 : 
IF,STAlBUS==l,LC2,YES: 
ELSE, LSTAlB, YES ; 

BRANCH, 1 : 
IF,NEEDl==l,LSTAlC,YES: 
ELSE, LC2, YES ; 

QUEUE,STAlQ; 
SE1ZE:STAl; 
ASSIGN:STAlBUS=l: 

TCT=TCT+ (TNOW-ARCONV) : 
NEEDl=O ; 

BRANCH, 2 : 
ALWAYS,STOPCON,NO: 
ALWAYS,LSTAlD,YES; 

DELAY: 10 ; 
BRANCH, 2 : 
ALWAYS,LSTAlE,YES: 
ALWAYS,GOCON,NO; 

DELAY:uNIF(~O,~O) ; 
DELAY:NORM(200,10) ; 
DELAY:UNIF(40,60) ; 
BRANCH, 2 : 
ALWAYS,STOPCON,NO: 
ALWAYS,LSTAlF,YES; 

DELAY:10; 
RELEASE:STAl; 
ASSIGN:STAlBUS=O: 

MARK (ARCONV) ; 
BRANCH, 2 : 
ALWAYS,LC2,YES: 
ALWAYS, GOCON, NO ; 

BRANCH, 1 : 
IF, STA2BUS==lt LC3, YES: 
ELSEtLSTA2B,YES; 

BRANCH, 1 : 
IF, NEED2==1, LSTA2C, YES : 
ELSE, LC3, YES ; 



QUEUE,STA2Q; 
SEIZE:STA2; 
ASSIGN:STA2BUS=l: 

TCT=TCT+ (TNOW-ARCONV) : 
NEED2=O ; 

BRANCH, 2 : 
ALWAYS,STOPCON,NO: 
ALWAYS, LSTA2D, YES ; 

DELAY: 10 ; 
BRANCH, 2 : 
ALWAYS,LSTA2ErYES: 
ALWAYS, GOCON, NO ; 

DELAY:uNIF(~O,~O)~~; 
DELA~:TRIA(500,525,600) ; 
DELAY:UNIF (40,50) ; 
BRANCH, 2 : 
ALWAYS,STOPCON,NO: 
ALWAYS, LSTA2F, YES; 

DELAY: 10 ; 
RELEASE:STA2; 
ASSIGN:STA2BUS=O: 

MARK (ARCONV) ; 
BRANCH, 2 : 
ALWAYS, LC3, YES : 
ALWAYS, GOCON, NO ; 

BRANCH, 1 : 
IF,STA3BUS==l,LCO,YES: 
ELSE1LSTA3B,YES; 

BRANCH, 1 : 
IF,NEED2==lfLSTA3C,YES: 
ELSE,LCO,YES; 

QUEUE, STA3 Q ; 
SEIZE:STA3; 
ASSIGN:STA3BUS=l: 

TCT=TCT+ (TNOW-ARCONV) : 
NEED2=O ; 

BRANCH, 2 : 
ALWAYS,STOPCON,NO: 
ALWAYS1LSTA3D,YES; 

DELAY:10; 
BRANCH, 2 : 
ALWAYS, LSTA3E, YES : 
ALWAYS,GOCON,NO; 

DELAY:UNIF(~O,~O) ; 
DELAY:TRIA(500,525,600) ; 
DELAY:UNIF(40,60) ; 
BRANCH, 2 : 
ALWAYS, STOPCON, NO : 
ALWAYS, LSTA3F, YES ; 

DELAY: 10; 
RELEASE:STA3; 



ASSIGN:STA3BUS=O: 
MARK (ARCONV) ; 

BRANCH, 2 : 
ALWAYS,LCO,YES: 
ALWAYS, GOCON, NO ; 

LC1 ASSIGN:CONlT=O; 
R1 QUEUE, ClQ; 

SEIZE : C1; 
DELAY : DT ; 
ASSIGN:CONlT=CONlT+l; 
RELEASE:Cl; 
BRANCH, 1 : 

IF,CONlT==INTERSTA,LSTAl,YES: 
ELSE, R1, YES ; 

LC2 ASSIGN:CON2T=O; 
R2 QUEUE, C2Q; 

I SEIZE : C2 ; 
DELAY : DT ; 
ASSIGN:CON2T=CON2T+l; 
RELEASE:C2; 
BRANCH, 1 : 

IF,CON2T==INTERSTA1LSTA2,YES: 
I ELSE, R2, YES ; 

LC3 ASSIGN:CON3T=O; 
R3 QUEUE, C3Q; 

SEIZE:C3; 
DELAY: DT; 

b ASSIGN:CON3T=CON3T+l; 
RELEASE:C3; 
BRANCH, 1 : 

IF, CON3T==INTERSTAI LSTA3 ,YES : 
ELSE, R3, YES ; 

) LC0 ASSIGN:CONOT=O; 
RO QUEUE, COQ; 

SEIZE : CO ; 
DELAY : DT ; 
ASSIGN:CONOT=CONOT+l; 
RELEASE:CO; 

b BRANCH, 1 : 
IF,CONOT==INTERSTA,LSTAO,YES: 
ELSE,RO,YES; 

GOCON BRANCH, 1 : 
IF,STOPREQ==l,ENABLE,YES: 
ELSE, DONT, YES ; 

b 
ENABLE ALTER:Cl,MPIS: 

C2, MPIS : 
C3, MPIS : 
CO, MPIS; 

) DONT ASSIGN:STOPREQ=STOPREQ-1: 
DISPOSE; 

STOPCON BRANCH, 1 : 
IF, STOPREQ==O,DISABLE,YES: 
ELSE,DONOT,YES; 

B 



DISABLE ALTER:Cl,-MPIS: 
C2, -MPIS : 
C3, -MPIS : 
CO, -MPIS; 

DONOT ASSIGN:STOPREQ=STOPREQ+i: 
DISPOSE; 

DELENT DELAY : DT : NEXT (LSTAO ) ; 



BEGIN; 
DISCRETE, ,11,8; 
PROJECT,TC302,Don Anderson; 

ATTR1BUTES:ARCONV: 
ARTIME : 
EMPTY : 
NEED0 : 
NEED1 : 
NEED2 : 
CONlT : 
CON2T : 
CON3 T : 
CONOT : 
TCT; 

RESOURCES: STAO: 
I C1,4: 

STA1: 
C2,4: 
STA2 : 
c3/4: 
STA3 : 

I C0,4; 

QUEUES : STAOQ : 
C1Q: 
STAlQ : 
C2Q: 

1 STA2Q : 
C3Q: 
STA3Q : 
COQ; 

VARIABLES: STAOBUS: 
I STAlBUS : 

STA2BUS : 
STA3BUS : 
DT : 
INTERSTA : 
STOPREQ : 

b PIS: 
MPIS; 

PARAMETERS: 1,1,110: 
2/1/42; 

COUNTERS : 1, PARTS ; 

TALLIES:l,TIME IN SYSTEM: 
2,TIME ON CONVEYOR; 

DSTATS:lfNR(Cl)+NR(C2)+NR(C3)+NR(CO)+ 
b NQ (ClQ) +NQ (C2Q) +NQ (C3Q) +NQ (COQ) , CONVEY - UTIL: 

2, NR (STAO) +NQ (STAOQ) STAO UTIL: 
3, NR (STA1) +NQ (STAlQ) ,STAX-UTIL: 
4, NR (STA2) +NQ (STA2Q) ,STA~-UTIL: 
5,NR(STA3) +NQ (STA3Q) ,STA~-UTIL; - 





6.2 Appendix B 

The CIMS lab FMC Simulation Software Source Code 



const int true=l; 
const int false=O; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  DATA STRUCTURES 

struct event 
{ 

I int isempty; 
char name [lo] ; 
int stanum; 
long int time; 
long int stime; 
int partnum; 

I long int artime; 
long int arconv; 
int totconvtime; 
int inorder; 
char need [lll [I31 ; 
struct event* next; 

' 1 ;  

struct stations 
{ 
int busy; 

1 int done; 
char name [lll ; 
int conveyorwait; 
int palletwait; 
char robot time [51 ; 
int rtplf 
int rtp2 ; 
int rtp3 ; 
int rtp4 [I01 ; 
int rtp5 [I01 ; 

char service-time [51 ; 
int stpl ; 

1 int stp2 ; 
int stp3 ; 
int stp4 [I01 ; 
int stp5 [lo] ; 

1 i 
b 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  GLOBAL VARIABLES 

int rep-num , 
num-machines, 
inorder, 

P 



parts-in-system, 
max parts-in-system, 
pallets-in-system, 
max pallets in-system, 
separate-unioader, 
delayed entry, 
length-of-conveyor, 
speed-of-conveyor, 
out£ ile, 
debug, 
debug-u , 
debug-w , 
trace, 
reps ; 

long int interstation time, 
pallet - unload - time, 
tnow, 
frozen, 
freeze-till - time, 

total time, 
totalItime - sq, 
total t o c, - - -  
total-t-o-c - sq, 

length of sim, 
sim-end - time, 
warm - up, 

part num, 
totai parts, 
parts~com, 

time-in-syst, 
min - t - i-s, 
max t i s, 

time~on~conveyor, 
min-t-o-c, 
max - t - o-c; 

f~ double 

mr - t-o-c , 
mr-t-0-c-sq, 
mr - util - conv, 

£1 length-of-sim, 
util conv, 
util-sta [ I l l  , 
mr - util-sta [ l l l  ; 



char mach - seq-reqd[lll [I31 ; 

char first name [l51 ; 
char last name ll51 ; 
char dateTl5l ; 
char con£ ile name [251 ; 
char outf ileIname [251 ; 

int outused [61 ; 

struct stations station [lll ; 

event * calenderl; 
event * calender2 ; 
event * current ; 
event * temp-storage [lll ; 

FILE * fp; 
FILE * fpc; 
FILE * fpt; 
FILE * f pdb ; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  FUNCTION PROTOTYPES 

int main menu-con£ ig (void) ; 
int mainmenu simulat (void) ; 
int mainmenuIoutput - (void) ; 

int 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 

test validity-of parts-req(void1; 
change-number ~ai(void) ; 
change-load-sta (void) ; 
change-number-machines (void) ; 
change-machine-params(int); 
change-remove sta (void) ; 
change-machining-seq (void) ; 
change-number-reps (void) ; 
changeIlength-conveyor (void) ; 
change-speed-conveyor (void) ; 
change pallet unload (void) ; 
change-length-sim (void) ; 
change-warm-up (void) ; 
changeIstation conveyor (int) ; 
change-stationIname(int) ; 
change order (void) ; 
add - a - machine (void) ; 
remove - a - machine (void) ; 

void initialize (void) ; 
void initialize-system (void) ; 
void init for sim (void) ; 
void init-f or-rep (void) ; 
void read-confile (void) ; 
void write - conf ile (void) ; 

' void testcase0 (void) ; 
void testcasel (void) ; 
void testcase2 (void) ; 
void testcase3 (void) ; 

void reset - stats (void) ; 



void reset mr stats (void) ; 
void resetIutTls (void) ; 
void reset - mr - utils (void) ; 

void update stats (void) ; 
void update-utils (long int, long int) ; 
void update-mr-stats (void) ; 
void updateWmr - - utils (void) ; 

event * create-event (void) ; 
void start-one-thru (long int) ; 
void warm - it - up(void) ; 

void schedule-current (void) ; 
event * remove next (void) ; 
long int get-next - time (void) ; 

int canservice (int stanum, struct stations sta) ; 
long int determine robot time (int) ; 
long int determinezservice - time (int ) ; 
void inc-stanum (void) ; 

void delay parts on-conveyor(1ong int t) ; 
void freeze - conveyor(long int t); 

void 
void 
void 
void 
void 
void 
void 
void 

enter system (void) ; 
arrive-at-station (void) ; 
leave station (void) ; 
leave-service pw (void) ; 
leave-s2 (void); 
unbusy-station (void) ; 
emptygo-station (void) ; 
done - station (void) ; 

void printcals (void) ; 

void print - rep-report ( int ) ; 

void print - overallreport(void); 

void display current config-scr(void1; 
void print - current - config-file(voi-d); 

void display current-simulation scr(void) ; 
void print - current-simulation - file (void) ; 

void display current operations-scr(void1 ; 
void print - current - operations-file (void) ; 

void display-station-service(int1 ; 
void display station robot (int) ; 
void display~intro - screen (void) ; 

void prompt for robot distribution(int1; 
void prompt~for~servi~e~distribution(int) ; 

int read integer (void) ; 
int digitcount (int ) ; 



void print - the-distribution(void); 

void simulate-a-rep (void) ; 

void main (void) 
I. 
int i,menu,done,contin,f,g; 
char* waste; 
char resp[201 ; 
char c; 

/ / 

if (trace) fprintf (fpt,  MAIN\^") ; 

outfile=false; 
initialize - system ( 1  ; 

display-intro - screen ( )  ; 

while (contin) 
{ 
initialize 0 ; 
menu=l ; 

while (menu<=3) 
{ 
if (menu==l) 

menu=main menu-con£ ig ( ; 
else if (menuz=2) 

menu=main menu-simulat ( ; 
else if (menuz=3) 

menu=main - menu-output ( ) ; 

1 

{ 
init - for - sirno ; 

b if (outfile) 
{ print current config-file(); 
print-current~simulation~£ile~) - - ; 

1 
start one thru (tnow) ; 
pallets - iqsystem=l; 

warm - it-up ( ) ; 

print - rep - report ( 0 )  ; 



printf (I1press enter for next screen: " ) ; 
gets (resp) ; 

sim - end - time=warm-up+length - of - sim; 

for (rep - num=l;rep - num<=reps;rep - num++) 

print - rep - report (rep - num) ; 

printf("press enter for next screen: !I); 
gets (resp) ; 

update-mr-s tat s ( ) ; 
update - mr-utils ( )  ; 

sim - end-time+=length - of - sim; 
1 

if (reps > 1) 
C 
clrscr ( )  ; 
print-overallreport ( )  ; 
printf("\n press enter for next screen: " ) ;  - 

gets (resp) ; 

1 
1 

eise 
{ 

contin=false; 
if (outfile) fclose (fp) ; 
if (trace) f close (fptj ; 
if (debug) £close (fpdb) ; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ /  

SYSTEM INITIALIZATION MODULES 
/ /  

/ /  / /  ' / /  / /  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  INITIALIZE-SYSTEM 

void initialize - system(void) 
C 
int i,j; 

for (i=O; i<ll; i++) 
1 



{ station [i] . busy=false; 
station [i] . done=false; 
strcpy (station [il .name, "removet1) ; 
station [i] . conveyorwait=true; 
station [i] .palletwait=false; 

strcpy(station[il .robot - time, "normI1) ; 
station [i] . rtpl=O; 
station [i] . rtp2=0; 
station [i] . rtp3=0; 
for (j=O; j<10; j++) 

I 
L 

station[il .rtp4[j]=O; 
station [il .rtp5 [j I =O; 

1 
st&cpy (station [il .service - time, "tria") ; 
station [i] . stpl=O; 
station [i] . stp2=0; 
station [i] . stp3=0; 
for (j=O; j<10; j++) 

{ 
station [il . stp4 [ jl =O; 
station [il . stp5 [ j I =O; 

1 

length of sim=2000; //20; 
£1 - length-of - - sim=(float)length-of-sim; 

warm-up=700; //72; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  INITIALIZE 

void initialize (void) 
{ 
int i; 

b 
if (trace) fprintf (fp, "INITIALIZE\nll) ; 

tnow=O ; 
parts-in-system=O; 
pallets in system=O; 

b 
- - 

calender1 = create-event(); 
calender2 = create - event ( )  ; 

part num=l; 
delayed entry=O; 

B frozen=false; 
freeze - till - time=O; 

for (i=O; i<ll; i++) 
{ station [i] .busy=false; 
station [i] . done=false; 

b 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  INIT FOR SIM 

void init-for-sim(void) 
C 
if (trace) fprintf (fp, "INIT - FOR - SIM\~") ; 

reset stats ( 1  ; 
reset-mr stats ( )  ; 
resetWutTls ( )  ; 
reset-mr-utils - ( )  ; 

£1 length of sim=(float)length-of sim; 
in~erstat~on~time=(speed~of~conve~r/(nummachines+l+separate - unloader)); 

1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  INIT FOR REP 

void init - for-rep(void) 
{ 
if (trace) fprintf (fp, "INIT - FOR-REP\n1I) ; 

reset stats ( 1  ; 
reset-utils - ( )  ; 

1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  WARM IT UP - - 

void warm-it - up (void) 

int done ; 
long int next-event - time; 
event* t; 

if (trace) fprintf (fp, "WARM - IT - uP\nw) ; 

donezfalse; 
while (!done) 

{ 
next - event - time=get-next-time() ; 

if (next event-time >= warm-up) 
C 

- 
1 

1 update-utils (warm-up, tnow) ; 
tnow=warm-up; 
done=true; 

1 
else 

b 
{ 

update - utils(next - event-timeltnow) ; 

if (debug) 
D 



{ fprintf (fpdb,"NEXT  EVENT:\^") ; 
fprintf(fpdbrWpartnum: %d\tname: %s\tsta: %d\ttime: %1d\n\nn, 

t->partnum,t->name,t->stanum,t->time); 
1 

if (tnow >= freeze - till - time) 
frozen=false; 

if (strcmp (current->name, flentersysrl) ==0) 
enter-system ( ) ; 

else if (strcmp(current->name,"arriveW) ==0) 
arrive - at - station ( ) ; 

else if (strcmp (current->name, "unbusysta") ==O) 
unbusy-station ( ) ; 

else if (strcmp (current->name,"donesta") ==0) 
done - station0 ; 

else if (strcmp (current->name, "emptygo") ==O) 
emptygo-station ( )  ; 

else if (strcmp (current->name,"leavestaH) ==0) 
leave - station ( )  ; 

else if (strcmp (current->name, "leaveserv") ==O) 
leave - service-pw ( ) ; 

else if (strcmp (current->name, "leaves2") ==0) 
leave - s2 0 ; 

else if (outfile) 
fprintf(fp,"UNKNOWN CURRENT->NAME IN WARM-UP()\nN); 

I 1 

i 
printcals ( )  ; 
fprintf (fpdb, "NEXT TIME: %ld\nn , 

next event-time) ; - 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SIMULATE - A - REP 
1 
void simulate-a-rep (void) 
I 
int done ; 
long int next - event-time; 
event* t; 

b 
if (trace) fprintf (fp, "SIMULATE - A - REP\n1!) ; 

while ( ! done) 
D 



{ 
next - event - t ime=get-next - time ( ) ; 

if (next - event - time >= sim end - time) 

update utils(s5.m end - timeltnow); 
tnow=sim end - time; 
done= t rue; 

1 
else 

{ update - utils (next - event - time, tnow) ; 

current=remove next ( ; - 
t~current; 

{ fprintf (fpdb, "NEXT EVENT: \t " )  ; 
fprintf(fpdbIHpartnum: %d\tname: %s\tsta: %d\ttime: %ld\n\nu, 

t->partnum,t->name,t->stanum,t->time); 
1 

if (tnow >= freeze - till - time) 
frozen=false; 

if (strcmp(current->name,flentersys~) ==0) 
enter-system ( )  ; 

else if (strcmp (current->name,"arriveU) ==0) 
arrive at station ( ) ; - - 

else if (strcmp (current->name, llunbusystall) ==O) ' 
unbusy - station0 ; 

else if (strcmp(current-~name,"donestall) ==0) 
done - station0 ; 

else if (strcmp (current->name, "ernptyg~~~) ==O) 
emptygo - station ( )  ; 

else if (strcmp (current->name, "leavesta") ==0) 
leave - station0 ; 

else if (strcmp (current->name I tlleaveservN) ==0) 
leave-service-pw ( ) ; 

else if (strcmp (current->name, 111eaves211 ) ==0) 
leave-s2 ( ) ; 

else if (outf ile) 
fprintf (fp, "UNKNOWN CURRENT->NAME IN SIM-A-REP ( )  \nt1) ; 

1 
if' (debug) 

printcals ( ) ; 
fprintf (fpdb, "NEXT TIME: %ld\nfl, 

next event time) ; - - 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ /  

USER INTERFACE MODULES 
/ /  

/ /  / /  

void display - intro-sereen(void) 
I 
char* waste; 
char resp [201 ; 

if (trace) fprintf (fp, "INTRO - SCREEN\nl' ) ; 

clrscr ( )  ; 
printf("\n\n\n\n\n\t\t Computer Integrated Manufacturing Systems'\n\n\nu); 
printf(l1\t\tFLEXIBLE MANUFACTURING CELL SIMULATION SYSTEM\n\n\n\t " ) ;  
printf ( " \n\n\n1I ) ; 

printf("\tPlease type your first name (maximum 15 characters) : " )  ; 
gets (first-name) ; 
if (strlen (f irst-name) > 15 ) 

I 
printf("\tlength must not exceed 15 characters, please re-enter: " ) ;  
gets(first - name) ; 

1 
printf ("\tPlease type your last name (maximum 15 characters) : 11) ; 
gets (last name) ; 
if (strlen(1ast-name) > 15 ) 

I 
printf(v\tlength must not exceed 15 characters, please re-enter: " ) ;  
gets(1ast name) ; 

1 
- 

("\t~lease type today1 s date (mm/dd/yy) : " 1  ; 
gets (date) ; 
if (strlen(date) > 15 ) 
i 
printf(ll\tlength must not exceed 8 characters, please re-enter: " 1 ;  
gets (date) ; 

1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  MAIN MENU CONFIG 

int main menu config (void) - - 
i 
int tc,cha,dud,sat,ret; 
int opt; 
char resp E201 ; 
char* waste; 



if (trace) fprintf (fpt, "MAIN - MENU - CONFIG\nft) ; 

while ( !sat) 
{ 
clrscr ( 1  ; 
print£ ' . (   MAIN MENU FOR SYSTEM CONFIGUR~TION\~\~") ; 

display - current-conf ig-scr ( )  ; 

printf("\nEnter a line number to edit that line's information \nu); 
printf ( "  or to invoke the desired option: ; 
opt=read - integer ( ) ; 

while ( (opt<O / I opt>num machines+9)&& 
(0~t!=100&&0~t!=lil&&0~t!=222&&0~t!=333) ) 

I 
printf(u\nThe response entered is not valid. Please chooseu); 
print£(" from the displayed\n line numbers (line numbers are " ) ;  
printf ("in < > brackets) : 'I); 
opt=read integer(); 

} 
- 

if (opt == 0 )  
else if (opt <= num machines) 
else if (opt==num~m~chines+l) 
else if (opt==num-machines+2) 

I else if (opt==num machines+3) 
else if (opt==num~machines+4) 
else if (opt==num machines+5) 
else if (opt==num-machines+6) 
else if (opt==num-machines+7) 

{ 
- 

print£ ("enter a name for the + 

gets (conf ile-name) ; 
fpc=fopen(confile - namelnr"); 
if (fpc!='\O1 ) 

I ' 
read con£ ile ( 1  ; 
£close (fpc) ; 

1 
else 

{ 
printf("fi1e not found . . . .  
gets (resp) ; 

change load-sta ( ) ; 
change~machinejarams (opt) ; 
change remove sta ( ) ; 
change~length~conveyor(); 
change speed conveyor(); 
change>allet unload ( ) ; 
add a machine71 ; - - 
remove a machine ( ) ; - - 

configuration file: " ) ;  

press enteru) ; 

B else if (opt==num - machines+9) { 
sat=true; 
ret=5; 

else if (opt==100) 
else if (opt==lll) 

D 



else if (opt==222) 
else if (opt==333) 

return ret; 
} 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  DISPLAY CURRENT CONFIG SCR 

void display - current-config-scr(void) 
C 
int i,j,c,done,size,ind; 
int done - user,index,perc; 

if (trace) fprintf (fptIwPRINT - CURRENT - CONFIG - SCR\~"); 

I //clrscr ( )  ; 
printf("Station Station Conveyor Robot time 
printf ( "number name /pallet distribution 
printf ( " behavior (in seconds) 
printf ( 

Service time\n1') ; 
distribution\nW); 
(in seconds) \nn ) ; 

\nf' ; 

1 for (i=O; i<=num - machines+separate - unloader; i++) 

if (icl0) 
printf ("c%d> %d %sn, i, i, station[i] .name) ; 

else 
printf (IL<%d> %d %sV, i, i, station[il .name) ; 

size=strlen (station [i] .name) ; 
for (c=l; cc=9-size; c++) 
printf ( "  " ) ;  

if ( !station [il . conveyorwait && !station [il .palletwait) 

I printf ( "  C/C " 1  ; 

else if (station [il . conveyorwait) 
printf ( "  W/W It); 

else 
1 printf ( "  C/W "); 

if (strcmp (station [il .robot time, "triaV) ==O) 
I 

- 
I 

printf("%s(%d,%d,%d)", station[i].robot - time, 
station [il . rtpl, 
station [il . rtp2, 
station [il . rtp3 ) ; 

size=2+digitcount (station [i] .rtpl) +digitcount (station [i] .rtp2) + 
digitcount (station[il .rtp3) ; 

1 
1 else if (strcmp (station [il .robot time, ==0 I I 

strcmp(station[il .robot-time,"~nif~~)==O - ) 

i 
printf ("%s(%d,%d) ",  station [il .robot - time, 

station [il . rtpl, 
station [il .rtp2) ; 



size=l+digitcount (station [il . rtpl) +digitcount (station [i] . rtp2) ; 
1 

elke if ( (strcmp (station[il .robot time, llexpoll) ==O) I I 
(strcmp (station [il .robot-time, Hconsfl) ==O) ) 

I 
- 

1 

printf ( " %s (%d) " , station [il .robot time, 
station [il .rtpl); 

size=digitcount (station [il . rtpl) ; 
1 

else 
{ printf ("%s ( " ,  station [il .robot time) ; - 

done user=£alse; 
index= 0 ; 
perc=O ; 
size=O; 
while ( !done user ) - 

{ print£ ("%d:%d", station [il .rtp4 [index] , 
station[il .rtp5 [index] ) ; 

perc+=station [i] .rtp5 [index] ; 

size++; 
size+=digitcount (station [il .rtp4 [index] ) ; 
size+=digitcount (station [i] .rtp5 [index] ) ; 

if ( perc c 100 ) 
I 
1 

printf ( " ,  " 1  ; 
size++; 

I 
else 

{ done user=true; 
( " )  11) ; 

\ 

for (c=l; c<=19-size; c++) 
printf ( ) ; 

if (strcmp (station [il .service - time, "trial1) ==0) 

printf (I1%s (%dl %dl %d) ", station [i] .service time, - 
station [i] . stpl, 
station [il . stp2, 
station [il . stp3 ) ; 

else if (strcmp (station [il .service time, "normt1) ==0 I I 
strcmp (station [il .service time, "unif ==0 ) - 



printf ("%s (%d, %d) ",station [il .service - time, 
station [il . stpl, 
station [il . stp2) ; 

else if ( (strcmp (station [il .service time, "expoH) ==o) I I 
(strcmp (station [il . service-time, - uconsH) ==O) ) 

printf ("%s (%d) " , station [i] .service time, - 
station [il . stpl) ; 

else 
{ 
printf ( " %s ( " , station [i] . service time) ; - 

done user=false; 
index= 0 ; 
perc=O ; 
size=O ; 
while ( !done user ) 

r - 

printf ("%d:%dH, station [il . stp4 [index] , 
station [il . stp5 [indexl ) ; 

perc+=station [il . stp5 [indexl ; 

size++; 
size+=digitcount (station [il .stp4 [indexl ) ; 
size+=digitcount (station [il . stp5 [indexl ) ; 
if ( perc < 100 ) 

I 
printf ( " , " ) ; 
size++; 

1 
J 

else 
{ done user=true; 

( " ) " )  ; 
1 

} 

} 
} 

printf ( "\nH ) ; 
I 

1 
if ( ! separate unloader) 

r - 
1 

ind=num machines+l; 
if (numImachines==9) 

I print£ ("<%d> %d %s", ind, ind, station [indl .name) ; 
else 
printf("<%d> %d %s~,ind,ind,station[indl.name); 

print£ ( " (the load station removes the finished parts)\nH) ; 
} 

ind=num machines+2; 
printf (" \nn) ; 
print£(If<%d> Conveyor ~ength:\t%-d feet.\n",ind,length - of - conveyor); 
printf("<%d> Conveyor Speed: \t%-d seconds to complete 1 revolution.\n~, 

ind+l, speed-of-conveyor) ; 
printf("c%d> Pallet load/unload time (C/W only) :\t%-ld seconds.\n\ngf,ind+2, 

1 



pallet - unload-time) ; 
print£ ("<%d> add a machine\n" , ind+3) ; 
printf("<%d> remove a machine\n\nV,ind+4); 
p-,-intf("<%d> load a configuration (previously saved) from file\nv,ind+5); 
printf("<%d> next screen\nU,ind+6); 
printf ("<%d> quit\nU , ind+7) ; 

1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  READ INTEGER 

int read integer(void) 
r - 
i 
int length,value,test,place,invalid,done; 
char resp [201 ; 

done=false; 
while (!done) 

{ 
gets (resp) ; 
length=strlen (resp) ; 
value=O ; 
invalid=false; 
if (length==O) invalid=true; 
for (place=O; placeclength; place++) 

I 
I 

test=isdigit (resp [placel ) ; 
if (test==O) 

invalid=true; 
else 

value=l~*value+ (resp [place] - ' 0 '  ) ; 
1 

i£ (invalid) 
printf ("only integer values are permitted. please re-enter : " ) ; 

else done=true; 
1 

I return value; 
} 

void read - con£ ile (void) 
I 
t 

int i.i; 
. a .  

fs~anf(fpc,~%d%d~,&num machines,&separate unloader); 
for (i=O; i<=num - machines+separate - unloadzr; i++) 

I 
1 

f scanf (fpc, u%s%d%d%s%d%d%d", station [i] .name, 
&station[il .conveyorwait, 
&station [il .palletwait, 
station [il .robot - time, 
&station [il . rtpl, 
&station [il . rtp2, 
&station [i] . rtp3) ; 

fscanf (fpc,"%s%d%d%dH, station[il .service - time, 
&station [il . stpl, 
&station [il . stp2, 
&station [il . stp3) ; 



for (j=O; jc10; j++) 
{ 
fscanf(fpc,"%d", &station[i].rtp4[jl); 
fscanf(fpc,"%dU, &station[i].rtp5[j]); 
fscanf (fpc, "%dN, &station[il .stp4 [jl ) ; 
fscanf(fpc,"%d", &station[i].stp5[jl); 

1 
J 

1 
fscanf(fp~,"%d%d%ld~~~&length - of - conveyor,&speed of conveyor, 

&pallet unload - time) ; 
fscanfifpc,"%d%d",&rnax - pallets - in - system,&inorder); 
for (i=O; icll; i++) 

fscanf (fpc, "%sU , rnach seq reqd [il ) ; 
fs~anf(fpc,"%d%ld%ld",&r~~s,~len~th - of - sim,&warm-up); 

1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  WRITE CONFILE 

void write - conf ile (void) 
i 
int i, j; 

fprintf(fpcIH%d\n%d\n",nurn machine~~separate - unloader); 
for (i=O ; ic=num rnachines+separate unloader; i++) 

C 
- - 

' fprintf(fpc,"%~\n%d\n%d\n%~\n%d\n%d\n%d\n",~tati.~n[i].name, 
station [il . conveyorwait, 
station [il . palletwait, 
station [i] . robot - time, 
station [il . rtpl, 
station [il . rtp2, 
station [il . rtp3) ; 

fprintf(fpc,~%s\n%d\n%d\n%d\nN,station[il.service - time, 
station [il . stpl, 
station [il . stp2, 
station [il . stp3) ; 

for (j=O; jc10; j++) 
C 
fprintf (fpc, "%d\nfl, 
fprintf (fpc, "%d\nl\ 
fprintf (fpc, "%d\n", 
fprintf (fpc, "%d\n", 

station [il . rtp4 [j I ) ; 
station [il .rtp5 [ jl ) ; 
station [il . stp4 [j I ; 
station [il . stp5 [j 1 ) ; 

fprintf(fpcIH%d\n%d\n%ld\n".length - of - conveyor,speed of conveyor, 
pallet unload - time) ; 

fprintf(fpc,"%d\n%d\n",rnax - pallets - in - system,inorder); 
for (i=O; icll; i++) 

fprintf (fpc, "%s\nU ,rnach seq - reqd [il ) ; 
fprintf (fpc, u%d\n%ld\n%ld\nynll , reps, length of sim, warm up) ; 

1 
- - - 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  CHANGE LENGTH CONVEYOR 

void change - length-conveyor(void) 



int sat,numin,accept; 
char resp [201 ; 

if (trace) fprintf(fpt,"CHANGE - LENGTH -  CONVEYOR\^"); 

accept=false; 
while ( ! accept) 

C 
printf(I1enter the new conveyor length in feet (integer, 1000 or less) : " ) ;  
numinzread integer ( 1  ; 
if ( nurnin~=1000 1 

length of conveyor=numin; 
acceptztrue ; 

1 
else 
printf("inva1id entry, please re-enter,\nfl); 

} 

void change speed conveyor(void) 
I 

- - 

int sat,numin,accept; 
char resp [a01 ; 

I if (trace) fprintf (fpt, "CHANGE - SPEED - CONVEYOR\nrl) ; 

accept=false; 
while ( ! accept) 

I 
{ 
printf("enter the new conveyor speed (number of seconds for 1 I!); 
printf ("revolution) \n (integer, 10,000 or less) : " )  ; 
numin=read integer ( ) ; 
if ( (numin>=l) && (numin<=l0000) ) 

{ 
speed of conveyor=numin; 
accepF=true; 

1 
else 
printf ( "invalid entry, please re-enter, \nl! ) ; 

1 

void change pallet-unload(void) 
r - 
i 
int sat,numin,accept; 
lchar resp[201 ; 

if (trace) fprintf (fpt , "CHANGE - PALLET  UNLOAD\^" ) ; - 



while ( ! accept ) 
{ 
printf ("enter the pallet load/unload time (in seconds) : " )  ; 
numin=read integer ( ) ; 
if ( (numi&=l) &&(numin<=10000) ) 

{ 
pallet-unload - time=numin; 
accept=true; 

1 
else 
print£ ("invalid entry, range is (1,. . .,10,000), please re-enter,\nl1) ; 

1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  CHANGE LOAD STA 

void change - load - staivoid) 

int opt; 
char resp [201 ; 

if (trace) fprintf (fpt, "CHANGE - LOAD - STA\nn) ; 

clrscr ( )  ; 
printf("\t\t\tCHANGE LOAD STATION\n\nThe load stationu) ; 
print£(" (station 0) is currently defined as follows:\n\n~); 
printf ( " < - >  Station name:\t\t%s\nN, station [o] .name) ; 

printf("<l> Conveyor interaction:"); 

if (station[Ol .conveyorwait) 
printf("\tThe Conveyor & Pallet both wait\n\nV); 

else if (station [Ol .palletwait) 
printf("\tThe Conveyor continues, The Pallet waits\n\nu); 

else 
printf("\tThe Conveyor continues, The Pallet continues\n\nn); 

display - station - robot (0) ; 

print£ ( " < 3 >  change everything \nn) ; 
printf ("<4> accept current settings\nfl ) ; 
printf("\nEnter a line number to edit that line's information \nu); 
print£(" or to invoke the desired option: " ) ;  
opt=read - integer ( )  ; 

while (opt<l I / 0pt>4) 
I 
' printf("\nThe response entered is not valid. Please choose\nn); 
print£(" from the displayed line numbers (line numbers are " ) ;  
printf ("in c > brackets: " 1 ;  

if (opt==l) change station conveyor (0) ; 
else if (opt==2 prompt-f or robot distribution (0) ; 
else if (opt==3) { change-station conveyor(0); 

prompt-for robot distribution (0) ; , - - - 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C m G E  STATION CONVEYOR 

void change station-conveyor(int stanum) 
I 
l 

int sat, accept; 
char resp i201 ; 

if (stanum<lO) 
'printf("\n\tSelect a station/conveyor interaction for station %d, %s: ",  

stanum, station [stanum] .name) ; 
else 

printf("\n\tSelect a station/conveyor interaction for the new station:"); 

printf 
printf 
printf 

"\n\n\t\t\t<l>: Conveyor & Pallet both wait\n\t\t 
"continues, Pallet waits\n\t\t\t<3>: Conveyor If); 
"continues, Pallet continues (empty)\n\n\tselect 

\t<2> 

from 

: Conveyor 

(1,2,3): 
gets (resp) ; 

while ( (strcmp (resp, "1") !=O) &&(strcmp (resp, u211) !=o) && 
(strcmp(re~p~~3~~) !=0) ) 

C 
printf("yo~ must select from (1,2,3), please re-enter: " ) ;  
gets (resp) ; 

1 

elie if ( strcmp (resp, "2") ==0) 
{ station[stanum] .conveyorwait=false; 
station[stanum] .palletwait=true; 

1 
else if ( strcmp (resp, "3") ==0 ) 

{ station[stanuml .conveyorwait=false; 
station[stanum] .palletwait=false; 

1 

void change - number - machines(void) / /  OBSOLETE? 
{ 
int sat,numin,accept; 
char resp [201 ; 

I 

if (trace) fprintf (fpt, "CHANGE - NUMBER - MACHINES\~") ; 

sat=false; 
while (!sat) 

I 
{ 
clrscr ( )  ; 
printf("\t\t\tCMGE NUMBER OF MACHINES\~\~") ; 
printf(n~urrently, the number of machining stations specified is:\n\n"); 
printf ( lf\t\t\t %d \n\,nw , num machines) ; 
printf ("1s this satisfactory? (enter l=yes O=no) : " ) ;  
gets (resp) ; 



while ( (strcmp iresp, "1") !=O) && (strcmpiresp, "Otl) !=0j ) 

{ 
printf (I1 you must select from (0,l) , please re-enter: " )  ; 
gets (resp) ; 

1 
if (strcmp (resp, "O"1 ==O) 

I 
printf ("enter the new number of machines (1,2, . . . ,9) : " )  ; 
numin=read-integer0 ; 
while ( (numin! =1) && (numin! = 2 )  && (numin! = 3 )  && (numin! = 4 )  && (numin! =5) && 

(numin!=6)&&(numin!=7) &&(numin!=8)&&(numin!=9)) 
{ print£ ("you must select from (1,2,3, . . . ,9) please re-enter: " j  ; 
numinsread - integer ( ) ; 

1 
J 

num - machines=numin; 

1 
else sat=true; 

1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  CHANGE STATION NAME 

void change station-name(int stanum) 
< - 
i 
int sat, lenn, accept; 
char resp [201 ; 

if (trace) fprintf (fpt, "CHANGE MACHINE NAME\nIf ) ; 
t 

- - 

accept=false; 
while ( ! accept) 

if (stanum<lO) 
{ 
printf("\nenter a new name for station %d(max 9 characters): ", 

stanum) ; 
gets (resp) ; 

1 
else 

{ printf("\nenter a name for the new station (max 9 characters): " ) ;  
1 gets (resp) ; 

} 

{ 
accept=true; 
strcpy(station [stanum] .name, resp) ; 

1 

else 
printf("1ength must not exceed 9 characters, please re-enter: " ) ;  

> 

void change - machineparams(int mach) 



int sat, opt; 
char resp [a01 ; 

if (trace) fprintf jfpt, "CHANGE - MACHINE - PA RAMS\^^^) ; 

sat=false; 
while ( !sat) 

{ 
clrscr ( )  ; 

printf (I1\t\tCHANGE MACHINING STATION (station " )  ; 
printf ("%d) \n\nU ,nach) ; 

printf("<O> Station name:\t\t%s\n\n",station[mach] .name); 
printf jff<l> Conveyor interaction: " ) ; 

if (station [mach] . conveyorwait) 
printfjn\tThe Conveyor & Pallet both wait\n\nU); 

else if (station [mach] .palletwait) 
printf("\tThe Conveyor continues, The Pallet waits\n\nN); 

else 
printf(If\tThe Conveyor continues, The Pallet continues\n\nfl); 

display station-robot (mach) ; 
display-station - - service (mach) ; 

printf ( " < 4 >  change everything \nn) ; 
printf (11<5> accept current settings\nN ) ; 
printf(ll\nEnter a line number to edit that line's information \nu); 
print£(" or to invoke the desired option: " ) ;  
opt=read - integer(); 

while ( opt<0 / I opt>5) 
{ 
printfiU\nThe response entered is not valid. Please choose\nV); 
print£(" from the displayed line numbers (line numbers are " ) ;  
printf ("in < > brackets: It) ; 
opt=read-integer ( ) ; 

1 
if (opt==O) 
else if (opt==l) 
else if (opt==2) 
else if (opt==3) 
else if (opt==4) 

change station-name (mach) ; - 
change-station conveyor (mach) ; 
prompt for robot distribution (mach) ; 
prompt-£ or-service distribution (mach) ; 

{ change-station - - name (mach) ; 
change station conveyor(mach) ; 
prompt-for - robot distribution(mach) ; 
prompt-for-service distribution (mach) ; 

1 
- - 

else sat=true; 
1 

t 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  CHANGE REMOVE STA 

void change remove-staivoid) 
{ 

- 

int opt, i, stanum; 
char resp [201 ; 



if (trace) fprintf (fpt, "CHANGE - REMOVE - STA\nl') ; 

printf("\t\t\tCHANGE REMOVEAL STATION\n\nfl); 
stanum=num - machines--1; 

if (separate-unloader) 
{ clrscr ( 1  ; 
printf("\t\t\tCHP-iUGE REMOVEAL STATION\n\nThe removal station") ; 
printf(I1 (station %d) is currently defined as follo~s:\n\n~~,stanum); 
printf (I1<-> Station name: \t%s\nfi, station [stanum] .name) ; 
printf ("<l> Conveyor interaction:\tu); 

if (station [stanuml . conveyorwait) 
printf("\tThe Conveyor & Pallet both wait\n\nn); 

else if (station [stanuml .palletwait) 
printf("\tThe Conveyor continues, The Pallet waits\n\nt1); 

else 
printf(I1\tThe Conveyor continues, The Pallet continues\n\nn); 

display station-robot (stanum) ; 
printf (7<3> change everything \nll ) ; 
printf ( " < 4 >  accept current settings\ntl) ; 
printf("\nEnter a line number to edit that line's information \nu); 
printf (I1 or to invoke the desired option: " )  ; 
opt=read - integer ( )  ; 

while (opt<l / I 0pt>4) 
C 
printf("\nThe response entered is not valid. Please choose\nU); 
printf(" from the displayed line numbers (line numbers are " ) ;  
printf ("in < > brackets: " )  ; 

if (opt==l) change~station~conveyor(stanum) ; 
else if (opt==2) prompt for robot distribution(stanum) ; 
else if (opt ==3 ) { change1station-conveyor (stanum) ; 

prompt for robot distribution(stanum) ; , - - - 

1 
else 

' { clrscr 0 ; 
printf("\t\t\tCHANGE REMOVEAL  STATION\^\^"); 
printf("Currently, a separate unloader IS NOT specified. \n\nv); 
printf ("<I> add removal station (duplicate enter station) \n") ; 
printf("<2> add removal station (by specifying parameters) \nn); 
printf("<3> accept current setting \nN); 

I printf("\nEnter a line number to invoke the desired option: " ) ;  

opt=read - integer(); 

while (optcl / / 0pt>3) 

printf("\nThe response entered is not valid. Please choose\nu); 
I printf(" from the displayed line numbers (line numbers are " ) ;  

printf ("in < > brackets: " ) ;  



separate urloader=zrue; 
strcpy(staticn [stanurnl .name, "removeu) ; 
station[stanuml.conveyorwait=station[Ol.conveyorwait; 
station [stanuml .palletwait=station [Ol .palletwait; 
station [stanuml .busy=false; 
station istanuml .done=false; 
strcpy(station [stanuml .robot time, station [OI .robot time) ; - 
station [stanuml . rtpl=station~01 . rtpl; 
station [stanuml . rtp2=station [O] . rtp2; 
station [stanurnl . rtp3=station [O] . rtp3 ; 
for (i=O; i<10; i++) 

r 
I 
station [stanurnl .rtp4 [il =station [Ol .rtp4 [i] ; 
station [stanuml . rtp5 [il =station [O] . rtp5 [i] ; 

1 
1 

else if (opt==2) 
{ 

separate unloader=true; 
strcpy(station [stanum] .name, "removeu) ; 
change station conveyor(stanum); 
statio~[stanurn~.busy=false; 
station [stanurnl .done=false; 
prompt - for - robot - distribution (stanum) ; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  DISPLAY STATION ROBOT 

void display station robot (int stanum) 
{ 

- - 

int done - user,index,perc; 

printf ("<2> Robot distribution: ") ; 

I if ( strcmp (station [stanum] .robot - time, "cons" ) ==0) 
printf ( If \tConstant (%d) \n\nU , station [stanurn] . rtpl) ; 

else if ( strcmp (station [stanurn] .robot time, "tria1I) ==0) 
{ print£ ("\tTriangular (%d, %dl  %d) \n\ntl, station [stanurn] . rtpl, 

station [stanurnl . rtp2, 
L station [stanuml . rtp3) ; 

1 
else if ( 

{ print 

1 
else if ( 

{ print 

trcmp (stati 
"\tNormal ( 

trcmp (stati 
"\tUniforrn 

.on [st anuml . robot - t 
%dl %d) \n\nN , 

.on [stanuml . robot - t 
( %d, %d) \n\nrl, 

ime, "normu 1 ==0) 
station [stanurnl . rtpl, 

station [stanurn] 

ime, l1unif" ) ==0) 
station [stanurnl . rtp 

station [stanurnl 
J 

else if ( strcmp (station [stanuml .robot - time, "expow) ==0) 
( printf ("t\t~xponential (%d) \n\nN , station [stanurn] . rtpl) ; 

else if ( strcmp (station [stanuml .robot time, "usern) = = 0 )  
{ printf("\tUser defined\n\t\t\ttime:yt\t percentage:\nn); 
done user=false; 
index=0 ; 
perc=O ; 

1 



while ( !done user ) 

( ("\t\t \ t%d\,t\t%d\nU, station [stanurnl . rtp4 [index] , 
station [stanurnl . rtp5 [index] ) ; 

index++ ; 
perc+=station Istanuml .rtp5 [indexl ; 
if (station [stanuml . rtp5 [indexl ==0 / / perc>=100) 

{ done-user=true; 
princf ( " ',nu 1 ; 

1 
J 

i 
1 ' 

else printf("\t\t\tDistribution not defined\n\nft); 
/ /  if ( strcrnp(waste , "1") ==0 ) garb - can+=l; 

1 
.................................................... DISPLAY STATION SERVICE 

void display station-service(int stanurn) 
i 

- 
L 

int done - user,index,perc; 

wrintf ( " < 3 >  Service distribution: If ) ; 
if ( strcmp (station [stanurn] .service - time, "cons") ==0) 

(lf\tconstant (%d)\n\n", station [stanum] . stpl) ; 

else if ( strcmp (station [stanum] .service time, lftriafr) ==0) 
{ printf ("\tTriangular (%dl %dl %d) \n\nff , station [stanum] . stpl, 

station [stanum] . stp2, 
station [stanuml . stp3) ; 

1 
J 

else if ( strcmp (station [stanurn] .service - time, "normfr) ==0) 
{ printf ("\tNormal (%dl %d) \n\nt1, station [stanurn] . stpl, 

stat,ion [stanuml . stp2) ; 
1 
J 

else if ( strcmp (station [stanurn] .service time, "unif " )  ==0) 
{ printf("\t~niform (%d, %d)\n\nff, station [stanuml . stpl, 

station [stanuml . stp2) ; 
I .  1 
else if ( strcmp (station [stanuml .service - time, "expov) ==0) 

{ printf ("\tExponential (%d) \n\n" , station [stanuml . stpl) ; 
1 

else if ( strcmp (station [stanum] .service time, "user") ==O) 
{ printf("\tUser defined\n\t\t\ttirne:\tyt percentage:\nfl); 

I done user=false; 
index=0 ; 
perc=O ; 
while ( !done user ) 

{ ("\t\t\t%d\t\t%d\nw, station [stanuml . stp4 [index] , 
station [stanum] . stp5 [index] ) ; 

I index++ ; 
perc+=station [stanuml . stp5 [indexl ; 
if (station [stanurnl . stp5 [indexl ==0 / / perc>=100) 

( done user=true: 

J 

I 

1 
1 

else printf("\t\t\tdistribution not defined\n\nl') ; 
1 



int main - menu - simula~ (void) 
{ 
int valid,sat,opt,ret; 
char resp [201 ; 

if (trace) fprintf (fpt, '"IN - MENU - SIMULAT\~") ; 

while ( !sat) 
{ 
clrscr ( 1  ; 
printf ("\t\t\tMAIN MENU FOR SIMULATION \n\nll); 

display - current - simulation - scr(); 

valid=test - validity - of - parts-req0; 

if (valid) 
{ printf(l1<7> previous screen\n<8> next screen\nN) ; 
printf("\nEnter a line number to edit that line's information \nu); 
print£(" or to invoke the desired option: " ) ;  
opt=read-integer ( )  ; 

while (optcl / / opt>8) 
{ 
printf("\nThe response entered is not valid. Please chooseu); 
print£(" from the displayed\n line numbers (line numbers are " ) ;  
printf ( "in < > brackets) : It) ; 
opt=read-integer(); 

1 
if 
else if 
else if 
else if 
else if 
else if 
else if 

else if (opt==8) 

change-number-pal ( ) ; 
chanse order ( ) ; - - . . 
change machining-seq0; 
change-number-reps ( ) ; 
changeVlength sim ( ) ; 
change-warm-up ( ) ; - 

1 
else 

i 
printfjn\nYou MUST change the machining operations required."); 
print£(" Operation(s) are specified\nfor which no corresponding"); 
print£(" machining station exists. press enter: 3 "  ) ; 
gets (resp) ; 

return ret; 
I 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  DISPLAY CURRENT SIMULATION SCR 

void display - current - simulation - scr(void) 
{ 
int j , done ; 

if (trace) fprintf (fpt , "display - current - simulation - scr\nfl) ; 

//clrscr ( )  ; 
printf("<l> Maximum Number of Pallets Allowed (max parts in system) :\t%d\nn, 

maxjallets A in - system) ; 
if (inorder) 

printf("<2> Processing by machines is to be done: IN THIS ORDER\n\nfl); 
else 

printf(";2> Processing by machines is to be done: IN ANY ORDER\n\nN ) ; 

display - current - operations-scro; 

print£ (11<4> Number of ~eplications : \t\t%d\n", reps) ; 
printf(11;5> Length of each replication:\t%ld seconds\t(%ld hours)\nll, 

length of sim, 
length-of~sim/3600 ) ; 

printf("<6> Warm-up period:\t\t\t%ld seconds\t(%ld hoursy\n\nn, 
warm-up, 
warm - up/3600) ; 

void display current - operations scr(void) 
I 

- 
t 

int j , done ; 

printf("<3> Machining operations required:") ; 
("\t\t %s\nU ,mach 

done=false; 
j=1; 
while ( ! done ) 

{ if (strcmp(mach~seq~reqd[jl ,"remove")==O) 
I { 

printf ("\t\t\t\t\t\t %s\n\nll,mach - seq-reqd [ j l  ) ; 
done=true; 

1 
else 

I printf (lt\t\t\t\t\t\t %s\n",mach - seq - reqd[j] ) ; 
j++ ;  

1 

1 
I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  CHANGE ?SIJPIBER PAL 

void change number pal(void) 
{ 

- - 

char* waste; 
I 



char resp [201 ; 

if (trace) fprintf (fpt, "CHANGE - NUMBER - PALLETs\~~~) ; 

printf (ll\nenter the new Maximum Number of Pallets ( 1  2 , . . . ,20) : u )  ; 
gets (resp) ; 
while ( (strcmp(resp, llllf! !=0) &&(strcmp(resp, "2") !=0) && 

(strcmp (resp, "3") ! =0! &&(strcmp (resp, "4") !=o) && 
(strcmp(resp, "5") !=O) &&(strcmp (resp, 1161f) !=O) && 
(strcmpjresp, "7") !=O) &&(strcmp (resp, " 8 " )  !=O) && 
(strcmpjresp, "9") ! = O )  &&(strcmp (resp, "10") !=O) && 
(strcmp(resp, "11") !=O) &&(strcmp (resp, "12It) !=O) && 
(strcmp(resp, "13") !=O) &&(strcmp(resp, u1411) !=O) && 
(strcmpiresp, "15") !=O) &&(strcmp (resp, 1116u) !=O) && 
(strcmpiresp, "17") !=O) &&(strcmp (resp, "1811) !=O) && 
(strcmp(resp, "19") !=0) &&(strcmp(resp,"2O~f) !=o) ) 

{ (llYou must select from (1,2,3, . . . ,20), please re-enter: 'I) ; 
gets (resp) ; 

1 
max - pallets - in - system=atoi(resp); 

I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  TEST VALIDITY OF PARTS REQ 

int test validity-of-parts-req(void) 
{ 

- 

int i,j,k,l,n;max,ref,sat,notfound; 
I int a, b, redo, found; 

char* waste; 
char resp 1201 ; 

if (trace) fprintf(fptInTEST - VALIDITY - OF - PARTS - REQ\~"); 
I 

redo=false; 

for (a=O; a<=10; a++) 
{ 
found=false; 

I 

for (b=O; b<=num - machines+separate unloader+l; b++) 
{ 

- 

if ( (strcmp (mach-seq-reqd [a1 , station [bl .name 0 I I 
(strcmp (mach-seq - reqd [a] , "remove1I) ==0) ) 

found=true; 
1 I 

print£ (I1%s station does not exist, " ,mach seq-reqd [a] ) ; 
print£(" operation must be changed or removed.\no); 

if (redo) return false; 
? 



else return true; 

void change machining seqjvoid) 
r 

- - 

i 
int i, j , k, 1, n, max, ref, sat , notfound; 
int a,b,redo,found; 

char* waste; 
char resp [201 ; 

if (trace) fprintf (fpt, "CHANGE - MACHINING - SEQ\ntl) ; 

clrscr ( )  ; 

max=num machines; 
clrscr (7; 
printf ( \t \ tCHANGE MACHINING SEQUENCE REQUIRED\~\~" ) ; 

//display - current - operations-scr0 ; 

printf("There are currently %d machine(s) .\nThe number ",max); 
printf("of machining operations cannot exceed %d.\n\nu,max); 

printf("How many machining operations does each partN); 
print£(" require?\n(enter 1,2, . . . ,  %d) :w,num - machines); 
n=read - integer ( )  ; 

while (ncl I I n>num machines) 
{ printf(I1the number of operations must be between 1 and"); 
print£(" %dl the number of machines. please re-enter: ",max); 
n=read integer ( ; 

1 
- 

I 

strcpy (mach seq-reqd [OI , "enter" ) ; - 

printf("\nEnter the required machine operation by entering " ) ;  
printf ( "the corresponding integer\nI1 ) ; 
- 

for (i=l; ic=n; i++) 
I I 

I 

for (j=l;jc=num machines;j++) 
(u\t\t~tc%d>:\t%s\nlr, j, station [jl .name) ; 

printf("\tmachine operation #%d: ",i); 
ref =read - integer ( )  ; 

while (ref<l / / ref>num machines) 
C 

- 
' 

printf ("you must select from (1,. . . , " 1  ; 
printf ("%d) , please re-enter: " ,max) ; 
ref =read integer ( ) ; - 

1 
strcpy (mach seq reqd [il , station [ref I .name) ; 

1 
- - 

! 
for (k=n+l;k<=lO;k++) 



strcpy (mach - seq-reqd [kl  , "removeu ; 
1 

void change-order(void1 
{ 
char* waste; 
char resp[20] ; 

print£("Machining operations can be required to be done:\n\n<l> IT); 
printf("specifica1ly in the order listed (IN  ORDER)\^<^> in any orderu); 
printf ( "  as machines become available (ANY ORDER) \n\nlt ) ; 
printf ( "  (enter 1= IN ORDER, or 2= ANY ORDER) : "1; 
gets (resp) ; 

while ( (strcmp(resp, "1") !=O) &&(strcmp (resp, "2") !=0) ) 
C 

(Ifyou must select from (1,2) , please re-enter: " )  ; 
gets (resp) ; 

if (strcmp(resp,"l")==O) 
inorder=true; 

else 
inorder=£alse; 

1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  CHANGE NUM REPS 

void change - number - reps (void) 

char* waste; 
char resp [20l ; 

if (trace) fprintf (fpt, "CHANGE - NUMBER - REPS\nIt ) ; 

printf("\nenter the desired Number of Replications (1,2, . . .  ,201 : I!); 

gets (resp) ; 
while ( (strcmp (resp, "1") !=O ) &&(strcmp(resp, "2") !=0 ) && 

(strcmp(resp, "3") !=0 ) &&(strcmp(resp, 11411) !=O ) && 
(strcmp(resp, "5") !=O ) &&(strcmp(resp, "6") !=O ) && 
(strcmp(resp, "7") !=O ) &&(strcmp (resp, 1181t) !=O ) && 
(strcmp (resp, "9") ! =O ) && (strcmp (resp, "10") ! =0) && 

I (strcmp (resp, "11") !=O) &&(strcmp (resp, 11121t) !=O) && 
(strcmp(resp, "13") !=O) &&(strcmp (resp, w141t) !=O) && 
(strcmp (resp, "15") !=O) &&(strcmp (resp, "16It) !=0) && 
(strcmp(resp, "17") !=0) &&(strcmp (resp, u181t) !=0) && 

(strcmp(resp, "19") ! = O )  &&(strcmp(resp, 11201t) !=0) ) 

{ printf("You must select from (1,2,3, . . .  ,20) , please re-enter: " 1  ; 
gets (resp) ; 

} 
reps=atoi (resp) ; 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ADD A MACHINE 

void add-a-machineivoid) 
l 
char resp [20] ; 
struct stations temp; 
int which, it follow; 

if (trace) fprintf (fpt, "ADD A  MACHINE\^") ; 
if (num machines==9) 

r - 
printf("the number of machines cannot exceed 9 
gets (resp) ; 

1 

press enter\nU) ; 

else 
{ which=O ; 
num machines++; 
-printf("would you like to duplicate an existing machine? enter (yln) : " ) ;  
gets (resp) ; 
while ( (strcmp (resp, "y") ! =0) &&(strcmp (resp, !Inn) !=0) ) 

I 
' printf ("please enter either a y or an n: If) ; 
gets (resp) ; 

1 
if (strcmp (resp, "y") ==o) 

I 
printf("what machine number? enter (1.2, . . . .  %d) : nlnum - machines-1); 
which=read - integer ( ) ; 

while (which<l I I which>num machines-1) 
I 
printf("you must select from (1,2, . . . ,  %dl,   lease re-enter: " ,  

num - machines-1) ; 
which=read - integer(); 

1 
temp=station [which] ; 
printf("enter the machine number that the new machine is to follow: " ) ;  
follow=read integer ( ) ; 
while   which<^ I I which>=num - machines) 

{ 
printf("you must select from (0,1,2, . . . ,  %d), please re-enter: " ,  

num - machines-1) ; 
which=read-integer0 ; 

i 

J 

1 
else 

I 
{ 
printf("enter the machine number that the new machine is to follow: " ) ;  
follow=read - integer ( ) ; 

while (which<O 1 1  which>=num - machines) 
{ 
printf("you must select from (0,1,2, . . . ,  %dl, please re-enter: " ,  

num - machines-1) ; 
which=read integer(); 

1 
- 

change station-name(l0) ; 
clrscr7) ; 



change~station~conveyor(l0); 
prompt for robot distribution (10) ; 
prompt-for-service - - - - - distribution(l0) ; 

for (i=lO; i>follow+l; i--) 
station [i] =station [i-11 ; 

station [follow+ll =temp; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  REMOVE A MACHINE 

void remove - a - machine (void) 
I { 

char resp [201 ; 
int which, i; 

if (trace) fprintf (fpt, "REMOVE A  MACHINE\^") ; 
if (num-machines==O) 

1 { 
printf("the number of machines is already 0. press enter\nn) ; 
gets (resp) ; 

1 
else 

{ which=O; 
num - machines--; 

printf("enter the number of the machine to be removed ,(1,2,...,%d): ", 
num - machines+l) ; 

which=read - integer(); 

while (which<l I / which>num machines+l) 
{ 

- 

printf("you must select from (1,2, . . . ,  %d), please re-enter: " ,  
num - machines+l) ; 

which=read-integer ( )  ; 

1 
for (i=which; ic10; i++) 

station [i] =station [i+11 ; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  CHANGE LENGTH SIM 

void 
r 

change - length-sim (void) 

long int sec-hr; 
int num; 

D 
if (trace) fprintf (fpt, "CHANGE - LENGTH - SIM\nfl) ; 

print£ ("\nenter the new duration (in hours 1,2, . .  . 1 0 :  " ) ;  
num=read - integer ( ) ; 

? while (num<l 1 / num>lO) 



{ printf ("You must select from (1,2,3, . . . ,lo) , please re-enter: ) ; 
num=read-integer ( ) ; 

1 
sec hr=3600; 
length-of sim=num*sec hr; 
£1 - length-of - - sim=(float)length - of - sim; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  CHANGE WARM UP 

void change warm-up (void) 
{ 

- 

int num; 
long int sec - hr; 

if (trace) fprintf (fpt, "CHANGE - WARM - UP\n") ; 

printf ("\nenter the new warm-up period (in hours 1,2, . . . , 10) : It) ; 
num=read - integer ( ) ; 

while (numcl I I num>lO) 
{ 
printf (llYou must select from (1,2,3, . . . ,lo) , please re-enter : ) ; 

I num=read integer ( ) ; 
1 

- 

sec - hr=3600; 
warm - up=num*sec - hr; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  MAIN MENU OUTPUT 

int main menu output (void) 
C 

- - 

int num, sat, opt, ret, ok, 1; 
char resp [201 ; 

if (trace) fprintf (fpt, "MAIN - MENU -  OUTPUT\^") ; 
sat=false; 

while ( !sat) 
b l  

clrscr ( 1  ; 
printf ("\t\t\tMAIN MENU FOR OUTPUT  SPECIFICATION\^\^"); 

if (outfile) 
printf("<l> Output File:\t%s\n\n",outfile name); 

b 
- 

else 
{ 
printf("cl> Output File:\tnot specified.\nu); 
printf("\n\t\tOutput will be displayed on screen, but NOT saved\n\nl1); 

1 

1 
if (debug) 

b I 
' printf("c2> Dubugger:\t\tO~.\n\n") ; 
printf ("c3 > ~eplications : \t%d\n\n",reps) ; 

1 
else 



printf("c4> previous screen\n<5> run the simulation\n\n<6> save " ) ;  
printf("the current configuration to file\n<7> quit, do NOT run\n\nn); - 
if ( (debug) && (reps > 1 )  ) 

I 
printf("It is advised to only run one replication in debug " ) ;  
printf(umode\n\tsince quite a lot of output is produced.\nH); 

1 
printf ("\nEnter a line number to edit that liners information \nu) ; 
printf ( "  or to invoke the desired option: If) ; 
opt=read - integer(); 

while (opt<l / lopt>7) 

print f ( \nThe 
print f ( " from 
printf ("in c > 

response entered 
the displayed\n 1 
brackets) : " )  ; 

is not valid 
ine numbers 

. Please chooseN) 
(line numbers are 

bpt=read - integer ( )  ; 

if (opt==l && outfile) 
C 
fclose (fp) ; 
outfile=false; 

1 
else if (opt==l) 

{ 
ok=f alse ; 
while ( !ok) 

{ 
printf ("enter a name for the output file (max 2 0  chars) : " )  ; 
gets (outf ile name) ; 
l=strlen (outTile - name) ; 
if (1>20) 
printf("1ength of file name must not exceed 2 0  characters\nv); 

else 
i 
fp=fopen(outfile - name, "w") ; 
outfile=true; 

else if (opt==2) 
r 
I 
if (debug) 

r 

i 
fclose (fpdb) ; 
debug=false; 

1 
else 

{ 



else if (opt==3) 
l 
printf ("enter new Number of Replications? (1,2, . . . , 20) : It) ; 
num=read integer ( ) ; 
while ( nurn<l / / num>20) 

{ 
printf ("You must select from (1,2,3, . . . ,20) ,"); 
printf ( " please re-enter: It) ; 
num=read integer ( 1  ; 

1 
- 

1 

else if (0pt==4) 
r 

j 
else i'f (opt==5) 

I 

1 
else if (opt==6) 

{ ok=false; 
while (!ok) 

{ 
printf("enter a name for the configuration file (max 20 chars) : " ) ;  
gets (confile name) ; 
l=strlen (confile name) ; - 
if (1>20) 
printf("1ength of file name must not exceed 20 characters\nW); 
else 

write confile0 ; 
printfincurrent configuration saved to: %s\n",confile - name); 
printf ("press enter: It) ; 
gets (resp) ; 
fclose (fpc) ; 

1 
else 

I return ret; 
1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PROMPT FOR ROBOT DISTRIBUTION 

void prompt - for - robot - distribution(int index) 
a 



int okay, sat, rtp index; 
int min,max,avg,~ean,vari,tim,perc,total,remain; 
char* waste; 
char resp [a01 ; 

if (trace) fprintf(fpt,"PROMPT - FOR - ROBOT - DISTRRIBUTION\~~*); 

clrscr ( 1  ; 
if ( index<lO) 
printf("\tsele~t a distribution for station %dls robot times:\n\nN,index); 

else 
printf("\tselect a distribution for the new station's robot times:\n\nu); 

printf(n\t\t\tl: constant\n\t\t\t2: triangular\n\t\t\t3: normal\n\t\t\t4:") ; 
print£(" uniform\n\t\t\t5: exponential\n\t\t\t6: user defined\n\nn) ; 
printf("\tenter from (1,. ..,6): " 1 ;  
gets (resp) ; 

while ( (strcmp(resp, "1") !=O) && (strcmp (resp, "2") !=O) && 
(strcmp(resp,"3") !=O) && (strcmp(re~p,~~4~~) !=O) && 
(strcmp(resp, "511) !=0) && (strcmp(resp, "6") !=0) ) 

{ printf("you must select from (1,2,3,4,5,6), please re-enter: " ) ;  
gets (resp) ; 

1 
if' (strcmr>(res~, "1") ==O) 

{ strcpyh((station [index] . robot time, llconsll ) ; 
printf ( "\n\t\t\tConstant distribution: \nu ) ; 

(ll\t\t\tload/unload time (in seconds) : " ) ;  
I station [index] . rtpl=read-integer ( )  ; 

1 
I 

else if (~trcmp(resp,"2~~)==0) 
{ strcpy(station [index] .robot - time, "tria") ; 
okay=false; 
while ( !okay) 

I 
( "\n\t\t\tTriangular distribution: \nrl ) ;. 

printf ("\t\t\tminimum time (in seconds) : " )  ; 
min=read integer(); 
station [zndexl . rtpl=min; 

(ll\t\t\taverage time (in seconds) : " )  ; 
avg=read-integer ( )  ; 
station [indexl . rtp2=avg; 

printf ("\t\t\tmaximum time (in seconds) : " )  ; 
max=read integer ( ) ; 
station [zndexl . rtp3=max; 

if ( (min<=avg) && (avg<=max) ) 
okay=true; 

else 
{ printf(I1The values entered do not make sense.\nU); 
printf("va1ues must conform to min <= avg <= max.\nV); 
printf ( I1\n please re-enter. \nu ) ; 

} 



else if (strcmp (resp, " 3 " )  ==O) 
{ strcpy (station [indexl . robot time, "normM) ; 
printf("\n\t\t\tNormal distribution:\nw); 

("\t\t\tmean time (in seconds! : " ) ;  
mean=read-integer0 ; 
station [indexl . rtpl=mean; 

printf ( "\t\t\tvariance (in seconds) : " )  ; 
vari=read-integer ( ! ; 
station [indexl . rtp2=vari; 

} 
else if (strcmp (resp, " 4 " )  ==0)  

{ strcpy(station[indexl .robot - time, "unif " )  ; 
okay=£alse; 
while ( !okay) 

I 
distribution: \nn) ; 

printf ("\t\t\tminimum time (in seconds) : " )  ; 
min=read integer ( ) ; 
station [index] . rtpl=min; 

printf (ff\t\t\tmaximum time (in seconds) : " )  ; 
max=read-integer ( ) ; 
station [indexl . rtp2=max; 

if (min<=max) 
okay=true; 

else 
{ printf("The values entered do not make sense.\nu); 
printf("va1ues must conform to min c= max.\nfl); 
printf("\n please re-enter.\nn); 

} 

I I 1 
else (strcmp (resp, " 5 " )  = = O )  

print£ ("\t\t\tmean time (in seconds) : " ) ; 
min=read integer ( ) ; 
station [Tndexl . rtpl=min; 

1 
else i£ 

{ 
(strcmp (resp, 116f1) ==0) 
strcpy (station [index] .robot - time, "userft) ; 
okay=£alse; 
while ( !okay) 

printf 
printf 
printf 

\n\t\t\tUser de 
and their assoc 
\t\tpercentages 

fined distribution:\n\n\t\tenter 
iated\nU ) ; 
to define a distribution.\n\nH) 

total=O ; 
rtp-index=O; 
while (total < 100) 

{ print£ ("\t\tenter a time (in seconds) : " 1  ; 

imes 

. - 
tim=read integer(); 
station [zndexl . rtp4 [rtp - index] =tim; 



printf ("\t\tenter a percentage (10,12,50,. . . ) : \nn) ; 
printf ("\t\t %d remaining . . . .  - 
perc=rsad-integer(); 
station [index] . rtp5 [rtp index] =perc; 
total += perc; 

rtp index+=l; 
if ?rtp index > 10) 

{ printf("~rror: too many times . . . . \  nu); 

if ( total == 100 ) 
okay=true; 
else 

{ printf("The values entered do not make sense.\nw); 
printf("Percentages must total 100, and a maximum of 10\nu); 
printf ( " times are permitted. please re-enter. \nn ) ; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PROMPT FOR SERVICE DISTRIBUTION 

void prompt for service-distribution(int index) 
1 

- .- 

int okay,sat,stp index; 
int min,max,avq,~ean,vari,tim,perc,total; - 
char resp 1201 ; 

I 
if (trace) fprintf(fpt,"PROMPT - FOR - SERVICE - DISTRRIBUTION\~"); 

clrscr ( 1  ; 
if (indexel0) 
print£ ("\tselect a distribution for station %dl s service time: \n\nU , index) ; 

else 
printf("\tselect a distribution for the new station's service times:\n\nn); 

1 

printf("\t\t\tl: constant\n\t\t\t2: triangular\n\t\t\t3: normal\n\t\t\t4: " ) ;  
printf(vuniform\n\t\t\t5: exponential\n\t\t\t6: user defined\n\nn); 
print£ ("\tenter from (1,. . . , 6 )  : " )  ; 
gets (resp) ; 

i 
while ( (strcmp(resp, "1") !=O) && (strcmp(resp, It2") !=O) && 

(strcmp (resp, " 3 " )  !=O) && (strcmp (resp, tt411) !=O) && 
(strcmp(resp, " 5 " )  !=0) && (strcmp(resp, "6") !=0) ) 

{ printf ("you must select from (1,2,3,4,5,6), please re-enter: !I); 
gets (resp) ; 

1 
if (strcmp (resp, "1") ==0) 

b { strcpy(station[indexl .service time, Ifconsn) ; 
printf("\n\t\t\tConstant distribution:\nu); 
printf ("\t\t\tservice time (in seconds) : ") ; 
station [index] . stpl=read integer ( )  ; 

1 
- 

J 

b 
else if (strcmp (resp, "2") ==0) 



{ strcpy (station [index] . service - time, lltrialt) ; 

okay=false; 

printf ("\t\t\tminimum time (in seconds) : I!); 
min=read integer(); 
station [index] . stpl=min; 

printf ("\t\t\taverage time (in seconds) : " )  ; 
avg=read-integer0 ; 
station [index] . stp2=avg; 

printf ("\t\t\tmaximum time (in seconds) : " ) ;  
max=read integer(); 
station [index] . stp3=max; 

if ( (min<=avg) && (avg<=max) ) 
okay=true ; 

else 
{ printf("The values entered do not make sense.\nu); 
printf("va1ues must conform to min <= avg <= max.\nu); 
printf ("\n please re-enter. \nu ) ; 

1 
} 

1 
I 

else if (strcmp (resp, "3") = = O )  
{ strcpy (station [indexl . service time, "normtt ) ; 
printf(ll\n\t\t\tNormal distri6ution:\nn); 

printf ("\t\t\tmean time (in seconds) : " )  ; 
meancread integer ( ) ; 
station [index] . stpl=mean; 

printf ("\t\t\tvariance (in seconds) : " 1  ; 
vari=read integer ( )  ; 
station [index] . stp2=vari; 

1 
else if (strcmp (resp, "41~) ==o) 

{ strcpy(station [index] . service-time, "unif " )  ; 
t okay=false; 

while ( ! okay) 
{ 
printf("\n\t\t\tUniform distribution:\nH) ; 

("\t\t\tminimum time (in seconds) : " ) ;  
minzread integer(); 
station [index] . stpl=min; 

("\t\t\tmaximum time (in seconds) : " )  ; 
maxzread integer ( )  ; 
station [index] . stp2=max; 

if (min<=max) 
okay=true; 

else 
{ print£("The values entered do not make sense.\nw); 
printf("va1ues must conform to min <= max.\nn); 



printf ("\n please re-enter. \nu) ; 

1 
} 

1 
else i£ (strcmp (resp, " 5 " )  ==0) 

{ strcpy (station [indexl . service time, "expoN) ; 
printfjv\n\t\t\tExponential dTstribution:\nw); 

("\t\t\tmean time (in seconds) : " )  ; 
min=read integer ( ) ; 
station [index] .stpl=min; 

1 
else if (strcmp(resp,"6")==0) 

{ strcpy (station [index] . service - time, "userv) ; 
okay=false; 
while ( !okay) 

{ printf(h\n\t\t\t~ser defined distribution:\n\n\t\tenter times " ) ;  
~rintf("and their associated\nN) : 
brintf ("\t\tpercentages to define a distribution. \n\nw) ; 

total=O ; 
stp index=O; 
while (total < 100) 

{ printf ("\t\tenter a time (in seconds) : O ) ;  

tim=read-integer ( ) ; 
station [index] . stp4 [stp - index] =tim; 
~rintf ("\t\tenter a percentage (10,12,50, . . . ) : \nlf) ; 
printf ("\t\t %d remaining . . . .  : ", 100-total) ; 
perc=read integer ( )  ; 
station [index] . stp5 [stp - index] =perc ; 
total += perc; 

stp index++; 
if Tstp-index > 10) 

{ printf("Error: too many times . . . . \  nn); 
total=200; 

1 
1 

if ( total == 100 ) 
okay=true; 
else 

{ printf("The values entered do not make sense.\nw); 
printf("Percentages must total 100, and a maximum of 10\nn); 
print£(" times are permitted. please re-enter.\nn); 

1 
1 

I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ /  / /  
/ /  SIMULATION MODULES / /  
/ /  / /  

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  CREATE - EVENT 

event* create - event (void) 
C 
event* temp; 

if (trace) fprintf (fpt, "CREATE - EVENT\nll) ; 

temp = new event; 
strcpy (temp->name, !lend") ; 
temp->time=O; 
temp->partnum=O; 
temp->isempty=true; 
temp->inorder=inorder; 
temp->next=O; 
return temp; 

1 

void start - one - thru(1ong int time) 
{ 
int i; 

if (trace) fprintf (fpt, "START - ONE - THRU\~~~) ; 

current=create event ( ) ; 
current->isemp&=false; 
current->partnum=part - num; 
part num++; 
strcs (current - >name ,"entersyslr ) ; 

I current->stanum=O; 
current->time=time; 
current->artime=time; 
current->totconvtime=O; 
current->inorder=inorder; 
for (i=O; i<ll; i++) 
strcpy (current- >need [il ,mach - seq - reqd [i] ) ; 

current->next=O; 
parts-in-system+=l; 
//pallets - in - system++; 
schedule-current ( ) ; 

I 1  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SCHEDULE - CURRENT 

void schedule - current(v0i.d) 
I 

t 'event* temp; 
event* trail; 

if (trace) fprintf (fpt , llSCHEDULE -  CURRENT\^^' ) ; 



/ /  it is going into calender1 (conveyor) 

{ if (frozen) 

current->time = freeze-till - time+interstation - time; 

if (strcmp (calenderl->name, "end") ==O) 
/ /  calenderl is empty, add event to beginning 

{ current->next=calenderl; 
calenderl=current; 

1 
else if (current->time<calenderl->time) 

/ /  calenderl is not empty, add event to beginning 
{ current->next=calenderl; 
calenderl=current; 

1 
else / /  find appropriate place and insert event 

{ trail=calenderl; 
temp=calenderl->next; 
while ( (strcmp (temp->name, "end1!) ! = 0) && 

(temp->time <= current->time)) 
{ trail=temp; 
temp=temp->next; 

1 

/ 

else if ( (strcmp (current- >name, llunbusystalr) ==O) 
(strcmp (current->name, rlI_eavestau ) ==o) I I 
(strcmp (current->name, llleaveservrl) ==O) 

{ / /  event will be inserted into calender2 and should 
/ /  precede all events with same time. 

I 

if (strcmp (calender2->name, "endN) ==O) 
/ /  ca12 is empty, add event to beginning 

{ current->next=calender2; 
calender2=current; 

b 1 
else if (current->time <=  calender2->time) 

/ /  ca12 is not empty, add record to beginning 
{ current->next=calender2; 
calender2~current; 

1 
else / /  find appropriate place and insert event 

b { trail=calender2; 
temp=calender2->next; 
while ( (strcmp (temp->name, "endr1) ! = 0) && 

(temp->time < current->time)) 
{ trail=temp; 
temp=temp->next; 

1 

J f 

else / /  event will be inserted into calender2 
B 



{ 
if (strcmp (calender2->name, "endn) ==O) 

/ /  ca12 is empty, add event to beginning 
{ current->next=calender2; 
calender2=current; 

1 
else if (current->time<calender2->time) 

/ /  ca12 is not empty, add record to beginning 
{ current->next=calender2; 
calender2=current; 

1 
else / /  find appropriate place and insert event 

{ trail=calender2; 
temp=calender2->next; 
while ( (strcmp (temp->name, "endu) !=  0) && 

(temp->time < current->time)) 
{ trail=temp; 
temp=temp->next; 

1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  GET NEXT TIME 

long int get next-time(void) 
{ 

- 

//event*temp 
long int ans; 

if (trace) fprintf (fpt, "GET - NEXT - TIME\nN) ; 

if ( (strcmp (calenderl->name, "endu) ==0) && 
(strcmp (calender2->name, "end") ==O) ) 

{ if (trace) 
fprintf(fpt,"ATTEMPTED REMOVAL OF NEXT TIME WITH BOTH LISTS EMPTY!\nn); 
ans=-1; 

else if (strcmp (calenderl->name, "endn) ==O) 
{ //temp=calender2; 
ans=calender2->time; 

I 1  
else if (strcmp (calender2->name, "endN) ==O) 

{ //temp=calenderl; 
ans=calenderl->time; 

1 
/ *  else if (calenderl->time == calender2->time) 

else if (calenderl->stime >= calender2->stime) 



else if (calenderl->time <= calender2->time) 
{ //temp=calenderl; 
anszcalenderl->time; 

1 
else if (calenderl->time > calender2->time) 

{ //temp=calender2 ; 
ans=calender2->time; 

1 
else 

{ if (trace) 
fprintf (fpt, "GET - NEXT TIME ! ! ! !THIS CANNOT HAPPEN! ! ! ! \nn) ; 
ans=-1; 

1 
return ans; 

1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  REMOVE-NEXT 

event* remove - next (void) 
{ 
event* temp; 

if (trace) fprintf (fpt, "REMOVE -  NEXT\^") ; 

if ( (strcmp (calenderl->name, Itend") ==O) && 
(strcmp (calender2 - >name , fiendii ) ==O) ) 

{ if (trace) 
fprintf(fptItfATTEMPTED REMOVAL OF EVENT WITH BOTH LISTS EMPTY!\nfl); 
temp=calenderl; 

1 
else if (strcmp (calenderl->name, I1end1!) ==O) 

{ temp=calender2; 
calender2=calender2->next; 

L 

1 
else if (strcmp (calender2 ->name, "endn ) ==O) 

{ temp=calenderl; 
calenderl=calenderl->next; 

1 * /  
1 else if (calenderl->time <= calender2->time) 

{ temp=calenderl; 
calenderl=calenderl->next; 

1 
else if (calenderl->time > calender2->time) 

b 



1 
else 

{ if (trace) 
f print f ( f pt , "REN - NEXT MOST PECULIAR BABY,  ROLL\^" ) ; 
temp=calenderl; 

1 
return temp; 

1 

long int determine - robot - time(int stanum) 
{ 
long int time; 
double x,sum,bp,cap; 
int i,j,diff,bma,cma,cmbIindexIdone; 

if (trace) fprintf (fpt , "DETERMINE - ROBOT -  TIME\^") ; 

if ( strcmp (station [stanurn] .robot - time, tlconsfl) ==0 ) 
time=station [stanum] . rtpl; 

else if ( strcmp (station [stanurn] . robot-time, "unif " )  ==0 ) 
I 
L 

x=rand ( ) / (float) RAND-MAX; 
dif £=station [stanum] . rtp2-station [stanum] . rtpl+l; 
time= (station [stanuml . rtpl+x*dif f) ; 

1 

1 
else if ( strcmp (station [stanuml .robot - time, llexpon) ==0 ) 

I 
x=rand()/(float)RAND MAX; 

I time=-l*log (x) *station [stanurn] .rtpl; 
1 

else if ( strcrnp (station [stanurn] .robot - time, ==0 ) 

{ 
sum=0.0; 
for (i=l; i<=12; i++) 

I { x=rand()/(float)RAND-MAX; 
sum+=x; 

1 
time=station [stanum] . rtpl+ (sum-6) *station [stanum] . rtp2; 

1 
else if ( strcmp (station [stanuml .robot - time, "triaw) ==0 ) 

? 
I 

x=rand ( ) / (float) RAND-MAX; 

bma=station [stanum] . rtp2-station [stanuml .rtpl; 
cma=station [stanuml . rtp3-station [stanum] .rtpl; 
cmb=station [stanum] . rtp3-station [stanum] .rtp2; 

B 
bp= bma/ (float) cma; 

if (x<bp) 
time=station [stanum] . rtpl+sqrt (bma*cma*x) ; 

else 
D 



time=station [stanum] .rtp3-sqrt (cmb*cma* (1-x) ) ; 

1 
else 

{ 
x=100*(rand()/(float)RTLN~-w); 
index=O ; 
cap=O .0 ; 
donezfalse; 
while ( ! done ) 

{ cap+=station [stanum] . rtp5 [index] ; 
if (x<=cap) 

{ 
timezstation [stanum] . rtp4 [index] ; 
done=true ; 

1 
index++ ; 

return time; 
1 
////////////////////////////////////////////////////////DETERMINE-~ERVICE-TIME 

' long int determine - service - time(int stanum) 
I 
\ 

long int time; 
double x, sum, bp, cap; 
int i,j,diff,bma,cma,cmbIindex,done; 

1 if (trace) fprintf (fpt , "DETERMINE - SERVICE - TIME\nfr ) ; 

if ( strcmp (station [stanuml .service - time, "consr1) ==O ) 
time=station [stanuml . stpl; 

else if ( strcmp (station [stanum] .service - time, "unif If) ==0 ) 

{ 
x=rand ( ) / (float) RAND-MAX; 
dif £=station [stanuml . stp2-station [stanum] . stpl+l; 
time= (station [stanum] . stpl+x*dif f) ; 

1 
k 

) else if ( strcmp (station [stanum] .service - time, uexpolf) ==0 ) 
r 

C 
x=rand() / (f1oat)RAND MAX; 
time=-l*log (x) *station [stanum] . stpl; 

1 
J 

else if ( strcmp (station [stanuml . service - time, "norm") ==0 ) 
' {  

sum=O .0 ; 
for (i=l; i<=12; i++) 

{ x=rand ( ) / (float) WD-MAX; 
sum+=x; 

b 
1 

time=station [stanum] . stpl+ (sum-6) *station [stanum] . stp2; 
1 

else if ( strcmp (station [stanum] . service-time, lltriall) ==0 ) 
{ 
x=rand ( )  / (float) RAND-MAX; 



bma=station [stanuml . stp2-station [stanum] . stpl; 
cma=station [stanurn] . stp3-station [stanum] . stpl; 
crnb=station [stanurn] . stp3-station [stanum] . stp2; 

bp= bma/ (float) cma; 

if (xcbp) 
time=station [stanuml . stpl+sqrt (bma*cma*x) ; 

else 
timezstation [stanum] . stp3-sqrt (cmb*cma* (1-x) ) ; 

1 
else 

{ 
x=100* (rand0 / (float) RAND-MAX) ; 
index=O ; 
cap=O. 0; 
donezfalse; 
while (!done) 

{ cap+=station [stanuml . stp5 [index] ; 
if (x<=cap) 

I 
time=station [stanum] . stp4 [index] ; 
done-true ; 

return time; 

I 1 

void delay - parts - on - conveyor(1ong int time) 
I 

I ' event* temp; 
long int t; 

if (trace) fprintf (fpt, "DELAY - PARTS - ON - COWEYOR\~") ; 
if (frozen) 

{ t=tnow + time - freeze till-time; 
b 

- 
if (t>O) 

{ tempzcalenderl; 
while( strcmp(temp->name,"endn) ! =  0) 

{ if (temp->time ! =  tnow) 
temp->time+=t; 

temp=temp->next; 
1 

freeze - till - time += t; 

1 
1 

else 
{ t=time; 
temp=calenderl; 
while( strcmp(ternp->name,"endn) ! =  0) 

{ if (temp->time ! =  tnow) 
temp->time+=t; 



froien=true; 
freeze - till - time=tnow+t; 

1 
if (trace) fprintf(fpt,"\t\t\tFREEZE - TILL - TIME: %ld\nll,freeze - till - time); 

1 

void inc stanum (void) 
I 

- 

if (trace) fprintf (fpt, "INC - STANUM\~") ; 
current->stanurn += 1; 
if (current->stanurn > num-machines+separate - unloader) 

current->stanum=O; 
1 

int can service (int stanum) 
I 

- 

int i, count, spot; 
1 

if (trace) fprintf (fpt, " C W  - SERVICE\nH) ; 
if ( !station [stanuml .busy) 

{ 
if ( current - >inorder) 

{ if (strcmp (current->need [O] , station [stanuml .name) ==O) 
I { count=(); 

while (strcmp (current - >need [count] , "removeI1 ) ! = 0) 
count++; 

for (i=O; iccount; i++) 
strcpy (current - >need [il , current - >need [i+l] ) ; 
return true; 

1 
else 

return false; 
1 

else 
{ count=O; 

b spot=-1; 
while (strcmp (current - >need [count] , "removew ) ! = 0) 

{ if (strcmp(current->need[count] ,station[stanuml .name) == 0 )  
spot=count; 

count++; 
1 

if' (spot >= 0) 
{ for (i=spot; iccount; i++) 

strcpy (current - >need [i] , current - >need [i+ll ) ; 
return true; 

1 
else 

B return false; 

1 
1 

else return false; 
1 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ENTER-SYSTEM 

void enter-system (void) 
{ 
int i,stanum,partnum; 
long int time; //,time; 

if (trace) fprintf (fpt, "ENTER -  SYSTEM\^") ; 

if (pallets-in - system c= max-pallets-in-system) 
I 

L 

station [OI . busy=true; 
stanum=current->stanurn; 

if (station [Ol . conveyorwait) 
I 
L 

time=determine-robot time(stanum) ; 
delay parts - on - conveyor(time); 
for (Y=O; ic10; i++) 
strcpy (current - >need [i] , current - >need [i+ll ) ; 

strcpy (current ->name,"leavesta") ; 
current->time=tnow+time; 
schedule - current ( )  ; 

I 
J 

else if (station [O] .palletwait) 
r 
time=determine robot-time (stanum) ; 
for (i=O; ic10; i++) 
strcpy (current - >need [i] ,current - >need [i+ll) ; 

strcpy (current - >name ,"leaveserv") ; 
current->time=tnow+time; 
schedule - current ( ) ; 

1 
else / /  station[Ol is pallet continues 

{ 
time=determine robot-time (stanum) ; 
delay-parts - on-conveyor(time) - ; 
for (i=O; ic10; i++) 
strcpy (current- >need [i] ,current->need [i+ll ; 

strcpy(current->name,"leavesta") ; 
current->time=tnow+time; 
schedule - current ( )  ; 

I 
b 1 

J 

else 

current->time += 1; 
schedule - current ( )  ; 

I " J 

else 
{ if (trace) 
fprintf(fptIHENTER SYS TOO MANY PARTS ATTEMPTING ENTRY!\nn); 
schedule-current ( ) 7 

-, 



d a 
0 
Tdk . 0 

a I 

5 
r i  
@ -  
'a- 

d + II 
II z 5 

cl G 
rn r6 
hc, 
rn tn 

I- 
G 
-4 

m I 
c, 
a, 
rl 
rl 
a 
a 
w - 

m - c q m  
I @ a , @  

c, E E E  a -4 -rl -4 
I C,C,c, 

a,' 
3  c, 
-It d 
k -rl 
k 
a b-l 

d a 0 
.rl rl 
0 
3 -  



1 
else if (station [current ->stanurn] .busy) 

I 
' inc stanum0; 

current->time=tnow+interstation - time; 
schedule-current ( ) ; 

1 
else if ( strcmp (current->need [0] , llremover') == 0) 

/ /  a completed part is arriving at a station 

{ 
if ( (  current->stanurn == 0 && !separate-unloader) I I 

( current->stanurn == num-machines+l && separate-unloader) ) 

C 

current->totconvtime += (current->time-current->arconv); 
stanum=current->stanurn; 
station [stanum] .busy=true; 

{ 
time=determine robot time(stanum) ; 
delay~parts~on~conve~r(time); 

current->time += time; 
update - stats ( )  ; 

if (stanum == 0 && !separate - unloader ) 
I 
time2=determine robot time (stanum) ; 
current->isempty=false; 
current->partnum=part - num; 
part num++; 
strcFY(current->name,"leavestan) ; 
current->stanum=O; 
current->time=tnow+time+time2; 
current->artime=tnow+time; 
current->totconvtime=O; 
current->inorder=inorder; 
for (i=O; i<10; i++) 
strcpy (current ->need [il ,math-seq-reqd [i+ll ; 
current->next=O; 
schedule current ( ) ; 

1 
- 

else 
{ strcpy (current - >name ,"emptygo" ) ; 
current->time=tnow+time; 
current->isempty=true; 
current->stanum=stanum; 
schedule current; 
delayed &try++; 

1 
- 

1 
else if (station [stanum] . palletwait) 

{ 
time=pallet unload time; 
delay - part sIon-conveyor (time) ; 



t ime2=determine - robot - time (stanum) ; 

current->time += (time+time2); 
update - stats 0 ; 

if (stanum == 0 && !separate - unloader ) 

{ 
time3=determine robot time(stanum) ; 
current->isempty=false; 
current->partnum=part - num; 
part num++; 
strcFy (current ->namei rtleaveservfl ) ; 
current->stanum=O; 
current->time=tnow+time+time2+time3; 
current->artime=tnow+time+time2; 
current->totconvtime=O; 
current->inorder=inorder; 
for (i=O; i<10; i++) 
strcpy (current->need [il , mach-seq-reqd [i+ll) ; 
current->next=O; 
schedule current ( )  ; - 

I 
else 

{ strcpy (current->name, "leaveserv" ) ; 
current->time=tnow+time+time2; 
current->isempty=true; 
current->stanum=stanum; 
schedule current; 
delayed entry++; 

1 
- 

1 
else / /  pallet continues 

I 
time=determine robot time (stanum) ; 
delay - part s-onIconveyor (time) ; 

current->time += time; 
update - stats 0 ; 

if (stanum == 0 && !separate - unloader ) 
i 
1 
time2=determine - robot - time(stanum) ; 

current->isempty=false; 
current->partnum=part - num; 
part num++; 
strcFy (current->namei I1leavestaN) ; 
current->stanum=O; 
current->time=tnow+time+time2; 
current->artime=tnow+time; 
current->totconvtime=O; 
current->inorder=inorder; 
for (i=O; i<10; i++) 
strcpy (current->need [il mach - seq-reqd [i+ll ) ; 
current->next=O; 
schedule - current ( )  ; 

I 
else 



k c,-4 m b 
5 A A A  I 
u I  I l a ,  
-'L)c,L)d 

+ 
+ -  
E * -  

- 3 -  
E C E  
5 6 5  
Cc,C a m a 
&.I-c, 
m a, m 
- E -  
0-4 a, 
E U E  
-d 1-4 
c , a , c ,  
IU I 

c, -4 c, 
0 3 0  a k a  
0 a, 0 
krnk 

I I I 
@ @ a ,  
C I= C 
-4 -4 -4 

E E E  
a , @ @  
ci c, c, 
a, a, a, 
Q Q Q  
/I 
a, 
E 
-d 
c, 

.. ,-. 
2 
-4 .. 
c, a, - 3 .. 
k k a ,  
O J J E  
X II -4 
a, Xc, 
Gi!' 
o a  0 
u . C  
C1-z ? 
0 5 a, 
IC E rn a -4 

c, 0 c, 
k m A  
id U  l 

QGJJ 
I 0  c X-4 @ 

ac,k 
d a k  
Oc, 5 a m u 

+ -  
E * -  - 5 -  

9 4 9 
CcrC a m a .- c,-c, - m a m  
- E -  2 a,-da, 

-4 .- E c, E -- c, a, -4 1-4 
E .--5c, a,c, 
5 @ k k  lU I 
C E Oc,c,-dJJ 
a-d XI1 0 3 0 
U c t W  XQ k Q  
m 1 3 m o a , o  
A ~ C = I ~ ~ L I  
l @ O A  I I I 
u o u  - @ @ a ,  
C I n C C C  
a, C C E -4 -4 -d 
k 5 0 5 E E E  k I I C k k k  

=tUrnrd@@a, 
Ua,c,iic,c,U 
~iiikma,a,a, 
E A  id-aaa 
3 id Q G  
G Q I 0  ll a l l  h-rl cJ 
c, a, ac, a, 
m ~4 a E 
.\-d a, c, -d 
.\c,rb mc, 

@ Lj 
E + .- 
a 3 -  
C 0- 
A C U  
I U C  
c, II a, 
Ca,k 
a, E k 
k-d 5 
k 0 U  
3 A  I 
U l a ,  

.. 
9 
C .- a - c, 

= m 
a- 
c, a, 
m E 
a, -4 
C c, 
0 I 

.-"a a, 
n= U - 
JJ ;-5' 
G Z k  
3 c rn 
@ A  I 

1 1  a, 
a ,UC 
c, C -4 
a a, E 
S k k  
k k a ,  
u sii 
I1 U a, 
0-a c h I 1  
a, QcJ 
k U a, 
k k E  
5 c, -4 
u m c ,  



current->time=tnow+time+time2; 
current->stanum=stanum; 
current - >partnum=partnum; 
schedule - current ( ) ; 

current=create event ( )  ; 
strcpy (currentr>name, "emptygolI ) ; 
current->isempty=true; 
current->partnum= 0; 
current->time=tnow+time; 
current->stanum=stanum; 
schedule - current ( )  ; 

elke / /  not can-service 
I 
1 

current->time=tnow+interstation - time; 
inc stanum0 ; 
schzdule - current ( )  ; , 

void unbusy - station (void) 
{ 
if (trace) fprintf i fpt, "UNBUSY -  STATION\^" ) ; 

station[current->stanurn] .busy=false; 
delete current; 

1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  LEAVE-STATION 

void leave - station (void) 
' C  

long int time; 
int stanum; 

if (trace) fprintf (fpt, "leave - sta\nN) ; 

I station[current->stanurn] .busy=false; 
station [current->stanurn] .done=false; 

strcpy (current - >name, Ifarrive") ; 
current->time=tnow+interstation - time; 
current->arconv=tnow; 

1 

inc stanum ( ; 
schgdule - current ( 1  ; 

1 

1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  EMPTYGO STATION 

void emptygo-stationivoid) 
I 
L 

long int time; 
int stanum; 



if (trace) fprintf !fpt, "emptygo - sta\n1I) ; 

strcpy (current - >name, "arrive" ) ; 

inc stanurn0 ; 
schgdule current ! ) ; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  LEAVE-SERVICE-PW 

void leave-service - pw(void) 
{ 
long int time; 

if (trace) fprintf (fpt, "LEAVE - SERVICE - PFT\~") ; 

timezpallet unload time; 
delay-parts-on-con~eyor(time); - 

current->time=tnow+time; 
strcpy (current->name, "leaves2") ; 

schedule current ( )  ; 

1 
- 

void leave-s2 (void) 
{ 
if (trace) fprintf !fpt, "LEAVE - s2\nr1) ; 

strcpy (current - >name, arrive") ; 
current->time=tnow+interstation - time; 
current->arconv=tnow; 

inc stanurn0 ; 
I 

schgdule current ( )  ; 

1 
- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  DONE-STATION 

void done-station (void) 
' I  

if (trace) fprintf (fpt, "FINISH -  STATION\^") ; 

station[current->stanurn] .done=true; 
delete current; 

I 1 



STATISTICAL MODULES 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  RESET STATS 

void reset-stats (void) 
{ 
int i; 

if (trace) fprintf (fpt, "RESET - REP - STATS\~'~) ; 

parts com=O; 
timeTn-syst =O; 
min t i s - - -  =14000; 
max t i s =O; - - -  
total parts =O; 
total-time =0; 
time-%-conveyor =O; 
min - t - o-c =14000; 
max t o-c - - =o; 
total-t-o - c =O; 

total time-sq =O; 
totalrt-o - c - sq =o; 

1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  UPDATE-STATS 

void update-stats(void1 / /  DOES NOT DELETE ENTITY OR UTER ATTRIBUTES 
I 
if (trace) fprintf ( fpt , "UPDATE - STATS\~") ; 

parts corn++; 
time Tn-syst=current->time-current->artime; 
if (time - in - syst > max-t-i s) 

max - t - i - s=time in syst; 

I 
if (time - in - syst rnin - - -  t i s) 

min-t - i - s=time - in - syst; 
total-parts ++; 

total-time += time in syst; 
avg time-syst=totai-tTme/(float)tota~~rts; 
total-time sq += time in syst*time in syst; 

I - - 
//current->totconvtTme-+= (tnow-current->arconv); 

time on-conveyor=current->totconvtime; 
if (time on conveyor > max - - -  t o c) 

max - t-o - - c = time-on conveyor; 
if (time - on - conveyor <-min-t-o-c) 

min - t - o - c = time-on-conveyor; ' total - - -  t o c += time-on-conveyor; 
avg - - -  t o c=(float)total t-o-c/total parts; 
total - - - -  t o c sq += timeIon-conveyor~time - on - conveyor ; 

//look into this 



avg-time syst, 
time-in-gyst, 
min t i s, - - - 
max t i s, - - - 
total parts, 
total-time, - 
total time sy); 

fprintf(fpT"~~OC:%ld TOC:%ld MiTOC:%ld MaTOC:%ld TTOC:%ld TTOCS:%ld \nu, 
avg t o c, - - - 
time on conveyor, 
min - t - o-c, - 
max t o c, - - - 
total t o c, - - -  
total t o c sq); - - - -  * /  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  RESET MR STATS 

void reset - mr - stats (void) 
{ 
int i; 

if (trace) fprintf (fpt, "RESET MR STATS\~") ; 
I - - 

1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  UPDATE MR STATS 

' void update-mr-stats (void) 
{ 
mr p-c+=parts com; 
mr-p-~-~q+=paTt~ com*parts - com; 
mr-t - - -  i s+=avg time syst; 
mr-t-i-s-sq+=avg time - syst*avg - time - syst; ' mr-t-o-c+=avg - t - G - c; 
mr-t-o-c-sq+=avg t - - -  o c*avg - t - o - c; 

1 

b 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  RESET REP UTILS 

void reset-utils (void! 
{ 
int i; 

if (trace) fprintf (fpt , "RESET UTILIZATIONS\~") ; 
D - 

for (i=O;i<ll; i++) 
I 
t 

util sta [i] =0. G ;  
/ /  utTl - sta - sq[il =O; 

D 1 



util conv=0.0; 
1 

- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  RESET MR UTILS 

void reset mr utils (void) 
{ 

- - 

int i; 

if (trace) fprintf (fpt, "RESET - MR - UTILS\~") ; 

for (i=O; i<ll; i++) 
I 
mr util sta[il =0.0; 
//mr - utxl - sta-sq[il = o ;  

1 
mr util-conv=0.0; 

1 
- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  UPDATE-UTILIZATIONS 

void update utils(1ong int curtime, long int oldtime) 
{ 

- 

long int time; 
' int i; 
event* temp; 

if (trace) fprintf(fptfHUPDATE - UTILIZATIONS\~~); 

while (strcmp(temp->name,"endW) !=  0) 
{ if ( ! temp->isempty) 

util conv+=time; 
I 

- 

for (i=O; i<=num - machines+separate-unloader; i++) 

b 
{ 
if (station [il .busy) 

util - sta [il +=time; 

1 
' > 
/////////////////////,//////////////////////////////////////////UPDATE MR UTILS 

void update mr utils (void) 
{ 

- - 

int i; 

mr-util conv+=util conv; 
for (i=E; icnum - machines+separate - unloader+l; i++) 

{ 
mr - util - sta [il +=util - sta [il ; 

D 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ /  

OUTPUT MODULES 
/ /  

/ /  / /  
/ /  / /  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

int digitcount (int numb) 
{ 
int ret; 
ret=l+ (numb>9) + (numb>99) + (numb>999) + (numb>9999) ; 
return ret; 
1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PRINT CURRENT CONFIG FILE 

void print-current - config - file(void) 

int i, j, c, done, size, ind; 
' int done - user,index,perc; 

if (trace) fprintf (fpt, "PRINT - CURRENT - CONFIG -  FILE\^") ; 

fprintf(fptUSystem Designer: %s %s\n", first - name,last-name); 
fprintf (fp, "Date : %s \n\nU ,date) ; 

I fprintf(fp,"System Configuration:\n\nM); 
fprintf(fpInStation Station Conveyor Robot time 
fprintf (fp, "Service time\nT1) ; 

-fprintf(fp,"number name /Pallet distribution 
fprintf(fp,"di~tribution\n~~); 
fprintf (fp, " behavior (in seconds) 

) fprintf (fpIn(in secoiids)\n"); 
£print£ (fp, " 
fprintf (fp," \n\nrl ) ; 

for (i=O; i<=num - machines+separate - unloader; i++) 

b 
{ 
if (i<10) 
fprintf (fp," %d %s", i, station [i] .name) ; 

else 
fprintf (fp, "%d %s" ,  i, station [i] .name) ; 

size=strlen (station [i] .name) ; 
b for (c=l; cc=9-size; c++) 

fprintf (fp, " "' i ; 



else if (station lil .palletwait) 
fprintf(fp," C/W If); 

else 
fprintf(fpfH C/C "); 

if (strcmp (station [il .robot - time, lltriall) ==0) 
I 
I 

fprintf (fp, "%s (%dl %dl %d) ", station[il .robot - time, 
station [i] . rtpl, 
station [i] . rtp2, 
station [il . rtp3 ) ; 

size=2+digitcount (station [i] . rtpl) +digitcount (station [i] . rtp2) + 
digitcount (station [i] .rtp3) ; 

1 
else if (strcmp (station [i] .robot time, llnormll) ==0 / I 

strcmp (station [il .robot-time, - llunifll) ==0 ) 
I 
L 

fprintf (fp, "%s (%dl %d) ", station [il .robot - time, 
station [il .rtpl, 
station [il .rtp2) ; 

size=l+digitcount (station [i] . rtpl) +digitcount (station [i] . rtp2) ; 
1 

elhe if ( (strcmp (station [i] .robot time, I1expo1l) ==0) I I 
(strcrnp (station [il . robot-time, - wcons") ==0) ) 

I 
L 

fprintf (fp, "%s (%d) ", station [i] .robot - time, 
station [il . rtpl) ; 

size=digitcount (station [i] . rtpl) ; 
1 

else 
{ fprintf (fp, "%s ( " ,  station [il .robot time) ; - 

done user=false; 
indez=0 ; 
perc=0 ; 
size=0 ; 
while ( !done user ) 

{ fprintf(fp,"%d:%d", station [i] . rtp4 [index] , 
station [i] . rtp5 [index] ) ; 

perc+=station [i] . rtp5 [index] ; 

size+=digitcount (station [i] .rtp4 [index] ) ; 
size+=digitcount (station [i] . rtp5 [index] ) ; 

i 

fprintf (fp, ",  " )  ; 
s;ze++; 

1 
else 

done user=true: 



for (c=l; c<=19-size; c++) 
fprintf (fp, " " 1 ; 

if ( (strcmp (stai;ion[il .name, "enteru) !=O) && 
(strcmp (star ion [il .name, "remove") !=O) && 
(strcmp (star ion [il .name, "exitrr ) !=0) ) 

{ 

if (strcmp (station [il .service - time, rrtriaw) ==O) 

fprintf (fp, "%s (%dl %dl %d) ",station [il .service - time, 
station [i] . stpl, 
station [i] . stp2, 
station[il . stp3 ) ; 

else if (strcmp (station [i] .service time, Irnormrl) ==O I I 
strcrnp (station [i] .service - timz, rrunif " )  ==0 ) 

fprintf (fp, "%s (%dl %d) rr,station[il .service - time, 
station [il . stpl, 
station [il . stp2) ; 

else if ( (s~rcmp (station[il .service time, "exporr) ==O) I I 
(strcmp (station[il .service-time, - rrconsrr) ==O) ) 

fprintf (fp, "%s(%d) u,station[il .service - time, 
station [il . stpl) ; 

else 
{ 
fprintf ifp, "%s ( " ,  station [i] . service - time) ; 
done useu=false; 
index= 0 ; 
perc=O ; 
size=O; 
while ( !done - user ) 

I 
I 

fprintf (fp, "%d: %d", station [il . stp4 [index] , 
station [il . stp5 [indexl ) ; 

perc, =station [il . stp5 [indexl ; 

size-+; 
sizel-=digitcount (station [il . stp4 [indexl ) ; 
sizet=digitcount (station [il . stp5 [indexl ) ; 
if i perc < 100 ) 

i 
fprintf (fp, ",  " )  ; 
s;ze++; 

J 

else 
{ lone userztrue; 
rprintf (fp, " )  " )  ; 

1 



1 
1 

1 
fprintf (fp, "\nu, ; 

1 
if ( ! separate-unloader) 

I 
ind=num machinestl; 
if (num-machines==9) 
fprintf (fp, "%d %svl, ind, station [indl .name) ; 

else 
fprintf (fp," %d %srl, ind, station [indl .name) ; 

fprintf (fp, " [the load station removes the finished parts)\nH) ; 
1 

fprintf (fp, " "); 
fprintf (fp, " \n\nlf ) ; 
fprintf(fpINConveyor ~ength:\t%-d feet.\n",length-of conveyor); 
fprintf(fp,vvConveyor Speed: \t%-d seconds to complete 1 revolution.\n", 

speed - of - conveyor) ; 
fprintf(fpIvvPallet load/unload time (C/W only) :\t%-ld se~onds.\n\n~~, 

pallet - unload - time) ; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PRINT CURRENT SIMULATION FILE 

void print - current - sirr.ulation - file(void) 
I 
1 

if (trace) fprintf (fp, "PRINT - CURRENT - SIMULATION - FILE\nvv ) ; 

fprintf(fp,"Maximum Number of Pallets (max parts in system) :\t%d\nflf 
max - pallets - in - system); 

if (inorder) 
fprintf(fp,"Processing by machines is to be done: IN THIS ORDER\n\,nn ) ; 

else- 
fprintf(fp,"Processing by machines is to be done: IN ANY  ORDER\^\^") ; 

print-current - operations - file0 ; 
I 

fprintf(fplHNumber of Replications:\t\t%d\n",reps); 
fprintf(fp,"Length of each replication:\t%ld seconds\t(%ld hours)\nn, 

length of sim, 
length-of-sim/3600 ) ;  

fprintf (fp, "Warm-up period: \t\t\t%ld seconds\t (%ld hours)inll, 
I warm up, 

warmzup/3600) ; 
fprintf (fp, " If); 
fprintf (fp, II \n\nfl ) ; 

1 
' / / / / / / / / / / / / / / / / / / / / I ,  . . . . . . . . . . . . . . . . . . . . . . . . . .  PRINT CURRENT OPERATIONS FILE 

void print-current-operations-file(void) 
C 
int j , done ; 



fprintf(fp,"Machining operations required:"); 
fprintf (fp, "\t\t %s\nN , mach - seq - reqd [O] ) ; 

done=false; 
j=1; 
while ( ! done) 

{ if (strcmp (mach-seq-reqd [j I , "remove") ==O) 
{ 
fprintf (fp, " t\t\t\t\t %s\n\n1! , mach - seq-reqd [ j I ; 
done=true; 

1 
else 

{ 
fprintf (fp, '"\t\t\t\t\t %s\nu , mach seq-reqd [j I ) ; - 

/ / / / / / / / / / / / / / / / / / / / I 1 ,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PRINT REP REPORT 

void print - rep - report int rep) 
{ 
int i; 

double s d ,  
s-d c, - - 
denom ; 

' clrscr ( 1  ; 

if (outf ile) 
fprintf(fp,"System 3esigner: %s %s\t\t\tv, first - name,last - name); 

if (outf ile) 
I fprintf (fp, "Date: %s \n\nU , date) ; 

if (rep==O) printf ( "Results of Warm-up period: \n\nn ) ; 
else printf("Resu1ts of replication #%d:\n\nw,rep); 

if (outf ile) ' { if (rep==O) fprintf (fp, "Results of Warm-up period: \n\nrt) ; 
else fprintf(fp,"??.ssults of replication #%d:\n\nv,rep); 

1 
printf ( " Length of simulation:\t\t\t%ld\n",length - of - sim); 

if (outfile) 
fprintf (fp, " Lencjzh of ~imulation:\t\t\t%ld\n~~,length - of - sim) ; 

print f ( " Number of parts c o m p l e t e d : \ t \ t \ t % d \ n \ n p a r t s  - com); 

if (outfile) 
fprintf (fp," ~ u m b - r  of parts completed:\t\t\t%d\n\n",parts - com); 

print f ( " \t\t\t\t ,tmin\tmax\tavg\tS.~.\n\n~~) ; 

if (outf ile) 
b 



fprintf (fp," \t\t'\,,t\t\tmin\tmax\tavg\t~.~. \n\nn) ; 

denom=parts com-1.0; 
s - d= (total-Eime - sq-6-~g - time - syst*avg - time - syst*parts - com) /denom; 

printf ( " Time parts spent in ~ystem:\t\t%ld\t%ld\t%6.2f\t%6.2f\n~~~ 
min - t - i-s ! max - t - i - s, avg - time-syst , sqrt (s-d) ) ; 

if (outfile) 
fprintf (fp," Time parts spent in system:\t\t%ld\t%ld\t%6.2f\t%6.2f\nfII 

min - t - i - s , nrax - t - i - s, avg - time-syst , sqrt (s-d) ) ; 

printf ( I' Tim? parts spent on conveyor:\t%ld\t%ld\t%6.2f\t%6.2f\n\nf1, 
min - t - o-c, max - t - o - c, avg-t-o-c, sqrt (s-d-c) ) ; 

if (outf ile) 
fprintf (fp, " Time parts spent on ~onveyor:\t%ld\t%ld\t%6.2f\t%6.2f\n\n\n~~, 

min - t - o-c! max - t - o - c, avg - t - o - c, sqrt(s - d - c) ) ;  

util - conv=util - convjzl - length - of - sim; 

printf ( " Average number of parts on conveyor:\t\t%-6.2f\nf1,util - conv); 
' printf ( " Utilizations of stations:\nv); 

if (outfile) 
{ 

fprintf (fp, " Aversge number of parts on ~onveyor:\t\t%-6,2f\n~~~util - conv); 
fprintf (fp, " Utii~zations of stations:\nU) ; 

' }  

for (i=O; i<num machines+separate-unloader+l; i++) 
{ util - sta [i] zutil-sta [i] /fl - length - of - sim; 

printf ( "\t\t',t\t\t\t%s:\t\t%6 .2f\nH, station[il .name, 
util - sta [il ) ; 

if (outf ile) 
fprintf(fp,"\t\t't\t\t\t%s:\t\t%6.2f\n",station[i].name 

, util - sta [i] ) ; 
' 1  
printf ( "\n ") ; 
printf ( " \riff ) ; 

if (outf ile) 
1 fprintf (fp, If If) ; 

if (outfile) 
fprintf (fp, " \n\nf1 ) ; 

if (outf ile) 
D 



fprintf (fp, "\f " i  ; 
1 

void print-overallreport(void) 
I 
int i; 
double s-sq, 

f reps ; 

if (outfile) 
fprintf (fp, "System Designer: %s %s\nU , first - name, last - name) ; 

if (outfile) 
fprintf (fp, "Date : %s \n\nH ,date) ; 

if (outf ile) 
fprintf(fp,"Overall ~esults:\n\n"); 

printf ( " Number of replications: \t\t\t\t%d\n",reps); 
if (outf ile) 
fprintf (fp, " Number of replications: \t\t\t\t%d\nv,reps) ; 

' printf ( 11 Length of each repli~ation:\t\t\t\t%ld\n\n~~,length - of - sim); 

if (outf ile) 
fprintf (fp, " Length of each replication:\t\t\t\t%l.d\n\ntl,length - of-sim); 

printf ( I! Average Number of parts ~ompleted:\t\t\t%-l.2f\n~~~mr - p - c/f - reps 
I 

if (outfile) 
fprintf (fp, " Average Number of parts ~ompleted:\t\t\t%-l.2f\n~~,rnr_p~c/f~reps 

printf ( I1\tStanda -d ~eviation: \t\t\t\t%l. 2f\ntt, sqrt (s-sq) ) ; 

if (outfile) 
fprintf(fpIn\tStandard ~eviation:\t\t\t\t%l.2f\n",sqrt(s~sq) ) ; 

) print£ ( "\t95%% C . 1 .  formeanparts completed:\t\t(%l.2f,%1.2f)\n\ntt, 
mr p c/f reps- (1.2*sqrt (s-sq/f-reps) ) , 
mr~p~c/f~reps+ (1. 2*sqrt (s - sq/f-reps) ) ) ; 

if (outf ile) 
b fprintf (fp, Ir\t95%% C. I. for mean parts completed:\t\t (%1.2f, %1.2f) \n\ntl, 

mr-p-c / f 1 s - ( 1.2 *sqrt (s-sq/f-reps) , 
(mrp-c/F - _ sps+ ( 1.2 *sqrt (s-sq/f-reps) ) 1 ; 

printf ( " Averzge Time parts spent in ~y~tem:\t\t\t%l.2f\n", 
D 



if (outf ile) 
fprintf (fp, " Average Time parts spent in system:\t\t\t%l.2f\nW, 

mr - t - i - s/f-reps) ; 

if (outf ile) 
fprintf(fp,"\tStandard ~eviation:\t\t\t\t%1.2f\n~~~sqrt(s-sq)); 

if (outfile) 
fprintf(fpIN\t95%% C.I. for mean time in sy~tem:\t\t(%1.2f,%l.2f)\n\n\n~~, 

mr t i s/f reps- ( - - - 1.2 *sqrt (s-sq/f-reps) , 
mr-t-i-s/fFreps+ - ( 1.2 *sqrt (s-sq/f-reps) ) ; 

printf ( "\tStandard De~iation:\t\t\t\t%1.2f\n~~~sqrt(s-sq)); 
printf ( I1\t95%% C. I. for mean time in system: \t\t (%6.2f , %6.2f) \n\nt1 , 

if (outfile) 
fprintf (fp, " Average Time parts spent on conveyor:\t\t%l.2f\nw, 

mr - t - o - c/f - reps); 

printf ( If Average Time parts spent on conveyor:\t\t%l.2f\n", 
mr - - -  t o c/f - reps); 

I 
if (outf ile) 
fprintf (fp, lt\tstandard ~eviation:\t\t\t\t%l.2f\n~~, sqrt (s-sq) ) ; 

if (outf ile) 
fprintf(fp,"\t95%% C.I. for mean time on conveyor:\t\t(%l.2f,%1.2f)\n\n\n11, 

mr t o c/f reps- ( - - -  1.2 *sqrt (s-sq/f-reps) , 
mr - t - o - c/fIreps+( 1.2 *sqrt (s-sq/f-reps) 1 )  ; 

printf ( "\tStandard ~eviation:\t\t\t\t%l.2f\n~~,sqrt(s-sq) ) ;  
printf ( I1\t95%% C.I. for mean time on conveyor:\t\t(%l.2f,%1.2f)\n\n11, 

mr - util - conv=mr - util-conv/f - reps; 

if (outf ile) 
' I  
fprintf (fp, 

fprintf (fp, " 
1 

Average Number of parts on ~onveyor:\t\t%-1.2f\n\n", 
mr - util - conv) ; 

Average Utilization of stations:\nn); 

Average Number of parts on Conveyor:\t\t%-1,2f\n", 



printf ( " Average Utilization of stations:\nN); 
mr - util - conv) ; 

for (i=O; i<num machines+separate-unloader+l; i++) 
{ mr-util-sta [il =mr - util-sta [i] /£-reps; 

if (outf ile) 
fprintf (fp, "\t\t\t\t\t%s:\t\t\t%-1.2f\nn, station[il .name,mr~util~sta[i] ) ; 

printf ( "\t\t\t\t\t%s:\t\t\t%-1. 2f\ntfI station [ I  .name,mr - util - sta [il ) ; 

if (outf ile) 
fprintf (fp, "\fv) ; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PRINTCALS 

void printcals (void) 
{ 
event* t; 

tealenderl; 
if (trace) 

fprintf (fpt, v ~ ~ ~ ~ ~ ~ ~ ~ ~ \ n n  ) ; 

fprintf(fpdb,"\tcalenderl:\n"); 
while (strcmp (t->name, "endu) ! = 0) 

{ if (debug) 
fprintf(fpdbIu\t\tPart num: %d\tName: %s\t~ta num: %d\t~ime: %ld\nU, 

t-~part~um,t->name,t-~stanum,tT>time); 
t=t->next; 

1 
t=calender2; 
if (debug) 

fprintf (fpdb, "\tcalender2: \nu) ; 
while (strcmp (t->name, "endt1) !=  0) 

{ if (debug) 
fprintf(fpdbItt\t\tPart num: %d\tName: %s\tSta num: %d\tTime: %1d\nu, 

I t-~part~um,t->name,t-~stanum~t~~time) ; 
t=t->next; 

1 
fprintf (fpdb, "\nu) ; 

} 

i i  TESTCASES / /  



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  TESTCASE 0 

void testcase0 (void) 
{ 
int i, j ;  

if (trace) fprintf (fpt , "TESTCASE 0 \nM ) ; 

inorder=true; 
length-of conveyor=40; 
speed-of-conveyor=60; 
separate-unloader = false; 
num machineszl; 
maxIpallets in system=2; 
interstatio~t~me=speed~~f~conve~or/(nummachines+l+se~arate - unloader); 
pallet-unload - time=lO; 

strcpy (mach-seq-reqd [Ol ,"enterw ) ; 
strcpy (mach-seq-reqd [ll , " lathe1' ) ; 
for (i=2; iell; i++) 

strcpy (mach-seq-reqd [il , "removeff) ; 

strcpy(station [OI .name, "enter") ; 

strcpy (station [OI . robot - time, "unif It) ; 
station [O] . rtpl=lO; 
station [O] .rtp2=20; 

strcpy (station [ll .name, fllathe") ; 

strcpy (station [ll . robot - time, "unif " )  ; 
station [l] . rtpl=lO; 
station [ll .rtp2=20; 

strcpy (station [I] . service time, flnormfl) ; 
I - 

station [l] . stpl=50; 
station [ll . stp2=5; 

for (i=O; i<2; i++) 
{ station [i] .busy=false; 
station [i] . donezfalse; 

I station [i] . conveyorwait=true; 
station [i] .palletwait=false; 

1 

' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  TESTCASE 1 

void testcasel (void) 
{ 
int i, j ;  

' if (trace) fprintf (fpt, "TESTCASE 1 \nN ) ; 

inorder=true; 
length-of conveyor=40; 
speed-of-conveyor=3; 

b 
separate - unloader = false; 



num machinesz2; 
maxpallets in system=3; 
interstation t~me=speed~of~conveyor/(num~machines+l+separate - unloader); 
pallet-unload - time=10; 

strcpy (mach-seq reqd [OI , "enter") ; 
strcpy (mach-seqlreqd [ll , "lathen ) ; 
strcpy (mach-seq - reqd [21 , "drill") ; 

for (i=3; i<ll; i++) 
strcpy (mach - seq-reqd [il , Hremoven ) ; 

strcpy (station (01 .name, "enter") ; 

strcpy (station [Ol . robot-time, "unif " )  ; 
station [O] . rtpl=lO; 
station [OI .rtp2=20; 

strcpy(station [ll .robot - time, "unif " )  ; 
station [l] . rtpl=lO; 
station [l] .rtp2=20; 

strcpy (station [ll . service - time, "normu) ; 
station [l] . stpl=50; 
station [ll . stp2=5; 

strcpy (station [2l .name, "drill") ; 

strcpy (station [21 . robot-time, "unif " )  ; 
station [2] .rtpl=lO; 
station [2] .rtp2=20; 

strcpy(station [21 . service - time, "norm") ; 
station [2] . stpl=100; 
station [2] . stp2=10; 

for (i=O; ic3; i++) 
( station [il .busy=false; 

I station [il . done=false; 
station [i] . conveyorwait=true; 
station [i] . palletwait=f alse; 

1 

void testcase2 (void) 

int i, j; 

if (trace) fprintf (fpt , "TESTCASE 2 \nW ) ; 

length of coi&eyor=6 0 ; 
speed of conveyor=5; 
separate-unloader - = false; 

D 



num machines=3; 
maxIpallets in system=4; 
interstation t~me=speed~of~conveyor/(num~machines+l+separate - unloader); 
pallet - unload - time=l~; 

strcpy (mach seq-reqd [o] , "enter") ; 
strcpy (mach7seq reqd [ll , ltlathel1) ; 
strcpy (machIseq-reqd - [2] , "drill" ) ; 

for (i=3; i<ll; i++) 
strcpy (mach - seq-reqd [il , "remove") ; 

strcpy(station [Ol .name, "enterr1) ; 

strcpy (station [OI . robot - time, "norm") ; 
station LO] . rtpl=3 ; 
station [O] . rtp2=5 ; 
strcpy(station[ll .name, "lathe") ; 

strcpy(station (11 .robot - time, "normw) ; 
station [ll . rtpl=30; 
station [ll . rtp2=5; 

I 

strcpy(station [l] . service - time, "unif " )  ; 
station [ll . stpl=300; 
station [ll . stp2=60; 

strcpy (station 121 .name, "drill") ; 
1 

strcpy (station [21 .robot - time, "normu) ; 
station [2] .rtpl=30; 
station [2] .rtp2=5; 

strcpy (station [21 . service time, "trial1) ; 
b 

- 
station [21 . stpl=lO; 
station [a] . stp2=14; 
station [2] . stp3=16; 

' strcpy(station [31 . robot-time, "norm") ; 
station [3] .rtpl=80; 
station [3] .rtp2=5; 

strcpy(station [31 .service - time, "unif " 1  ; 
station [3] . stpl=300; 

b station [3] . stp2=60; 

for (i=O; i<4; i++) 
( station [i] .busy=false; 
station [i] . dcne=f alse; 
station[i] .conveyorwait=false; 

b station [i] .palletwait=false; 

1 
1 



void testcase3 (void) 
{ 
int if j ;  

if (trace) fprintf (fpt , "TESTCASE 3 \nu) ; 

inorder=true; 
length of conveyor=60; 
speed-~fconveyor=5; 
separate unloader = false; 
num_machTnes=3; 
max-pallets-in system=4; 
interstation~t~me=speed~of~conveyor/(num - machines+l+separate - unloader); 
pallet-unload - time=lO; 

strcpy (mach-seq-reqd [OI , "enter" ) ; 
strcpy (mach seq-reqd [ll , "lathe" ) ; 
strcpy (machIseq-reqd 121 , "drill") ; 

for (i=3; i<ll; it+) 
strcpy(mach-seq-reqd [il , "removeH) ; 

strcpy (station [Ol .name, "enter") ; 

strcpy (station [O] .robot - time, "normt1) ; 
station [O] . rtpl=3 ; 
station [O] .rtp2=5; 

strcpy (station [ll .robot - time, "norm") ; 
station [l] .rtpl=30; 
station [l] . rtp2=5; 
strcpy(station [ll .service - time, "unif " )  ; 

I station [l] . stpl=300; 
station [ll . stp2=60; 

strcpy(station [21 .name, "drill") ; 

strcpy(station [21 . robot-time, "norm") ; ' station [2] .rtp1=30; 
station [2] . rtp2=5; 
strcpy (station [21 . service - time, "tria") ; 

station [2] . stpl=lO; 
station [2] . stp2=14 ; 

1 station [2] . stp3=16; 

strcpy (station [31 .name, lllathev) ; 

strcpy(station [31 .robot - time, "norm") ; 
station[3] .rtpl=80; 

) station [3] .rtp2=5; 

strcpy (station C31 . service - time, "unif " )  ; 
station [3] . stpl=300; 
station [31 . stp2=60; 



for (i=O; i<4; i++) 
{ station [i] . busy=false; 
station [i] . done=false; 
station[i] .conveyorwait=false; 
station [i] .palletwait=true; 

1 


