
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year

Structuring Hypertext Databases Using

Hyper-Plate

Reginald Sequeira
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/27

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1994-008

Structuring Hypertext Databases Using
Hyper-Plate

Reginald Sequeira

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

Structuring Hypertext Databases

Using Hyper-plate

Reginald Sequeira
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #94-008

Structuring Hypertext Databases

Using Hyper-plate

Graduate Research

by

Reginald S. Sequeira

In partial fulfillment of

the requirements for the degree of

Master in Systems Analysis

Department of Systems Analysis

Miami University

Oxford, Ohio

December, 1 994

Abstract

Hypertext is the non-sequential access of i~formatiorz. The hypertext smcture is

pwerful enough to represent informat: s e m i f o d , and formal dbta. The construction

of a &pertext doczament is a complex and laborious task. In general, hypertext

documents are consmcted manually. The manzsal method of construction may produce

unstructured documents. It has been shown that a poor domerzt structure contributes

to the lost in hyperspace synhome. Hypertext Authoping System WypAS) was developed

at the Depmtnaent of Systems Analysis, Miami Universiby, Oyfora', Ohio. In this stu&,

I-fyper-plate system was developd to structure documents created in HypAS. Hyper-

plate system is used to create hyper-plates, i.e., templates for hpertext documents. A

hyper-plate defines the atbributes of a collection of nodes and the relationship among

those nodes. The hyper-plate concept was conceived to aa'dress the issues of structuring

and automa~ng the construction of hypertext docecments. The concepts of this study can

be extended to any hpertext authoring system. The paper presents the design and

implementation of Hyper-plate. The system components, dbta smctures, operations and

its integralion with HpAS are described in detail.

Key words and phrases: hypemedia, hypertext, hypernodes, hyperlinks, HypAS,

database, web, node reusability, hyper-engine, hyper-plate.

TABLE OF CONTENTS

Page
.. ABSTRACT ... 11

LIST OF FIGURES ... v

1 INTRODUCTION ..

... 2 FUNDAWIENTALS OF HYPERTEXT

2.1 Document Structures and Components ..

2.1.1 Node Types ...

2.1.2 Link Types ...

2.2 Hypertext Document Creation Process ..

3 HYPER-PLATE: A SOFTWARE TOOL FOR HYPERTEXT SYSTEMS ..
. .

3.1 Defimt~on of Hyper-plate ...

3.2 Hypertext Documents fkom Hyper-plate ..

3.3 Advantages of hyper-plates for Document Creation

3.4 Do We Need hyper-plates ..

3.5 Hypertext Databases ..

3.5.1 Structured Hypertext Databases ..

.. 3.5.2 Unstructured Hypertext Databases

................................... 4 THE NODE REUSABILITY MODEL AND HypAS

4.1 HypAS ...

...................... 5 AN WLElWENTATION OF HYPER-PLATE FOR HypAS

5.1 The User Intedace System ..

5.1 . 1 The Hyper-plate Editor ...

5.1.2 The Hyper-plate Viewer ...

5.1.3 The Node Editor ..

5.1.4 The Screen Editor ..

5.2 Hyper-Engne: The Hyper-plate Engine ...

5.3 The Files and Storage System ...

5.4 Integration of Hyper-plate into HypAS ..

5.5 Hyper-plate Data Structures ...

5.5.1 Link Object Structure ...

5.5.2 Node Object Structure ...

5.5.3 Hyper-plate Record Structure ...

5.6 Hyper-plate Operations ..

5.6.1 Presentation Layer Operations ..

5.6.2 Hyper-engine Operations ..

6 CONCLUSIONS ...

... 7 REFERENCES

8 APPENDICES

Appendix A: User's Guide ...

Appendix B: Hyper-plate Detailed Design and Implementation..

LIST OF FIGURES

Figure Page

1 (a) Circular hypertext structure .. 5

I (b) Fully connected hypertext structure .. 5

2 An example for regular and repeating hierarchical hypertext structure 6

3 An example hyper-plate ... 10

4 Prof B intends to create a hypertext document

by copying Prof A's nodes ... I2

5 The result is not what Prof . B had intended .

He accesses Prof A's nodes instead of his ... 12

6 A department hypertext document created using hyper-plate 14

7 Interconnection and data flow between the layers

of HypAS and Hyper-plate ... 17

8 Record structure of the link object ... 22

9 Record structure of the node object .. 22

10 Record structure of the hyper-plate ... 23

A . 1 Accessing the Hyper-plate Menu and

View Menu fiom the Main Menu .. 36

A.2 Accessing the Hyper-plate Editor and the

Hyper-plate Editor Menu from the Hyper-plate Menu 37

A.3 Accessing the Node Editor from the Hyper-plate menu 42

A.4 Serarchy of Node Menu ... 44

1. INTRODUCTION

Hypertext is hailed as the future of information retrieval and dissemination. A hypertext

document is simply a collection of linked nodes called hypernodes7 containing any type of

video or audio information W 9 0 a l . The f i r e hypertext systems will convey tactile and

olfactory infomation to the user, In a hypertext document, relationships are defined among

the nodes by linking them in various ways. This permits each user to customize a given

hypertext document to suit hislher needs or preferences. The concept underlying the hypertext

system, was described in 1945 by Vannevar Bush in his memex, a hypothetical hypertext

engine [BUS45]. The term hyprdext was coined by Ted Nelson in the late 1960s to describe

Xanadu [NEL67], an electronic publishing system.

Current hypertext systems are essentially interactive systems, and the user retrieves related

pieces of relevant infomation by following non-sequential paths called hyperlinks W 9 0 a l .

This method of retrieving related infomation by activating non-sequential links is termed as

browsing, or migating the hypertext document. The main interest in hypertext is centered on

its usability as a vehicle for on-line interactive infomation retrieval and dissemination

[CAN93a]. Recently there has been considerable interest in hypertext database systems.

CD-ROM is an attractive alternative to on-line telecomunication access for distributing very

large commercial databases, and hypertext is the most appropriate data organization for

effective CD-ROM based infomation retrieval [WS91]. Combining hypertext structure with

database models facilitates the support of query language interface, views, and efticient storage

structures m 9 1 1 ; while still retaining the hypertext" capability of fast access to relevant

information. The major drawback of the hypertext approach is; as many as 56 percent of users

lose orientation while browsing through a hypertext document W 9 0 b l . This is termed as the

lost in hyperspace syndrome. It has been shown that a poor hypertext document organization

contributes to the lost in hyperspace syndrome [BER90]. The most preferred method to help

the user traverse hyperspace without losing orientation is the provision of graphical browsers,

backtracbg facility, guided tour, and history mechanisms W 9 0 a l .

A graphical browser provides a visual representation of the hypertext document's graph

structure [CON87], and facilitates the user in locating his current position in the hypertext

network. Even though a browser is the most usefUl navigational aid, few systems provide this

facility. The most widely used recovery approach after losing one's bearings in the hyperspace

is the backtracking facility, or a jump to the beginning of the document (some systems call this

the home node). Although, the lost in hyperspace spdrome is primarily due to the lack of a

conceptual model during the hypertext creation process, the issue has not been properly

addressed w 9 11.

There are two approaches to implementing a hypertext system. The stack (a Macintosh term)

approach, which is used in Hypercard, stores the nodes and links in a single file. The second

approach, the web approach, stores the nodes and links in separate files. Hypermedia, which

was developed at Brown University [YAN88]; the World-Wide Web [VET94]; and HypAS,

which was developed at Mami U~versity [ABD93a]; are implementations of this approach.

In most current hypertext systems, an author creates each of the nodes, which contain

information, and manually links them. This is a bottom up approach [ABD93b]. Evidently, a

bottom up approach for hypertext document design or any information design should be

avoided. It forces the designer to begin at the microscopic level first, and it is not flexible and

results in wasted resources. What is required is a top down approach to hypertext document

creation. This will allow one to look at the complex problem at a macroscopic level. It is

flexible; since the design can be altered easily; and will be productive. An authoring tool such

as an auto template or what we term as a hyper-plate addresses these issues.

We coined the word Hyper-plate, to designate the auto template system that we have

developed to complement the HypAS hypertext system. There has been some interest in

templates as an authoring tool. Catlin et.al.[CAT91] describe a Hypermedia Template tool

developed at Brown University's Institute for Research in Information and Scholarship. In

Hypermedia Templates, nodes and links are created when a Template is created. These nodes

and links are stored in a folder, and a copy is made when the Template is instantiated.

We have a kndamentdy different view of Templates, which we will call hyper-plates in the

rest of this document. In our concept, a hyper-plate defines the attributes of a collection of

entities (nodes) of a hypertext document and the relationship (links) between those entities

[CAN93b]. A hyper-plate creates entities only when it is instantiated. We are primarily

interested in hyper-plates as a tool to stntdure hypertext documents.

In section 2, we briefly discuss the fundamentals of hypertext. Section 3 gives a formal

definition of hyper-plate and enumerates its advantages. We also demonstrate its usability to

structure a hypertext database. In Section 4, we describe the Node Reusability model; and

HypAS, a hypertext system based on that model. Section 5 is devoted to the description of

Hyper-plate system, its components, interfaces, data structure, and operations. In section 6 we

present conclusions and directions for future work.

2. FUNDAMENTALS OF HYPERmXT

There are widely divergent views on the structuring of a hypertext document. At one extreme,

Ted Nelson's "everything for any user" philosophy w L 8 7] encourages liberal application of

links by each and every hypertext user. The price is that the users are not guaranteed a clear

structure; they are caught in a vicious circle in the hyperspace. At the other extreme is the

rigid hierarchical structure proposed by Halasz [HAL871 which completely compromises the

flexibility of the hypertext. We subscribe to a middle of the road philosophy, and therefore,

conceived the hyper-plate concept to reflect this philosophy.

An author of a hypertext document should identitl clear structural hierarchies prior to

embarking on the creation of the document. Waiting until the document is complete is too

late, since the author may not be able to see a clear structure. However, we pennit the

creation of more links between the nodes than those agreed on at the b

allow a small mount of flexibility to the aahor to make the document more interesting, and to

take care of unforeseen situations.

2.1 Document Structures and Components

The structure of a hypertext document is a directed graph or a di-graph. In a circular

hypertext, a user will reach the initial node after following every node in the di-graph's path as

in Figure l(a). There is no order for reading; it does not matter from which node the reading

starts. In a hlly connected hypertext, represented by Figure l(b), every node is connected to

every other node [BOT91]. The readers have no clue as to which article should be read next.

A tree structure as in Figure 2, has well-defined hierarchies. The nodes and links of a

hypertext structure have types.

Figure l(a) Figure l(b)
Circular hypertext structure. Fully connected hypertext structure.

2.1.1 Node Types

The nodes in a hypertext document have the information content. Usually they have textual

information. They may also have animation or audio information. They are of the following

types.

Root Node

The hndamentat property of a root node is that it has to reach every node in the hypertext

document. hother property of the root node is that the distance from it to every other node

should be small POIFBI]. It is usually the point of entry into the document. Sometimes it is

also referred to as the home-node. Usually a mechanism is provided to return to the root node

if the user loses orientation. In Figure 2 University is the root node.

Index nodes

Index nodes are nodes that can be used as guide to many other nodes. Therefore, they will

have several outgoing links. For example, in a hypertext document on American history, a

node containing an article on Founding Fathers would point to all the nodes that have

information on Founding Fathers.

Figure 2. An example for regular and repeating hierarchical hypertext structure.

Reference Nodes

Reference nodes are pointed by several nodes and will have several incoming links. All the

Founding Fathers will have a reference to the Declaration of Independence. Therefore, a node

containing the article on Declaration of Independence would be a reference node.

Open nodes

They are also called unconnected nodes. They do not have any links pointing to them, and

they cannot be accessed fi-om the root node by traversing along any path. A hypertext

document with such nodes will not provide complete information. There will be discontinuity

in the flow of information.

2.1.2 Link Types

A link connects two nodes in a hypertext structure, hence it defbes the relationship between

. those two nodes. A link originates from an anchor (source) node and terminates in a target

node. A button is a block of text or icon in the anchor node. A button activates the link

connecting that node to the target node. Links have types.

Uni-directional Hypertext Links

These links permit the user only to jump to a target node from an anchor node. They allow the

author to impose a clear hierarchy on the document. They also permit the document to be well

structured so that there is a natural flow to the content.

Bi-directional Links

These links permit the user to access the target node and anchor node by traversing along the

same path. They are required; since, an anchor node and a target node may have content that

references each other.

Dangling links

These are links that have an anchor node but do not have a target node. They are the result of

deleting a node ~ t h o u t taking proper care to delete all the links w ~ c h point to that node.

They have a deleterious effect on the hypertext structure and contribute to the Iost in

hyperspace syndrome.

2.2 Hypertext Document Creation Process

The construction of a hypertext document is a laborious and time consuming process. Here,

we describe the process of constructing a hypertext document on HypAS. It is similar to the

process of constructing a hypertext document on any other system using the web concept. The

author of the document creates individual nodes one at a time using the hypertext system

editor and stores them on the disk as files. When a sufficient collection of nodes is built up,

one node at a time is loaded into the system and links are forged between the different nodes.

Then more nodes are created and added to the document. Apart from the technical aspects,

the hypertext document creator should have the knowledge of information design principles,

such as guidelines for formatting documents according to a specific style ECAT911. The

creation of a well-designed document requires the expertise of people in two different

disciplines: the information designers and the content experts. Should the information

designer build the whole system, the result will be an uninteresting and uninformative system at

best, or inaccurate information at worst. If the content expert tries his hand at building nodes

and links, the resulting system will be a maze of nodes and links with no discernible structure,

several dangling links, and open nodes. For example, to construct a hypertext document of

marine life, a marine biologist will be the content expert and an information designer will have

the knowledge to present this Sormation in a most informative and effective way.

3. mPER-PLATE: A SOFTWARE TOOL FOR]BYPERTEXT SYSTEMS

Hypertext system's flexibility makes them suitable for wide ranging applications: computer,

business, intellectual, educational, entertainment, and leisure W90a-j. However, the

widespread acceptability of hypertext systems (or any computer application) is contingent on

the ease with which they can be used. The difficulty of creating a hypertext document should

be addressed more aggressively. Currently, a certain level of expertise is required to create a

small hypertext document, and the creation of a large hypertext document is indeed a complex

and laborious task. During the creation of a hypertext document having as few as five nodes

the mthor can be lost in the hyperspace.

3.1 Definition of hyper-plate

A hypertext template or a her-plate, T, defines a set of nodes Nt and a set of relationships Rt

between the nodes. The set of relationships is represented by the set of links Lt. The hyper-

plate can be represented by the pair T = (Nt, Lt). A single hyper-plate is instantiated several

times such that:

for TiandTj, Ni f7 w = 0 a n d L i f7 Lj = 0foraEli, j E I (i ;t: j),

where I is the index set for all instances.

A web W is a pair W = (N, L)

m e r e N = is the set of nodes in the web and,

L = is the set of links in the web.

m e n we use a hyper-plate T, to create a web W,

N is a family of node set Ui E IMi = N and

L is a family of link set U i E ILi = L .

3.2 Hypertext Documents from hyper-plate

In a Hyper-plate environment, an information design expert constructs the Master hyper-plate

and stores it. A user or the content expert instantiates the master hyper-plate. The master

hyper-plate is not destroyed; it is saved for kture instantiations. When a hyper-plate is

instantiated, a unique set of nodes and a unique set of links are generated. All new instances

inherit the properties; such as coIor, contipration, formatting information, contents, and

linking information from the master hyper-plate. Figure 3 is a master hyper-plate for the entity

professor. After instantiation, the user fills the new instance with appropriate information.

Several instances can be generated using one master hyper-plate. The system can store several

hyper-plates designed for diEerent applications. We can also have several hyper-plates for

general applications such as; instructional, demonstration, and presentation purposes. The user

can view each of these hyper-plates and select the best one that suits hislher needs.

 ode' hi directional link

Figure 3. An example hyper-plate.

3.3 Advantages of hyper-plates for Hypertext Document Creation

A hyper-plate facility can alleviate many of the problems associated with the creation of a

hypertext document. It is a software tool designed to increase productivity, decrease the waste

of resources, and will have the following benefits:

+ It makes the use of hypertext systems attractive to novice users;

+ It enables the creation of well-structured hypertext documents by inexperienced users. The

author does not have to know to create links and nodes;

+ It completely automates the creation of hypertext documents;

+ It facilitates the application of information design principles in the construction of hypertext

documents;

+ It presents a clear picture of the hypertext structure, that is, the interconnection among the

nodes to the user;

It eliminates the presence of dangling links and unconnected nodes in the document;

I) It imposes a pre-determined structure on the document; thus it eliminates the possibility of

creating a document with undesirable structure.

3.4 Do We Need hyper-plates?

The natural question that comes to mind is why should we use a hyper-plate to create the set

of nodes and links in a repeating hierarchy. Why not create a first set of nodes and links, link

them into a web, and then create multiple copies of that set of nodes and links? Let us

consider the repeating hierarchy of Figure 2. Prof A has created a set of nodes and linked

them into the department web. Prof B, makes a copy of those nodes, deletes all the

infomation content, and fills the nodes with new content. His intention is to create a web as in

figure 4. However, when Prof B tries to access the idomation which he thinks is his, he will

be still accessing the idomation belonging to Prof A. The problem here is that, even though,

Prof B made a new set of nodes, the linking infomation in the web he copied still links the

node Prof B to the set of nodes (course A, office A, student A, AI). The actual result is

illustrated in Figure 5.

Figure 4. Prof. B intends to create a hypertext document
by copying Prof. A's nodes.

Figure 5. The result is not what Prof. B had intended.
He accesses Prof. A's nodes instead of his.

3.5 Hypertext Databases

Hypertext systems are most suitable to represent non-linear infomation, very much like the

human mind. The basic hypertext structure itself is powehl enough to represent structures

ranging from formal (Database tables), semi-formal (semantic networks) to informal

(unstructured data). However, since, hypertext structure is primarily intended for representing

informal structures, developing formal structures is a difficult task [JOR89]. For example, the

development of an employee database involves repetitive creation of entities, and links between

the entities (e.g., employee and department). Realizing such a database in hypertext will

require repetitive creation and organization of nodes and links.

3.5.1 Structured Hypertext Databases

From the database theory point of view, a hypertext web can be considered as a view in the

hypertext model [UTT89]. However, the manual construction of a structured hypertext

database is expensive because of the high cost, or cognitive overhead [CON89]. It also does

not assure consistency and coherency in such a database. If directly linked nodes contain

related information then they are coherent. We propose that a hyper-plate is the schema for

the web, i.e., from the hypertext point of view it is equivalent to the schema of the relational

database. Just like a schema, a hyper-plate does not create entities by itself; it merely defines

the attributes and relationships of the entities that will be created at the time of instantiation.

The state of the department web after three instantiations of the Prof. hyper-plate is shorn in

Figure 6.

3.5.2 Unstructured Hypertext Databases

It may appear that hyper-plates are inapplicable while creating a hypertext version of the

encyclopedia, which is unstructured data from the database perspective. However, the

information design principles require that the structure of the document be represented on

paper first, perhaps using drawing software package. It is also desirable to breakdown the fill

information into small blocks of data, and organize them into a small number of nodes that can

be easily managed [ABD93a]. These small blocks of nodes can be directly represented on the

Hyper-plate's editor instead of using drawing s o h a r e package. This would not only

automate the creation of the document itself, it would also eliminate one step in the creation of

the document. One hyper-plate for an individual block of information can be created, and

finally the document can be assembled by instantiating the collection of hyper-plates belonging

to this document.

Auto links to the root n

Figure 6. A department hypertext document created using hyper-plate.

4. TEE NODE REUSABIL,ITS MODEL AND RypAS

We elaborate on the two approaches currently used for the implementation of hypertext

systems. In the first approach(used in Hypercard), the nodes and finks that constitute a

hypertext document are stored in a single file. If some node of this document contains

14

information that may be of interest to another hypertext document, then a copy of that node is

made, and that copy linked appropriately in the new document. This is a duplication of

information and waste of storage space. We point out that to avoid duplication just creating

links from the second document to the first will be inappropriate. The links intended for the

first document will be accessible from the second document also. In this approach we cannot

present diffwent views of the same information effectively. Different views of the same

information are required to present the same information to different users of the document.

The second approach stores the nodes and linking information separately. This approach is

used in the Node Reusability Model QV'RM), which is employed in the implementation of

HypAS. A similar approach is also used in Intermedia [YAN88]. In each node is a

separate entity. To construct a document, the associated nodes are linked to form a network

of nodes called the web and the web is stored in a separate file. A hypertext document can be a

single web, or a superweb: a set of webs. Since the linking information is not part of the

nodes, it is possible to include a given node into different webs without being able to access

one web from another. The advantages of the node reusability model are:

+ A single node can be utilized in different hypertext documents without dupficating the

node;

+ Nodes can be authored independently;

+ New nodes can be added to the conection of nodes, without incorporating them in any

document;

+ Update anomalies are eliminated, since information is updated in only one node and this

propagates to all webs that access this node;

+ The same information can be presented from diflerent perspectives by developing more

than one web.

4.1 HypAS

HypAS is based on the Node Reusability Model. It is a frame based hypertext authoring

system that works on any PC running MS-DOS 3.0, or later versions. HypAS is implemented

in the C++ language. It consists of four major components [ABD93b]: a user interface

subsystem, a nodes subsystem, a links subsystem, and files and storage subsystem

corresponding to the layers of NRM (see Figure 7). HypAS was developed in the Department

of Systems Analysis, Mami University, Odord, Ohio. It is an easy to use system and it is

intended to be used for research and instructional purposes [ABD93a].

Two distinct user interfaces are available in HypAS. One is for the hypertext reader, and the

other for the hypertext author. The authoring interface is the HypAS editor, which is used for

creating and editing nodes, links, and webs. In HypAS nodes can be of four types: screen,

index, command, and script. Screen nodes are text nodes that can be created using the HypAS

editor. In HypAS, any MS-DOS program (.EXE or .COM) or batch file (.BAT) is qualified to

be a command node. This allows the user to link nodes that may contain graphics, animation,

digitized sounds, etc. HypAS supports a superset of Basic lanwage for the creation of script

nodes. In HypAS, each web may contain a m of fifty nodes. Webs are inter-linked to

form a superweb, and up to ten webs may be contained in a superweb. The system can

support a total of five hundred superwebs. Very large hypertext document can be created

[ABD93a], since the system can contain 250,000 nodes. Each web is stored under a unique

name. For the reader, HypAS provides a list of superweb files to select from. The reader can

select one superweb for loading into the memory. When a superweb is selected, the network

of link structures for all its web members are loaded into the main memory. HypAS supports

backtrack facility as a recovery mechanism.

5. AN MPLEMENTATION OF HYPER-PLATE FOR HypAS

The Hyper-plate system for HypAS, is implemented in the C t t language to ensure total

compatibitity with the existing system. It runs on any PC using the MS-DOS 3.0 or later

versions. It has three Iayers: the top most layer is the user interface system, the bottom layer

is the file storage system, and between the two is the Hyper-plate engine or the hypewngzne.

In this section we describe each layer in detail.

Figure 7. Interconnection and data flow
between the layers of HypAS and Hyper-plate.

5.1 The User Znterfaee System

Four distinct user interfaces are provided by the Hyper-plate system. First, the Hyper-plate

editor is for the designer of the hyper-plates. There are three interfaces for the user or the

author of the hypertext documents: the Hyper-plate viewer, the node editor, and the screen

editor. The interfaces are designed with a view to automate most of the tasks. The designer

or user can accomplish the job with minimal technical knowledge. We predict a very short

learning period for the user of the Hyper-plate system.

5.1.1 The Hyper-plate Editor

It is a menu driven user friendly graphical editor. The user can depict four types of objects on

the desktop: root node, unique nodes, uni-directional links, and bi-directional links. The root

node is represented by double bordered rectangle, unique nodes by single bordered rectangles,

uni-directional links by unidirectional arrows, and bi-directional links by bi-directional arrows.

The editor recognizes these entities as node objects and link objects. Root node is created only

once, during the first instantiation of the master hyper-plate.

Unique nodes are created during every instantiation of the hyper-plate. They are called unique

because only one instance of the hyper-plate can access them. Root nodes and imported nodes

can be accessed by every instance of the hyper-plate. Obviously, every node is unique from the

web point of view. A node object can be drawn by specilt'ying the location of the object on the

screen and the type of object; that is, whether unique or root node. Comand and script nodes

are also depicted with double bordered rectangles. A double bordered rectangle merely

specifies that a node should be created only once, during the first instantiation. The arrows

representing the links are drawn automatically once the user specifies the nodes to be linked.

Deletion of nodes is accomplished by simply placing the cursor inside the rectangle

representing the node and selecting delete. When a node is deleted, all links associated with

that node are also deleted. This prevents the presence of any dangling links in the document.

There is provision for the manual creation and deletion of links, as well as for the renaming of

nodes.

A Hyper-plate editor can be used to create a new hyper-plate or edit an existing one. A hyper-

plate can be renamed. However, renaming a hyper-plate will save it as another hyper-plate.

For example, if we rename a Prof hyper-plate to Employee, we will have two hyper-plates;

one for Prof, the other for Employee. ARer creation, hyper-plates are stored in the system.

5.1.2 The Hyper-plate Viewer

We mentioned that a system can have several hyper-plates. A hyper-plate viewer is a facility

that lets the user get a list of hyper-plates in the system and view them one by one. A hyper-

plate is not instantiated while it is viewed, neither can it be edited nor modified.

5.1.3 The Node Editor

This interhe instantiates a hyper-plate and opens the new instance to the user. The user can

open each node by placing the cursor on the node and selecting open. The node editor then

searches the file storage system for that node. If a node does not exist, it creates a new one,

and loads the node into the screen editor. An opened node is marked by a different color to

indicate that it has already been edited.

5.1.4 The Screen Editor

This interface allows the user to edit the nodes accessed from the node editor. When a node is

opened, the system automatically starts the screen editor and displays the node in it. The node

title is displayed at the top of the screen, and the links at the bottom. The author can then fill

the node with content and create extra l ids to other existing nodes. This feature allows the

creation of links that could not have been foreseen. In addition, the author can draw objects

on the screen, move objects, and change the color of the text. The information is saved

automatically when the user exits the screen editor.

5.2 Hyper-Engine: The Hyper-plate Engine

Hyper-engine is the heart of the system. The input to the hyper-engine is the output &om the

Hyper-plate editor. When a hyper-plate is instantiated, the user is given the option of either

creating a new web, or to incorporate the new instance of the hyper-plate into an exiting web.

If the user requests the creation of a new web, the hyper-engine converts the infomation

contained in the hyper-plate data structure into a web. If the user requests the hyper-plate to

be incorporated into an existing web, a list of webs is displayed first. After a web is selected a

list of hyper-plates is presented. The hyper-engine then loads the web first into the system;

converts input fi-om the hyper-plate into hypertext nodes and links, and updates the web. The

hyper-engine keeps a count of all the copies it has instantiated for each hyper-plate. When a

hyper-plate is instantiated, it generates a unique file name for each node, and links it with the

correct set of links.

5,3 The Files and Storage System

The files and storage system contains the routines for creating, storing, and accessing the files

created by the hyper-engine and the user interfaces. The files created are hyper-plate files,

screen nodes, and web files.

5.4 Integration of Hyper-plate into HypAS

The Hyper-plate system is integrated into the existing HypAS system at two layers: the

presentation layer and the link layer. The access to Hyper-plate is through the Main menu of

HypAS, a presentation layer. Also, during the editing and linking of the node object, it makes

use of some of the existing HypAS presentation layer fUnctionality. At the link layer, it takes

control of the HypAS web when Hper-plate is being used. A web created by using Hyper-

plate can be loaded, edited, and run ftom HypAS. We can create more links from HypAS if

desired. HpAS can also be run without the Hyper-plate software.

5.5 Hyper-plate Data Structures

Hyper-plate has three important data structures of its own. It also utilizes the existing link,

node, and web data structures of HypAS during the instantiation time. In this section we

describe the Hyper-plate data structures. For a detailed description of HypAS data structures

the reader is referred to the working paper of Abdalla [ABD93b].

5.5.1 Link Object Structure

Hyper-plate recognizes links and nodes that are represented on the Hyper-plate editor. The

link objects contain the l i i n g infomation that is later used to create hyper-links at the

instantiation time. Their structure is as in Figure 8.

int anchor 121;
I* x, y positions of anchor point on the desktop *I

/* x, y positions of target point on the desktop */
char nodes [2] [NODE-NAME-SIZE];

I* anchor and target nodes */

Figure 8. Record structure of the link object.

5.5.2 Node Object Structure

The node objects contain their position on the editor desktop and an object name. If an object

of that name does not exist in the file storage system, an object with a unique file name is

generated during instantiation. Node object structure is as in Figure 9.

char obj-name [NODE-NAME-SIZE];
char obj-type;

I* unique or non- unique type of node object*/

Figure 9. Record structure of the node objecd;.

5.5.3 Hyper-plate Record Structure

The hyper-plate record contains infomation about all the node objects and link objects that are

on the desktop. The desktop is saved as a screen file. The hyper-plate record also stores the

count of instances it has generated. The record structure of hyper-plate is in Figure 10.

char temp-name [FILENAME-SIZE];
char instance [INS-SIZE];
int web-insgoint;

I* insertion point in the web *I
obj-type node [MAX-NODES];
link-type link [MAX-LINKS];

) template-type;

Figure 10. Record structure of the hyper-plate.

5.6 Hyper-plate Operations

The presentation layer and hyper-engine have their own set of operations. The layers and their

operations are modularized. The knctions are cohesive and operate strictly by parameter

passing. Following are the lists of important operations and a brief description of each.

5.6.1 Presentation Layer Operations

Createtemp (Template - type)

Creates a hyper-plate vvith no objects in it. Prompts the user for a name for the hyper-plate, if

there is no user input, assigns a default name for the hyper-plate.

Upentemp(Template-&p)

23

Gives a list of currently available hyper-plates to the user. Loads an existing hyper-plate from

storage, and opens it for editing.

Smeetemp(Templatee~e}

Saves a hyper-plate to the disk as a data file. The user can change a hyper-plate file name

during this operation.

mw-temp(Template - type}

Gives a list of available hyper-plates and accesses the specified hyper-plate ftom storage and

displays it.

Create - node(Tempkade-me? Node-me, Node-me}

Creates a representation of the node (rectangle) on the editor screen, and stores the object

information in the hyper-plate record.

Rename - node(Temp2afe - type, Node - name, Node - type}

Changes the name of a node and modities the infomation in the hyper-plate record.

Access - nodemode-name}

Access the node file from the disk if it already exists, otherwise creates a new node. Loads the

screen editor and the node into the screen editor.

Save - n o d e ~ e n a m e }

Saves a screen node to the disk.

Delete - node(TempEate-Ype, Node - name, Node - type)

Deletes the node representation from the desktop, deletes all the links associated with the

node, and erases the node and link infomation from the hyper-plate record.

Create-Gink(Tem@e@pe, link-Ype}

Automatically displays an arrow representing a link between two nodes, and stores the

information in the hyper-plate record.

Delete - link(Temp1ate-typ, link - w e)

Deletes a link and deletes this link's information from the hyper-plate structure. Also, erases

the anow representing this link from the desktop.

5.6.2 Hyper-engine Operations

Make - web(Temp1ate-type, Feb-type)

Creates a web gorn the hyper-plate record , and loads it into the system.

Load - web(;remplate-type, Web-Qpe)

Loads an existing web ffom the disk storage, updates it with new node and link information

generated from the hyper-plate record.

Sme-we b (We b-type)

Saves a web after the new instance of the hyper-plate has been edited.

Uphte-Te~nprTemplate-type)

After every hyper-plate is instantiated, the information that a new instance has been created is

stored in the hyper-plate's record.

6. CONCLETSIONS

Hypertext is the non sequential retrieval of information. However, this non sequentiality can

lead to c o ~ s i o n if used indiscriminately during the authoring phase. A basic hierarchical

hypertext structure, with some cross referential links is most likely to lessen user

disorientation. Constructing a hypertext document is a laborious and repetitive task especially

when regular hierarchies are involved. A hyper-plate, for hypertext database, is equivalent to a

schema of the relational database. In addition, it has the advantage of automating the

construction of hypertext documents. The Hyper-plate system implemented for HypAS has

three layers: a storage layer, a presentation layer, and the hyper-engine.

Hypertext is suited to on-line infomation. There are still issues to be addressed in hypertext

databases. The issues of insertion, deletion, and update anomalies should be addressed. In

hypertext, these anomalies are caused by missing or dangling links. Like the schema of the

relational database, hyper-plate cannot address these issues. We suggest the development of a

mart-web to overcome the current drawbacks. Such a web would automatically detect

dangling links.

In our investigation for this paper, we discovered that the research in hypertext is concentrated

on the analysis of the hypertext structure itself. We have not found any attempt to evaluate the

hypertext systems and quantifl the results. The current method of evaluation is just user

feedback which is subjective. Another area to explore could be the evaluation of hyper-plate

vis-a-vis the manud method of constructing a hypertext document. However, sizable user

participation will be required to cany out these evaluations.

REFERENCES

[ABD93a] Abdalla, O.,Can, F. "Node Re-Usability in Structured Hypertext Systems. " In

Proceedings of the ACM 1993 Computer Science Conference, 1993,ACPvl, New

York, 440-445.

[ABD93b] Abdalla, 0 . 'Design and Inplementation of a Hypertext Authoring System

(HypAS)." Working paper #93, Miami University, Oxford, Ohio, 1993.

[BER9O] Bernstein, M. "Hypertext and Technical Writing." IB Proceedings ECHT '90

Course, Versailles (France), 1990.

[BOT9 1] Botofogo, R. A., Shneideman, B. "Identifying Aggregates in Hypertext

Structures." In Hypertext '91 Proceedings, 199 1,63-74.

[BUS451 Bush, V. "As we may think." Atlantic MonthEy. 176 (I), July 1945, 101-108.

[CAN93a] Can, F., Lee, Y-M. "HypIR: A Hypertext-Based Approach to Infomation

Retrieval." In Proceedings of ACM 1993 Symposium on Applied Computing,

1993, New York, 729-736.

[CAN93b] Can, F., Sequeira, R.S. 'cStructured hypertext creation using templates: Auto

template tool for HypAS. " Prmeedings of the Eighth Ink S ' p . on Compter

cmd Informtion Sciences, Istanbul, Nov. 1993,549-556.

[CAT911 Catlin, K. S., Garret, I,. N. "'Hypemedia Templates: An Authors Tool." In

Hpertext '91 Proceedings, 199 1, 147- 160.

[CON871 Conklin, J. "Hypertext: An Introduction and Survey." Computer, 20(9), 1987,

17-41.

[CON891 Conklin, J., Begeman, M. L. "gIBIS: A Tool for All Reasons. " Jourlaal of the

American Socievfor Infoma~on Science, 40(3), pp 200-213, May 1989.

[HAL871 Halasz, F.G., Moran, T.M., Trigg, R.H., "NoteCards in a Nutshell." In

Proceedings of the ACM CHI+ GI Conference, Toronto, April 1 98 7,45-52

[HAR9 11 Nara, Y. ,KelIer, A.M., Wiederhold, G. "Implementing Hypertext Database

Relationships through Aggregation and Exceptions. " In Hypertext '91

Proceedings, 1991,75- 90.

[JOR89] Jordan, D. S., Russell, D. M., Jensen, A. S., Rogers, R. A. "Facilitating the

Development of Representations in Hypertext with IDE." In hTypertext '89

Prmeedings, 1 989,93- 104.

DAN911 Nanard , J., Namard, M. "Using Structured Types to Incorporate Knowledge in

Hypertext." In Hypertext '91 Proceedings, December 199 1,329-343.

[NEL67] Nelson, T. H. "Getting it out of our system. " In infomation Retrieval: A

CriticuZ Review. G. Schechter, Ed. Thontlpson Books, Washington, D.C., 1967.

IN_EL87] Nelson, T.N. "All for one and one for all (invited to talk)." In F. Halasz (Ed.), In

Proceedings ofHypertext '87,s-7, Chapel Nill, NC: ACM Press.

m 9 0 a] Nielsen, J. Hypertext & Hypemeda. Academic Press, Inc., 1 990.

[NIE90b] Nielsen, J. "The Art of Navigating Through mertext. " Communications of the

ACM, 33 33), March 1990,296-3 10.

WTT89) Utting, K., Yankelovicb, N. "Context and Orientation in m e m e d i a Networks. "

ACM Trmsactio71 on QBce lifomation Sysbems, 7(1) 1 989, 58-84.

[VET941 Vetter, R.J., Speli, C., Ward, C., "Mosaic and the World-Wide Web."

Co~nputer, Oct.'94,49-57.

W S 9 1 1 West, J. C., "Economic Constraints in Hypertext." Journal of the American

SocieQfor Informatitior Science, 42(3), 199 1, 1 78- 1 84,

[YAN88] Yankelovich, N., Haan, B.,Meyrowitz, N. K., Drucker, S. M. "htemedia: The

Concept and Construction of a Seamless Information Enviroment. " Computer,

21(1), 1988,81-96.

APPENDICES

Appendix A

Hyper-plate User's Guide

TABLE OF CONmNTS

... ABOUT HYPER-PLATE

... INSTALLING rnER-PLATE

.. STARTING HypAS AND MUPERRPLATE

USING THE MEWS ..

HYPER-PLATE hlE3V.J ...

5.1 View Menu ..

HYPER-PLATE EDITOR ..

.. 6.1 Hyper-plate Editor Menu

6.2 Creating a Node on the Hyper-plate Editor

6.3 Deleting a Node from the Hyper-plate Editor

.. 6.4 Creating Links on the Hyper-plate Editor

6.5 DeIeting Links from the Hyper-plate Editor

6.6 Renaming a Node ...

6.7 Saving a hyper-plate ...

. .
6.8 Exltmg the Hyper-plate ...

NODE EDITOR AND MEW ...

7.1 Opening a Node ...

7.2 Saving the Web ..

7.3 Exiting the Node Editor ...

Page

34

34

35

35

36

36

... 8 SCREEN EDITOR AND MENU 44

. . .. 8.1 Edlt~ng a Screen 45

.. 8.2 Saving a Screen 45

... 8.3 Exiting the Screen Editor 45

9 LINK.ME,NU ... 45

... 9.1 Creating a Link 46

... 9.2 Deleting a Link 46

1. About Hyper-plate

Hyper-plate is a system designed to automate the creation of hypertext documents in the

HypAS environment. It is designed to impose clear structure, and solve many of the problems

inherent to the creation of hypertext documents. Note that the output of the system 'Byper-

plate" is also called hyper-plate. The context in which the term is used should clari@ which

one is referred. Also, the system is spelt with a capital "H' and the system output with 'h.'

Hyper-plate was developed at the Department of Systems Analysis, Mami University, Oxford,

Ohio. It is integrated into Hypertext Authoring System (HypAS) which was also developed at

the Department of Systems Analysis, Miami University, Oxford, Ohio. For hrther infomation

on HypAS and the user's guide on HypAS, please refer to the working paper of Abdalla

[ABD93a]. A copy of this paper may be obtained from the Department of Systems Analysis,

Miami university, Oxford, Ohio.

2. Installing Hyper-plate

Put the installation disk in drive A: (or B:), type a: install (or b: install) and press the

<ENTER> key. The installation program creates a directory, C: AS, and installs the

program in that directory. Since Hyper-plate is a part of HypAS, you will get an updated

version of W A S . UF you have an older version of HrpAS and wmt to save it, you should

copy it to some other directory.

3. Starting HypAS and Hyper-plate

If you want to start HypAS always from the C:\ prompt, you should modify your

AUTOEmC.BAT file. Include C: AS in the "patV command of your

AUTOE)[EC.BAT file. If you do not want to modify your AUTOEmC.BAT, change the

directory to C:WYPAS and type "hypas7' every time you want to execute the program. You

will be greeted with the HypAS greeting screen. The greeting screen will be displayed for five

seconds; after that, the Main menu and the main screen of the HypAS will be displayed. The

main screen consists of 23 fines of workspace area called the desktop. The bottom two lines of

the screen are the Main menu and message area.

4 Using the Menus

HypAS and Hyper-plate are menu driven user friendly systems. The Main menu is always

displayed first (see Figure A. 1). The current selection is highlighted with a menu bar. You can

change menu selection highlighting by using the <LEFT> or <RIGHT> cursor keys. Also, the

spacebar moves the hiflighting to the right. When a menu selection is highlighted, the next

options available under that selection are displayed in the message area. Menu selection is

executed by highlighting a selection and pressing the <ENTER> key. In some menus,

selection can be also made by enterJng the &st letter of the selection. If a menu oEers that

feature, then the first letter of the selection is displayed with a diflFerent color.

Figure A.1. Accessing the Hyper-plate Menu and
View Menu from the Main Menu.

5. Hyper-plate Menu

From the Main menu of HypAS select 'Byper-plate" and press the <ENTER> key. Hyper-

plate menu provides access to the Hyper-plate editor, Node editor, and the View menu. From

the Hyper-plate menu you can go back to the Main menu by selecting "Go Back" and pressing

the <ENTER> key.

5.1 View Menu

W e n "view" is selected from the Hyper-plate menu, a list of hyper-plate files that are in the

system is displayed. Hyper-plate files can be then viewed one by one in the viewing screen by

selecting "View Next". Selecting 'Zxit" while in the viewing screen, will bring you back to the

Hyper-plate menu.

1 Hyper-plate Editor Menu

Figure A.2, Accessing the Hyper-plate Editor and the
Hyper-plate Editor Menu from the Hyper-plate Menu.

6. Hyper-plate Editor

Hyper-plate editor can be accessed from the Hper-plate menu by selecting either 'Create" or

"Edit" and pressing the <ENTER> key (Figure A.2). Hyper-plate editor is character based.

The first 23 lines constitute the desktop. The bottom 2 lines show the menu selection. When

"Create" is selected, you are prompted to enter a name for the new hyper-plate. The name can

be up to eight characters long. All hyper-plates will have the extension ''.TEW appended to

their file name. If no name is entered a default name (NONANIE.TEM) will be assigned. You

can cancel the selection by entering the <ESC> key. When '"Edit"' is selected, you are

prompted to type a hyper-plate file name. You can also get a list of hyper-plate files that are in

the system by simply pressing the <ENTER> key when prompted to enter a hyper-plate file

name. A file can be then accessed by highlighting it and pressing the <ENTER> key again.

6.1 Hyper-plate Editor Menu

When you first access the Hyper-plate menu, the first selection on the menu will be highlighted.

You can change the menu selection highlighting by using the <LEFT> cursor key, <RIGHT>

cursor key, or the space bar. Any executed selection can be canceled by using the <ESC> key.

The cursor will appear in the desktop area after a selection has been executed, and none of the

menu selection will be highlighted. To make another menu selection press the <ESC> key, and

once again the first menu selection will be higMighted. You can change the highlighting again

as explained earlier.

6.2 Creating a node on the Hyper-plate Editor

Select the option "New node" or "Root Node" and press the <ENTIZR> key. You will be

prompted to move the cursor to a position where you want to place the node and press the

<ENTER> key again. You will have to then move the cursor by using the cursor keys to

select the area of the rectangle that represents this node. ARer you have selected the area,

press the <ENTER> key once more. The editor draws a rectangle to represent the node. The

rectangle will be single bordered or double bordered depending on the type of node you have

selected. The system then prompts you for the name of the node. If you do not enter any

name, the system gives an error message and the rectangle is erased fiom the desktop. If you

type a name, this will be displayed in the center of the node. The operation can be canceled at

any stage by pressing the <ESC> key. Be sure to draw a rectangle large enough to enclose the

name of the nude. Selecting a smaller area will not affect the information stored in the hyper-

plate, but it will not look legible on the desktop.

6.3 Deleting a node from the Hyper-plate Editor

To delete a node, select the option "Del Node" from the menu. Place the cursor inside the

rectangle representing the node and press the <ENTER> key. If you place the cursor where

no rectangle exists, the system gives a warning. The operation can be canceled by pressing the

<ESC> key.

6.4 Creating links on the Hyper-plate Editor

Select either "Link U" or "Link Bi" and press the <ENTER> key. The system then prompts

you for the names of the anchor and target nodes. If you enter an invalid name, the system

gives an error message and does not create a link. If you enter valid names, the editor asks

whether you want the system to create the link for you. If you type in "'Y,"' which is "yes," the

system creates an arrow to represent the link and asks whether this link is "U.K." If you enter

"N," which is "no," the system erases the arrow and prompts you to create the link (arrow)

manually. You can cancel the operation at any stage by pressing the <ESC> key. Note that

the system can only create either horizontal or vertical arrows automatically. Also, there

should be no objects between the anchor and target nodes. If there are, they it will be

overwritten. However, it will not aflFect the information stored in the hyper-plate record. Uni-

directional link will be represented by an arrow, with arrow head towards the target node. Bi-

directional link will be represented by an mow, with an arrow head on both ends.

If you select "N" when the editor prompts whether you want automatic link creation, the

system then prompts you to create the link manually. To create a link manually, simply place

the cursor outside the rectangle representing the anchor node and press the <ENTER> key.

Then move the cursor to the target node and press the <ENTER> key again. The operation

can be canceled by pressing the <ENTER> key. Since the HypAS and Hyper-plate use

character based editors, only horizontal or vertical arrows can be drawn. You cannot draw

arrows at an angle to the vertical or horizontal. If there are any other objects between the

anchor and target nodes, you will have to move the cursor around them.

6.5 Deleting links from the Hyper-plate Editor

When a node is deleted all horizontal and vertical arrows associated with it are also erased

automatically from the desktop, and their link information deleted from the hyper-plate record.

However, the system cannot erase arrows that go around objects on the desktop. Note that

the link information for these arrows, also, is deleted from the hyper-plate record; only the

arrows are not erased from the desktop. These arrows will have to be erased using the

<BACKSPACE> key. Links can be ddeted manually also. Select 'Del Link" fiom the menu.

The system prompts you to place the cursor at any one end of the arrow and press the

<ENTER> key. If you place the cursor at an invalid position on the desktop, the system warns

you. You then move the cursor to the other end of the arrow and press the <ENTER> key

again. The operation cannot be canceled once the deletion of the mow has comenced.

6.6 Renaming a Node

Select the option "Rename" from the Hyper-plate editor menu and press the <ENTER> key.

The system will prompt you for the name of the node to be renamed, and then, the new name.

If you enter m invalid name an error message is displayed. The new name is then displayed

inside the rectangle representing the node.

6.7 Saving a Hyper-plate

Select the option "Save" &om the Hyper-plate editor menu and press the <ENTER> key. The

system displays the current file name of the hyper-plate and prompts you for a new name. You

can either save the hyper-plate under the current name or type in a different name. The

operation can be canceled by pressing the <ENTER> key.

6.8 Exiting the Hyper-plate

Select "Quit" and press the <ENTER> key. The system asks, whether you want to save the

hyper-plate. If you enter "Y," which is "yes," it prompts you for a name. If a file of the same

name exists, the system asks you whether to overwrite the current hyper-plate file. The

operation can be canceled by pressing the <ESC> key.

Figure A.3. Accessing the Node Editor from the Hyper-plate Menu.

7. Node Editor and Menu

Node editor menu (Figure A.3) offers three selections to the user: "Open a Node," "Save the

Web," and 'cExit." You can access the Node editor and Node menu from the Hyper-plate

menu by either selecting T e w Doc" or "Update." When you select "mew Doc," a new

hypertext document is created. The system assigns a file name for the new document. It is a

'W' with the hyper-plate name appended to it. Note that all hypertext document (web) files

have ".WEBm extension in their file name.

If you select "Update," the system asks you for the name of the hypertext document to be

updated. You can type in a name. Alternatively, you can get a list of web files by pressing the

<ENTER> key, and select a file fiom the displayed list. You will be then prompted to type in

the name of the hyper-plate to be used to update this web. You can type in the name or get a

list of the hyper-plate files by pressing the <ENTER> key.

7.1 Opening a Node

Select "Open a Node" from the Node editor menu and press the <ENTER> key. Position the

cursor inside the node to be accessed and press the <ENTER> key again. If you place the

cursor at a location on the desktop where no node exists, an enor message is displayed. An

edited node will be marked by a rectangle of different color.

7.2 Saving the web

Select the option "Save the Web" and press the<ENTER> key. You will not be prompted for

a name. If the web is a new web, the system automatically assigns a file name. If you are

updating a web, the file will be saved under its existing file name.

7.3 Exiting the Node Editor

Select the option ')Exit" and press the <ENTER> key. The system automatically saves the web

for you. You will not be prompted for a name.

Screen Editor Menu

Link Menu

Figure A.4. Hierarchy of Node Menu.

8. Screen Editor and Menu

Screen editor and Screen menu Figure A.4) are accessed from the Node Menu by selecting

"Open a Node" and pressing the <ENTER> key. The system starts the screen editor. It then

loads the screen of the node to be edited in the screen editor. The name of the screen you are

editing is displayed at the top, and the buttons (links) at the bottom. You can change the name

of the screen.

8.1 Editing a Screen

Select ?Edit" and press the <ENTER> key. The cursor will move into the desktop area.

Pressing the <ESC> key will enable you to make another menu selection. In the screen editor,

you can type in text, create rectangles, draw lines, move a block of text, and change the color

of a section of text. For the commands to do these editing tasks, press the help key F 1.

8.2 Saving a screen

Select the menu option "Save" and press the <EWTER> key. The system will save the

contents of the screen. You will not be prompted for a file name. All screen files have the

extension '! SCR" in their file name.

8.3 Exiting the Screen Editor

Select the menu option "Exit" and press the <ENTER> key. When you exit, the screen will be

automatically saved for you. You will not be prompted for a file name.

9. Link Menu

Selecting ''Link" in the screen editor will display the Link menu (see Figure A.4). You can

create more links, or delete the links. You can also delete the links created by the Hyper-plate.

However, we caution you not to delete the links created by the Hyper-plate unless it is

absolutely necessav. Deleting these links may introduce inconsistencies in the document

structure. From the Link rnenu you can go back to the Screen editor by pressing the <ESC>

key.

9.1 Creating a Link

Select the option "Create7' from the Link menu and press the <ENTER> key. You will be

prompted to highlight the text that you want to use as the button. You will be then prompted

to type the name of the target node to link this button. You can type in a name or get a List of

the node (screen) files that are in the system. Highlight the node name and press the

<ENTER> key.

9.2 Deleting a Link

Select the "Ddete Link" option from the Link menu and press the <EITIER> key. Highlight

the link to be deleted and press the <ENTER> key again.

Appendix B

Hyper-plate Detailed Design and

Implementation

Hyper-plate Detailed Design and Implementation

In the design and implementation of Hyper-plate, we have adhered to structured design and

implementation techniques. Modules have been designed to group related firnctions. The

&netions operate by parameter passing. You may notice some knctions use global variables.

This was necessitated because of the original design of HypAS. The Hyper-plate modules are

included in the HypAS project file and compiled into one executable fde, HYPAS.EXE. An

installation utility, INSTaL.EXE, is created to move HypAS fiom floppy to hard disk and

configure the system. In this appendix we describe the modules developed for Hyper-plate,

and the firnctions implemented in each module.

HYPAS PROJECT

The modules developed for the Hyper-plate system are combined with the HypAS modules to

create a single project file: HYPAS.PRJ. The modules of Hyper-plate system are indicated

with an asterisk. For the detailed design of HypAS modules reader is referred to the working

paper of Abdalla [ABD93 b] .

Project f3e: HYPAS.PRJ

*ARROWS.CPP
BLOCK-F. CPP
BLOCK-M.CPP
CONFIG-F. CPP
CONFIG-M.CPP
EDHELP-F. CPP
EDIT-F. CPP
EDIT-M.CPP
WAS-M.CPP
LrNEDR-F. CPP
LINEDR-M.CPP
L-F. CPP
LINK-M.CPP
"LINK_OB J. CPP
LO AD-F . CPP
LOAD-M. CPP
*NODE-M.CPP
* SCR-EDIT.CPP
SAm-F. CPP
SAVE-M.CPP
"TBLOCK-F.CPP
*TEDIT-F. CPP
*TEDIT-M. CPP
*TEn/L_F.CPP
*NODE-OBJ. CPP
"TLINE-F . CPP
"TLrn-M. CPP
*TLNK_F.CPP
*TWEB-F.CPP
VIEW-F.CPP
WB-F . CPP
wEs-M.CPP
TOOLKIT.CPP

M&ule: ARROWS.CPP

This moduIe creates and deletes links automatically on the Hyper-plate desktop. It also

contains the hct ions that create and delete manual links. These knctions are invoked by the

Hyper-plate editor.

Functions:

boolean auto-arrow

{T-type* template, char* anchor-name, char* target-name, int arrow-type)

void DrawArrow{int arrow-type, int* xgosition, int* yqosition)

void EraseArrow(int* xqosition, int* yqosition)

Module: NODE-M.CPP

This module defines the fimctions for displaying the Node menu and the related functions.

They are invoked &om the Hyper-plate menu.

Functions:

void obj-open-menu(T-type* template)

void open-menu(int menu-choice)

Module: SCR-EDIT.CPP

This module defines the screen menu. Screen menu is invoked by the node menu when we

open a node for editing.

Functions:

int scr-menu(int* xgosition, int* ygosition, char* node-nme)

void display-menu{int menu-selection)

Module: TBLOCK-F.CPP

This module contains functions that create double bordered and single bordered rectangles. In

addition, it also defines functions for copying, moving, erasing and coloring blocks of text.

These functions are invoked fiom the screen editor. The hyper-plate editor can invoke only

the hnctions to create double bordered and single bordered rectangles.

Functions:

select - type tselect-block

(int xqos, int ygos, int b , int b W , int bMAXX, int b

void single-border

(int FIRSTX, int FIRSTY, int SECONDX, int SECONDY, char* M e , int color)

void double-border

(int FIRSTX, int FIRSTY, int SECONDX, int SEONDY, char* fname, int color)

void copy-block

(int FIRSTX, int FIRSTY, int SECONDX, int SEGONDY, int x_pos, int yqos)

void erase-block(int FJRSTX, int FIRSTY, int SECONDX, int SECONDY)

void move-block

(int FIRSTX, int FIRSTY, int SECONDX, int SECONDY, int xqos, int yqos)

void color-block(int FIRSTX, int FIRSTY, int SECONDX, int SECONDY, int color)

void cancel -block(void)

Module: TEDn-F.CPP

This module defines the functions of Hyper-plate editor, Hyper-plate edit menu, and related

fUnctions. It provides the desktop where a Hyper-plate editor creates rectangles to represent

nodes and arrows to represent links.

Functions:

void temp-editor(T-type* template)

void editor-info(int xjosition, int ygosition)

int menu(int* x j o s , int* ygos, T-type* template)

void display-menu(int menu-selection)

Module: TEDIT-M.CPP

This module contains the functions for displaying the hyper-plate menu. They are invoked

from the main menu when the user selects Hyper-plate option.

Functions:

int edit-menu(void)

void edit-mmu(int menu-choice)

Module: TE1W_F.CPP

This module defines the functions for creating, initializing, opening, saving, updating, and

viewing a hyper-plate. Some of the Wt ions are invoked iiom the Hyper-plate menu, and

other fiom the Hyper-plate edit menu.

Functions:

boolean create-temp(T-we* template)

boolean open-temp(T-type* template)

boolean save-temp(T-type* template)

void init-temp(T-type* template)

void update-temp(T-type* template)

void view-temp(void)

Module: NODE-OBJ.CPP

This module defines the knctions for creating, initializing, deleting, accessing and saving a

node. Most of the &netions are invoked from the Hyper-plate edit menu. Some knctions are

invoked from the node edit menu.

Functions:

boolean create-obj(T-type* template, int xgos, int yqos)

boolean delete-obj(T-type* template, char * kame, int * xgos, int* y_pos)

boolean access-obj(T-type* template, char * h e)

void node-mmpress(int ndx, T-type* template)

boolean search-temp(T-type* template, char* node-name)

boolean search-nodejint xgos, int ygos, obj-type node)

int move-cursor(int * xqos, int * yqos)

void clear_node(inr FIRSTX, int FIRSTY, int SECObJDX, int SECONDY)

boolean save-obj(char* object-name)

boolean get-obj(obj-type* node, int* xqos, int* yqos)

int read-str(char* fname) .

Module: LINK-OBJ.CPP

This module defines the bctions for creating links, deleting links, and a~omaticalty erasing

the arrows from the desktop. They are invoked from the Hyper-plate editor menu.

Functions:

void create-link(T-we* template)

void delete-links(T-type* template)

void erase-link(T-me* template, int* xgos, ht* yqos)

void link-compress(int ndx, T-type* ternuplate)

boolean search_link(fi&-wpe* link, int xqos, int ygos)

boolem clear-bnk(bnk-type link)

Module: TLINK_M.CPP

This module defines the h t i o n s for the Link menu. Link menu is accessed &om the screen

menu.

Functions:

boolean link_menu(T-type* template)

void display-lid-menu(int menu-choice)

Module: TLINK_F.CPP

This madule contains the definition of hnctions for creating and deleting the link buttons.

These hnctions are invoked &om the link menu.

Functions:

boolean createlink(T-type* template)

boolean delete-lid(T-tpe* template)

void show-link(void)

void hide-link(void)

char ge~target-type(T-type* template)

Module: TVVEB_F.CPP

This module defines the firnetions for creating, initializing, saving, and configuring a hypertext

web. They are invoked by the hyper-engine.

Functions:

void new-web(char* kame)

void make-web(T-type* template)

void init-web(char* W e)

void init-config(char * kame)

void load-config(char* kame)

void save-contig(char* fhame)

void i~t-web-fieldsfvoid)

void init-web-list(void)

void load-web(char* finme)

void save-web(char* fhame)

void update-web(char* fname)

int find-web-slot(char* fhame)

void save-web-record(char* kame)

int look-up-record(char* node-name)

void init-web-record(char* fhame)

int find-web-record(char* fname)

void load-web-record(char* fname)

int add-web-record(char* kame)

int delete-web-reeord(char* M e)

int insert-web-record(char* fname)

void mode-record(char* kame)

