
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year

An Empirical Investigation of Four

Strategies for Serializing Schedules in

Transaction Processing

Terri Johnson
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/45

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1992-014

An Empirical Investigation of Four Strategies for
Serializing Schedules in Transaction Processing

Terri Johnson

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

An Empirical Investigation of Four

Strategies for Serializing Schedules

in Transaction Processing

Terri Johnson
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #92-014

An Empirical Investigation of Four
Strategies for Serializing Schedules

in Transaction Processing

BY
Terri Johnson

December 2,1992

ABSTRACI'

A database management system (DBMS) is a very large program that allows users

to create and maintain databases. A DBMS has many capabilities. This study will focus

on the capability known as transaction management, the capability to provide correct,

concurrent access to the database by many users at the same time. If a DBMS did not

provide transaction management, livelocks, deadlocks, and non-serializable schedules could

occur. A livelock can occur when a transaction is waiting on a locked data item, and

another transaction appears. After the data item is unlocked, the second transaction locks

the data item, which causes the first transaction to continue waiting. Conceivably, the first

transaction could wait indefinitely to lock the data item. This situation is called livelock.

Deadlock is a situation in which each member of a set of two or more transactions is

waiting to lock an item currently locked by some other transaction in the set. None of

the transactions can proceed, so they all wait indefinitely. A schedule is serial if for every

pair of transactions, all of the operations of one transaction execute before any of the

operations of the other transaction. A schedule is serializable if its effect on the database

is the same as some serial execution of the same set of transactions. A schedule is non-

serializable if its effect on the database is not equivalent to that of any serial schedule

which processes the same transactions. The scheduler is a component of the DBMS, and

it is responsible for resolving any livelocks, deadlocks, or non-serializable schedules that

occur. This study looks specifically at non-serializable schedules. There are many methods

by which the scheduler can serialize non-serializable schedules. This study proposes and

examines four strategies to detect and resolve non-serializable schedules. Computer

1

simulation is used to examine the four strategies. These strategies reduce a non-

serializable schedule to a serializable or a serial schedule, thus eliminating the possibility

of incorrectly updating data items within a database. It is shown experimentally that, of

the four strategies, the one that delays the transaction which has executed the least

number of steps until non-serializability is detected is the best.

1. m O D U m 0 N

A database system is a system which involves humans and computers. It has been

compared to a very complex and involved file system. The five components of a database

system are people, data resource, hardware, software, and procedures. A special software

system involved in the database system is the database management system. The DBMS

is responsible for overseeing almost every component and process within the database

system. One of the most important functions of the DBMS is to provide control over

concurrent database operations. This is the focus of this research.

In a DBMS, if no concurrency control exists, a number of undesirable situations

could occur, including livelocks, deadlocks, and non-serializable schedules, as defined

earlier. This study takes a closer look at non-serializable schedules. Non-serializable

schedules could result in incorrect updates of data items within a database. If a schedule

turns out to be non-serializable, it is necessary to transform it into a serializable or a serial

schedules. This eliminates the possibility of incorrect updates to data items.

The scheduler and the lock manager are components of the DBMS which work

together to resolve non-serializable schedules. The scheduler has the responsibility to

arbitrate between conflicting requests. The lock manager keeps track of how many

transactions are reading or writing a given data item. It also prohibits another transaction

from gaining access to a data item, if that access could cause a conflict. A transaction will

request access to a data item through the scheduler. The scheduler then checks with the

lock manager to determine if the request can be granted. Then, the scheduler relays a

message of grant access, wait, or abort to the transaction.

In one approach, in order for the scheduler to determine if requests from

transactions are conflicting, it generates a directed graph. This directed graph is examined

for cycles. The nodes of this graph represent the transactions of the schedule and the arcs

represent their dependencies. This directed graph is referred to as a waits-for graph or

a serialization graph. A waits-for graph shows which transactions are "waiting" on other

transactions. If a cycle exists in the waits-for graph, then the transactions involved in the

cycle yield conflicting requests. In this study, an algorithm has been developed to detect

cycles in a waits-for graph. If this algorithm detects a conflict, then it is necessary for the

scheduler to determine which transaction in the conflict should be delayed until the

remainder of the schedule has been executed.

In this study, we consider four possible strategies to determine the transaction that

should be delayed so that a detected cycle can be broken. We will call such a transaction

the victim transaction. The four strategies are:

1. Transaction which has executed the least number of steps is the victim;

2. Transaction which has most recently entered the cycle is the victim;

3. Transaction which has requested the most number of data items is the victim;

and

4. The non-two-phase transaction, described later in Section 2, in the cycle is the

victim. However, if two or more transactions in the cycle are non-two-phase,

then randomly choose which transaction will be the victim.

A program was developed in order to test these strategies. The strategy which

results in the smallest average wait time for the delayed transactions will be considered

as the best strategy of the four tested. The wait time is the amount of time a given

delayed transaction will have to wait to restart from this transaction's initial beginning

execution time. The objective is to minimize the wait time, thus the entire schedule can

be completed in a minimum amount of time. Many experiments are executed in order

to determine the best strategy.

In Section 2 of this paper, fundamental concepts of transaction processing are

discussed. This includes discussion of the database management system, its capabilities and

descriptions of the different types of schedules. Section 3 presents an algorithm to detect

cycles in an undirected graph, an algorithm to test for serializability, and an algorithm to

detect cycles in a directed graph. Section 4 describes four strategies for serializing a non-

serializable schedule. In section 5, a description of the program and the experiments is

given. The results of the experiments, the conclusions, and further research directions are

discussed in section 6.

2. FUNDAMENTAL, CONCEPTS OF TRANSACJION PROCESSING

A database management system is a collection of programs that allows users to

create and maintain a database. Two capabilities which are fundamental to any DBMS

are:

1. The ability to manage persistent data.

2. The ability to access large amounts of data efficiently.

In addition to these, the following are functions which are expected of DBMSs:

1. Support for at least one data model, or mathematical abstraction through which

5

the user perceives the data.

2. Support for certain very high-level, and desirably non-procedural languages that

allow the user to define the structure of data, access data, and manipulate data.

3. Transaction management, the capability to provide correct, concurrent access to

the database by many users at once.

4. Access control, the ability to limit access to data by unauthorized users, and the

ability to check the validity of data.

5. Resiliency, the ability to recover from system failures without losing data.

The transaction management capability allows the DBMS to manage concurrent

transactions, which may access and/or alter data items. If concurrency is not controlled,

livelocks, deadlocks, and non-serializable schedules can occur. Incorrect updates to data

items could result if non-serializable schedules are produced. A good example of the

necessity for this capability are systems used in the banking industry. These database

systems are accessed nearly simultaneously by numerous automated teller machines and

bank employees. For example, if you are depositing money to your account through a

bank teller and at the same time, your spouse is withdrawing money from an automated

teller machine, the DBMS needs to make certain that both transactions correctly affect

your account balance. If these transactions happen at exactly the same moment, then an

invalid result may occur and your account balance could be incorrect. As one can see

from this example, transaction management is a major issue in any DBMS.

A database system processes many transactions. A transaction is the execution of

a program that accesses and/or changes the contents of the database. A set of concurrent

6

transactions is called a schedule. From a database schedule, we can determine which

transactions are affecting which data items, at what time unit. There are three types of

schedules: serial, serializable, and non-serializable (2,9,10]. A schedule is serial if for every

pair of transactions, all of the operations of one transaction execute before any of the

operations of the other transaction. Figure 1 gives an example of a serial schedule. A

schedule is serializable if its effect on the database is the same as some serial execution

of the same set of transactions. Figure 2 gives an example of a serializable schedule. The

effect of Figure 2 is the same as a serial schedule in which transaction 2 precedes

transaction 1. A schedule is non-serializable if its effect on the database is not equivalent

to that of any serial schedule which processes the same transactions. Figure 3 gives an

example of a non-serializable schedule. Some non-serializable schedules may produce

results which are equivalent to a serial schedule. However, if the results are not produced

in precisely the same order of operations as some serial schedule, then the schedule is

considered to be non-serializable[lO]. For example, if the end result of a schedule is to

subtract 10 from the variable A, suppose a serial schedule produces this result by (A+ 10)-

20. If a schedule being tested for serializability produces the same result by (A+20)-30,

then the schedule is considered to be non-serializable.

READ A 1
A:=A-10 1

WRITE A 1
READ B I

B:=B+10 1
WRITE B I

1 READ B
(B:=B-20
I WRITE B
1 READ C
/ C:=C+20
1 WRITE C

Figure 1. Example of a
Serial Schedule [lo].

READA I
I READ B

A:=A-10 1
I B:=B-20

WRITE A I
1 WRITE B

READ B I
1 READ C

B:=B+10 I
1 C:=C+20

WRITE B I
1 WRITE C

Figure 2. Example of a
Serializable Schedule [lo].

READ A I
A:=A-10 I

I READ B
WRITE A (

I B:=B-20
READ B I

I WRITE B
B:=B+10 I

I READ C
WRITE B I

I C:=C+20
I WRITE C

Figure 3. Example of a
Non-Serializable Schedule [lo].

Transactions must place locks on data items in order to access and/or update these

data items. There are two types of locks: read locks and write locks. Multiple, concurrent

read locks on the same data item are allowable, since a read lock only allows the

transaction to read that data item. However, if a transaction has a write lock on a data

item, then no other transaction can place a lock of any kind on that data item. This helps

protect the data item from incorrect updates. In this study, we will consider all locks to

be write locks.

An important protocol when discussing database schedules is the Two-Phase

Protocol. This protocol requires that within a given transaction, all locks precede all

unlocks. Transactions that follow this protocol, are said to be Two-Phase. The first

phase contains all the locks, the locking phase. The second phase contains all the unlocks,

the unlocking phase. In Figure 4, transaction 1 and transaction 3 are Two-Phase

transactions, while transaction 2 is not a Two-Phase transaction. The Two-Phase protocol

is important to database scheduling due to the following theorem: "If S is any schedule of

two-phase transactions, then S is serializable."[lO]. Thus, if we can show that all

transactions in a schedule are Two-Phase, then we have shown that the schedule is

serializable.

I I LOCK C
LOCK A I I LOCK D
LOCK B I I

I I UNLOCK C
I LOCK C I UNLOCK D

UNLOCK A I I
UNLOCK B I UNLOCK C I

I LOCK A I
I I
I UNLOCK A I

Figure 4. Two-Phase Transactions (TI and T3).

As were defined previously, the lock manager and the scheduler are components

of the database management system that work together to detect problems such as non-

serializable schedules, and transform them into serializable or serial schedules. The lock

manager keeps track of how many transactions are reading or writing a given data item.

The scheduler arbitrates between conflicting transaction requests. It controls the relative

order of transactions by delaying or rejecting some transactions. A technique that helps

the scheduler determine which transactions will be delayed or rejected, is to examine the

waits-for graph of the schedule. A waits-for graph is a partial directed graph, or a

digraph, whose nodes are labelled by transaction names; it contains an edge TI --> TJ

whenever TI is waiting for TJ to release a lock on a data item. A theorem by R.C. Holt

[7], states that, "In a waits-for graph, a cycle is a necessary condition for non-serializability".

The next section describes concepts of graph theory that are related to digraphs, along

with the algorithm developed to detect cycles in a digraph.

3. AN ALGORITHM FOR lTiSiTNG SERlALEN3ILITY

A digraph is a pair (N,E), where N is a non-empty set of nodes and E is a set of

edges. Each edge in E is an ordered pair (a,b), where a and b are nodes in N. An edge

(a,b) is described as being directed from node a to node b [6,7]. A waits-for graph by its

definition is a digraph. Its nodes are transactions and the edges are the dependencies

between those transactions, due to locks on data items. Figure 6 gives an example of a

waits-for graph. The nodes, or transactions, in Figure 6 are 1, 2, 3, 4, and 5. The edges,

or dependencies, are (1,2), (2,3), (3,4), (4,l) and (33).

Figure 6. Example of a Waits-For Graph.

Since this study uses computer simulation, the computer representation of digraphs

is now discussed. We can represent a digraph by a NxN matrix, A, called the adjacency

matrix of the digraph. Here, N represents the number of nodes in the digraph. An entry

in the matrix, Aij = 1, if an edge connecting nodes i and j exists; otherwise Aij = 0.

The following definitions of adjacency matrices are used in determining if a cycle

exists in a digraph.

Definition 1 - The sum of a column gives the indegree of the corresponding node.

Definition 2 - The sum of a row gives the outdegree of the corresponding node.

Definition 3 - A source can be identified by a column of all zeros, i.e. its indegree is

zero.

Definition 4 - A sink can be identified by a row of all zeros, i.e. its outdegree is zero.

Definition 5 - An isolated point can be detected by a column and corresponding row

which both contain only zeros, i.e. both its indegree and outdegree are

equal to zero.

Since a waits-for graph is a digraph, the above definitions are applicable to it.

For example, Aij = 1 would imply that transaction i is waiting on transaction j to release

a given data item.

We need to derive an algorithm to detect cycles in directed graphs. Three

algorithms are presented. The first algorithm detects cycles in undirected graphs. This

algorithm will be the basis from which we will develop an algorithm to detect cycles in

directed graphs. The second algorithm tests a schedule for serializability. We use the

concept of transaction ordering to determine serializability from this algorithm in

conjunction with the first algorithm and previously defined graph definitions, to help derive

the algorithm which detects cycles in directed graphs. The three algorithms are as follows.

Algorithm to Detect Cvcles in an Undirected Graph

INPUT: An undirected graph in which each node is connected to at least one other

node in the graph.

OUTPUT: Generated cycles OR if no cycles have been generated, then no cycles exist.

ALGORITHM:

Let G be a given undirected graph of N nodes. First, find all the connected

components of G. Then, the fundamental set of cycles can be found for each component

H of G as follows.

Step 1 - Let E be the set of edges and V the set of nodes of H. Take any node v from

V as the root of the tree consisting of the single node. Set T = {v), S = V.

Step 2 - Let X be any node in T () S. If such a node does not exist, then stop.

Step 3 - Consider each edge (X,Y) in E.

If Y is in T, then generate the fundamental cycle consisting of edge (X,Y)

together with the unique path between X and Y in the tree, and delete the edge

(X,Y) from E.

If Y is not in T, then add the edge (X,Y) to the tree, add the node Y to T, and

delete the edge (X,Y) from E.

Step 4 - Remove the node X from S and return to Step 2.

The algorithm for testing serializability of a schedule 1101, is as follows:

U o r i t h m for Serializabilitv Testing

INPUT: A schedule S for a set of transactions Tl,..,TK.

OUTPUT: A determination whether S is serializable.

If so, a serial schedule equivalent to S is produced.

ALGORITHM:

Create a directed graph G (called a serialization graph), whose nodes correspond

to the transactions. To determine the arcs of the graph G, let S be al;a2; ...; an, where

each ai is an action of the form:

Tj:LOCK Am or Tj:UNLOCK Am.

Tj indicates the transaction to which the step belongs. If ai is Tj:UNLOCK Am, look for

the next action ap following ai that is of the form Ts:LOCK Am. If there is one, and slfj,

then draw an arc from Ts to TJ. The intuitive meaning of this arc is that in any serial

schedule equivalent to S, Tj must precede Ts.

If G has a cycle, then S is not serializable. If G has no cycles, then find a linear

order for the transactions such that Ti precedes Tj whenever there is an arc Tj --> Ti.

This ordering can always be done by the process known as topological sorting, defined as

follows. There must be some node Ti with no entering arcs, else we can prove that G has

a cycle. List Ti and remove Ti from G. Then repeat the process on the remaining graph

until no nodes remain. The order in which the nodes are listed is a serial order for the

transactions.

Algorithm to Detect Cvcles in a Directed Graph

INPUT: A directed graph in which each node is connected to at least one other node

in the graph.

OUTPUT: Generated cycles. If cycles were generated, then the tree contains the arcs

in the cycle and T contains the nodes in the cycle. If no cycles were

generated, no cycles exist.

ALGORITHM:

Step 1 - Determine all edges, A:(X,Y). (A is the adjacency matrix of the digraph.)

Step 2 - Determine all nodes, V = S. T = null set.

Step 3 - If T intersect S = null set then choose a node v, from S, to be the root. v

becomes an element of T.

Step 3a- If S is empty, then stop.

Step 4 - Choose a node 'NextNode' such that, 'NextNode' is in T C) S.

Step 4a- If such a 'NextNode' does not exist, then stop.

Step 5 - Consider each edge (NextNode,Y) in A.

StepSa- If no (NextNode,Y) exists in A, then delete NextNode from T and delete any

(",NextNode) from A.

else

If no (",NextNode) exists in A or Tree, then delete NextNode from T and

delete (NextNode, ") from A.

else

If Y is in T and (",NextNode) is in the Tree, then add (NextNode,Y) to the

Tree, generate the cycle consisting of the edges in the Tree, and delete

(NextNode,Y) from A.

else

If Y is not in T and (Y,") e is ts in A or Tree, then add the edge (NextNode,Y)

to the Tree, add the node Y to T, and delete the edge (NextNode,Y) from A.

else

Delete (NextNode,Y) from A and if for all (NextNode,~), no (y,*) exists, then

delete NextNode from T.

Step6 - Delete NextNode from S and go to Step 3.

Note: " indicates any node.

In the final algorithm, we can see the basic steps of the algorithm for detecting

cycles in undirected graphs. In step 5a of the final algorithm, we see the concept of

ordering transactions to determine serializability. If a cycle is generated, we know that the

order of the transactions is that of a non-serializable schedule. Also in step Sa, the

digraph definitions mentioned earlier are used. For a given node, if its indegree or

outdegree equals zero, then the node being tested is not in a cycle. Thus, any arc

containing that node can be disregarded.

4. FOUR STRATEGIES FOR SERIALIZING A NON-SERIALIZABLE SCHl3DULE

There are multiple ways to break cycles in schedules. This study takes a look at

four cycle breaking strategies and attempts to reach specific conclusions about their

15

ranking. In this study, a step is considered to be a lock or an unlock of any data item.

The four strategies are:

1. Transaction which has executed the least number of steps is the victim. The

idea in this strategy is to lose as little processing as possible, thus the transaction

which has executed the least number of steps is the victim.

2. Transaction which has most recently entered the cycle is the victim. 'This

strategy determines which transaction has transformed a path into a cycle and

that transaction becomes the victim. The idea behind this strategy is that if the

responsible transaction is removed, then there is a good chance the remaining

transactions of the cycle will not form a subsequent cycle.

3. Transaction which has requested the most number of data items is the victim.

This transaction has the potential to cause further cycles since it has requested

locks on many data items. Postponing this transaction could decrease the

number of cycles in the schedule.

4. The non-two-phase transaction in the cycle is the victim. However, if two or

more transactions in the cycle are non-two-phase, then randomly choose which

transaction will be the victim. This strategy was derived from the following

theorem: "If S is any schedule of two-phase transactions, then S is serializable."

[101

Strategies 1, 2, and 3 assume two-phase transactions occur, but they do not affect

which transaction becomes the victim. A victim transaction is a transaction whose

operations are delayed and it must wait until the remainder of the transactions in the

schedule have completed before it may restart its sequence of operations.

5. D E S m O N OF THEi PROGRAM AND THE, EXPERIMENTS

A program was developed to test the four previously described strategies. The

program randomly generates a database schedule from two inputs: the number of

transactions in the schedule and an initial seed value. For each transaction, a random

number between 1 and 4 is generated to represent the number of data items that a given

transaction will request. For each data item within a given transaction, a random number

between 1 and 10 will be generated to determine which data item that transaction will

request. So far, we have the number of data items and which data items the transactions

will request. The next step is to determine when these data items will be locked and

unlocked. These times are also generated randomly. Finally, the program presents all of

this information in the form of a schedule.

Next the program proceeds to determine if any cycles exist. This is accomplished

by examining the adjacency matrix at each time step. At each time step, an adjacency

matrix is generated by examining the schedule up to and including the current time step.

The adjacency matrix is then tested for cycles by using the algorithm derived to detect

cycles in a digraph, discussed earlier in Section 3. If a cycle is not detected, then the time

step is increased by one and another adjacency matrix is generated for examination. If

a cycle is detected, then the strategy selected by the user is utilized to determine which

transaction, TI, will be delayed until after the remainder of the schedule has completed.

The program determines the maximum of the end times for all of the transactions in the

schedule, except for the transaction TI. This maximum end time is the end of the

schedule. Transaction TI can be restarted at maximum end time + 1. The program

calculates the wait time each time a cycle is detected. The wait time is the difference

between the maximum end time and the start time of TI. The start time of TI is the time

when the first lock is requested by TI. If subsequent cycles occur between the remaining

transactions in the schedule, then those wait times are added to the previous wait time.

The objective is to minimize the wait time for the entire schedule. The smaller the wait

time, the faster the schedule as a whole can complete its processing and the less time the

user has to wait for hislher job to complete. Appendix C contains an example run of the

program.

In trying to complete the objective of this study, to determine which strategy is the

best, 18 experiments were executed. Figure 7 is an example of an experiment. In this

figure, we have 25 runs of each strategy with 15 transactions. One hundred passes through

the program are shown. In run #I. of Figure 7, strategy #2 has the smallest wait time.

The average wait time is calculated for each strategy. These averages are then ranked

from lowest to highest. The strategy with the lowest average wait time is considered to

be the best in that experiment. In Figure 7, strategy #3 is the best. All 18 experiments

are examined and the number of times each strategy comes in first, second, third, and

fourth is tabulated and the percentages calculated. Appendix A contains charts which

express these calculations.

STRAT #1 STRAT #2 STRAT #3 STRAT #4
AVERAGE: 262.1 2 273.28 230.8 263.04
RANKING: 2nd 4t h 1 st 3rd

Figure 7. An example experiment.

STRAT #4
41 3
690
118
172
309
172
118
172
183
194
62
273
47 1
41 1
377
118
166
402
420
21 3
195
61 3
37
194
83

STRAT #3
52 1
552
99
1 73
40
173
99
173
183
1 54
76
168
478
383
265
99
21 7
196
192
397
162
61 3
120
154
83

STRAT #2

359
647
99
31 0
96
31 0
99
31 0
170
190
62
134
477
50 5
252
99
181
40 1
380
543
189
637
112
190
80

RUN # /
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

INIT SEED
38
185
288
23 1
31 5
300
380
41 5
457
402
7

163
259
42
650
357
111
43
49
609
190
180
222
333
444

OF TRANS
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

STRAT #1
444
529
115
31 2
309
31 2
115
31 2
182
20 6
62
269
449
362
43 1
115
168
234
29 1
494
189
323
37
206
87

Appendix B contains all 18 experiments. The number of transactions per schedule

used are 5, 7, 9, 11, 13, and 15. For each number of transactions, 7, 15, and 25 runs were

executed. Each run contains 4 passes of the program, one for each strategy. Thus, we

have obtained [(7x6) + (15x6) + (25x6)] x 4 = 1,128 pieces of data. The next section

discusses the results of the experiments and the conclusions which were reached.

6. CONCLUSIONS

In this paper, we discussed the capabilities of the DBMS. Transaction management

was discussed in some detail. When considering transaction processing, undesirable

situations could occur if transaction management was not present. Situations such as

livelock, deadlock, and non-serializable schedules are possible. Serializability was studied

in detail. The scheduler, lock manager, and their responsibilities were discussed. The

scheduler utilizes a waits-for graph to detect non-serializable schedules. A waits-for graph

is equivalent to a digraph, thus digraph theory was studied. Two algorithms were studied

along with several graph definitions, to derive an algorithm to detect cycles in directed

graphs. This study uses computer simulation, so we represent the digraphs as adjacency

matrices.

Four strategies to break cycles in the waits-for graph were defined. A program was

developed which implemented the algorithm to detect cycles in the waits-for graph and the

four strategies to break those cycles. Numerous runs were made for each strategy.

Appendix B contains the data collected from these runs. After all of the runs were

completed, an average wait time was calculated for each strategy in each experiment. The

strategies were then ranked according to the average wait time. Finally, it was determined

what percentage of the time each strategy ranked first, second, third, and fourth.

Appendix A contains charts describing the results. From Chart #1 in Appendix A, it is

clear that strategy #1 is the best. Strategy #1 came in first place 67% of the time.

Strategy #3, although not as good as strategy #I, is clearly better than strategies #2 and

#4. The experiments were then divided into three groups: small, medium, and large

number of transactions. These group labels, small, medium, and large number of

transactions, are relative to these experiments, since there are no standards for a small,

medium, or large schedule of transactions. Chart #2 of Appendix A describes the results

for experiments with five and seven (small) transactions. Again, strategy #1 is the best

and strategy #3 comes in second place. Chart #3 of Appendix A describes the results

for experiments with nine and eleven (medium) transactions. Similarly, strategy #1 is the

best and strategy #3 comes in second place. Chart #4 of Appendix A describes the

results for experiments with thirteen and fifteen (large) transactions. Once again, the same

results have occurred. Strategy #1 is the best and strategy #3 comes in second place.

Strategy #1 is the transaction which has executed the least number of steps is the victim

and strategy #3 is the transaction which has requested the most number of data items is

the victim. From these results, strategy #1 would be recommended for a database system

whose schedules are random. Implementing strategy #1 in a database system would

minimize the wait time so users transactions would finish faster.

As we progressed through this study, other research directions were discovered.

This study considered all locks to be write locks. A study similar to this situation, but also

considering read locks could give another perspective. Also, the program used in this

study checked the adjacency matrix at every time step. One could check the adjacency

matrix at every N time steps. If a cycle exists, then do a binary search to determine at

what exact time unit the cycle occurred. This type of search would speed up the

processing time for the database schedule. However, the wait time for a given schedule

and strategy would remain the same. Of course, the four strategies are not all inclusive.

One could develop more strategies and test them against these four strategies or other

developed strategies.

1. P.A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and Recovery in
Database Systems, Addison-Wesley Publishing Company, Reading, MA, 1987.

2. P.A. Bernstein, D.W. Shipman, W.S. Wang, "Formal Aspects of Serializability in
Database Concurrency Control", IEEE Transaction on Software Engineering. Vol. V,
No. 3, May 1979, pp.203-216.

3. B. Carre, Graphs and Networks, Clarendon Press, 1979.

4. R. Elmasri, S.B. Navathe, Fundamentals of Database Systems, The Benjamin/Cummings
Publishing Company, Inc., Redwood City, CA, 1989.

5. S. Even, Graph Algorithms, Cornputer Science Press, Potomac, MD, 1979.

6. L.R. Foulds, D.F. Robinson, Digraphs: Theoly and Techniques, Gordon and Breach
Science Publishers, New York, NY, 1980.

7. R.C. Holt, "Some Deadlock Properties of Computer Systems", ACM Computing
Surveys. Vol. IV, No. 3, September 1972, pp. 180-196.

8. H.T. Lau, Algorithms on Graphs, TAB Professional and Reference Books, Blue Ridge
Summit, PA, 1989.

9. C.H. Papadimitriou, The Theory of Concurrency Control, Cornputer Science Press,
Rockville, MI>, 1986.

10. J.D. Ullman, Principles of Database and Kizowledge-Base Systems, Vol. I , Computer
Science Press, Rockville, MD, 1988.

11. A.A. Zykov, Fundamentals of Graph Theory, BCS Associates, 1990.

Appendix A - Charts describing results of the experiments

Chart #1 All 18 experiments used

Chart #2 Small (5 and 7 Transactions), 6 experiments

#times in
1 st place
times in
2nd place
times in
3rd place
times in
4th place

Chart #3 Medium (9 and 11 Transactions), 6 experiments

Strategy #I
12

67%
2

11%
2

1 1 O/O

2
11%

#times in
I st place
#times in
2nd place
#times in
3rd place
times in
4th place

Strategy #2
1

5%
3

17%
5

28%
9

50%

Strategy #1
6

100%
0

0%
0

0%
0

0%

#times in
1 st place
#times in
2nd place
times in
3rd place
#times in
4th place

Strategy #3
5

28%
8

44%
5

28%
0

0%

Strategy #2
0

0%
2

33%
1

17%
3

50%

Strategy #I
3

5 0 O/O

0
0%
2

33%
1

1 7%

Strategy #4
0

0%
5

28%
6

33%
7

39%

Strategy #3
0

0%
4

67%
2

33%
0

0%

Strategy #2
1

1 7%
1

17%
2

3 3 O/O

2
33%

Strategy #4
0

0%
0

0%
3

50%
3

50%

Strategy #3
2

33%
3

50%
1

17%
0

0%

Strategy #4
0

0%
2

33%
1

1 7%
3

50%

Appendix A (continued)

Chart #4 Large (13 and 15 Transactions), 6 experiments

#times in
1 st place
#times in
2nd place
#times in
3rd place
#times in
4th place

Strategy # I
3

50%
2

33%
0

0%
1

1 7%

Strategy #4
0

0%
3

50%
2

33%
1

17% A

Strategy #2
0

0%
0

0%
2

33%
4

67%

Strategy #3
3

50%
1

1 7%
2

33%
0

0%

Appendix B - Data collected from multiple runs of the program

STRAT #1 STRAT ##2 STRAT #3 STRAT #4
AVERAGE: 15.43 19.43 20.14 20.14
RANKING: 1 st 2nd 3 rd 4t h

RUN #

1
2
3
4
5
6
7

i

STRAT #1 STRAT #2 STRAT #3 STRAT #4
AVERAGE: 13.8 22.27 18.13 20.93
RANKING: 1 st 4t h 2nd 3 rd

OF TRANS
5
5
5
5
5
5
5

L

RUN #
I

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

INIT SEED
21 3
319
523
460
109
164
197

OF TRANS
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

STRAT #1
16
11
17
17
17
15
15

INIT SEED
21 5
285
229
333
624
80
93
147
176
263
31 6
379
505
650
150

STRAT #2
16
15
12
11
17
15
50

STRAT #I
16
11
14
11
17
13
13
18
13
11
17
1 I
11
13
18

STRAT #3
16
11
17
17
15
15
50

STRAT #2
16
11
43
11
17
16
14
52
4 1
11
12
11
14
15
50

STRAT #4
16
11
17
17
15
13
52

STRAT #3
16
11
45
11
17
16
13
18
44
11
17
11
11
13
18

STRAT #4
16
11
45
11
15
16
13
54
18
11
17
11
11
13
52

Appendix B (continued)

STRAT #I STRAT #2 STRAT #3 STRAT #4
AVERAGE: 14.52 19.48 1 5.28 19.24
RANKING: 1 st 4t h 2nd 3rd

STRAT #1 STRAT #2 STRAT #3 STRAT #4

STRAT #3
12
13
18
22
20
17
13
11
12
16
11
18
16
12
11
13
15
20
12
22
11
15
16
18
18

STRAT #2
14
14
50
22
2 1
11
14
15
6 2
16
15
16
16
12
15
14
18
18
12
15
14
15
16
52
50

RUN #

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

AVERAGE: 47.29 62.29 48 65
RANKING: 1 st 3 rd 2nd 4t h

STRAT #4
12
13
52
22
20
17
13
11
12
17
11
18
13
12
11
13
15
20
12
22
11
15
13
54
52

STRAT #4
152
57
1 24
19
20
20
63

1

OF TRANS
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

RUN #

1
2
3
4
5
6
7

OF TRANS
7
7
7
7
7
7
7

INIT SEED
90
156
173
185
20 7
23 1
92
27 1
348
360
386
5
79
555
432
91
198

1234
2468
160
41 2
108
145
147
151

INIT SEED
197
229
80
190
176
150
85

STRAT #1
12
13
18
19
2 1
11
13
11
12
17
11
18
13
12
11
13
18
18
12
15
11
15
13
18
18

STRAT #2
13 1
55
122
13
10
53
52

STRAT #1

67
24
124
13
20
20
63

STRAT #3
131
57
28
19
20
20
6 1

Appendix B (continued)

STRAT #1 STRAT #2 STRAT #3 STRAT #4
AVERAGE: 25.4 30.27 33.07 40.07
RANKING: 1 st 2nd 3 rd 4t h

STRAT #4
75
17
18
76
20
79
19
17
58
79
19
13
2 1
18
72

L

RUN #
I

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

STRAT #2
25
16
14
19
13
77
17
16
48
75
17
13
17
16
7 1

STRAT #3
25
16
18
76
20
79
19
16
58
75
19
13
2 1
16
25

STRAT #1
25
16
18
19
13
27
19
16
58
77
19
13
17
18
26

OF TRANS
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

INIT SEED
33
44
120
148
189
21 6
39
67
88
130
157
240
160
20
99

Appendix B (continued)

STRAT #1 STRAT #2 STRAT #3 STRAT #4
AVERAGE: 32.32 45.44 40.96 44.4
RANKING: 1 st 4t h 2nd 3rd

RUN #

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

STRAT #1 STRAT #2 STRAT #3 STRAT #4
AVERAGE: 48.29 59.86 57 70
RANKING: 1 st 3rd 2nd 4t h

OF TRANS
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

RUN #

1
2
3
4
5
6
7

i

INIT SEED
173
386
79
43 2
41 5
145
151
149
89
507
657
5
16
11
22
234
29 5
268
325
357
409
447
196
525
555

OF TRANS
9
9
9
9
9
9
9

STRAT #1
20
20
120
20
17
63
20
57
58
17
87
29
19
20
16
18
20
54
18
29
20
13
15
20
18

INIT SEED
24
57
91
13
37
134
21 5

STRAT #1
26
17
73
23
24
101
74

STRAT #4
20
71
120
7 1
19
84
20
53
58
19
54
29
19
71
17
18
7 1
24
18
29
7 1
13
52
7 1
18

STRAT #2

53
7 1
118
7 1
17
80
53
97
48
17
14
24
17
7 1
16
16
71
2 1
16
24
71
13
50
7 1
16

STRAT #3
20
73
28
73
19
84
20
53
58
19
54
29
19
73
16
16
73
2 1
18
29
73
13
52
73
18

STRAT #2

121
17
59
23
24
101
74

STRAT #3
63
61
59
23
24
100
69

STRAT #4
69
62
59
25
26
107
142

Appendix B (continued)

STRAT #I STRAT #2 STRAT #3 STRAT #4
AVERAGE: 63.4 77.2 71.8 78.07
RANKING: 1 st 3 rd 2nd 4t h

RUN #

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

OF TRANS
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

lNlT SEED
4
31
49
62
79
83
95
101
116
1 23
127
148
156
163
189

STRAT #2

106
75
117
78
79
47
52
82
50
59
89
138
22
26
138

STRAT #1
114
77
69
80
3 1
57
53
83
22
72
91
70
24
23
85

STRAT #3
65
74
120
80
3 1
109
70
29
50
67
58
134
24
26
140

STRAT #4
65
74
120
85
31
108
70
84
55
67
58
134
24
26
170

Appendix B (continued)

STRAT #1 STRAT #2 STRAT #3 STRAT #4
AVERAGE: 45.96 61.36 54 54.84
RANKING: 1 st 4t h 2nd 3 rd

RUN #
I

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

STRAT #I STRAT #2 STRAT #3 STRAT #4
AVERAGE: 127.43 99.43 11 3.86 104.71
RANKING: 4t h 1 st 3 rd 2nd

STRAT #3
25
86
150
3 1
24
26
63
50
27
49
2 1
66
66
73
28
27
45
47
133
2 1
70
7 1
49
32
70

STRAT #4
26
193
155
31
26
26
69
64
27
19
18
70
70
80
33
27
45
50
76
2 1
70
54
19
32
70

OF TRANS
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

STRAT #4
151
35
162
202
37
72
74

L

RUN #
I

1
2
3
4
5
6
7

INIT SEED
200
21 0
225
237
250
257
26 1
270
274
28 1
289
12

295
30 1
45
60
135
86
204
31 5
472
90
2 1
69
5

OF TRANS
11
11
11
11
11
11
11

STRAT #3
21 9
39 --
131
195
37
58
118

INIT SEED
222
60 ----
83
79
4

188
247

STRAT #1
26
194
78
31
24
26
26
53
27
19
45
23
23
73
33
27
57
50
67
16
63
54
19
32
63

STRAT #2
25

222
153
26
24
23
121
50
25
49
43
70
70
73
28
30
43
47
130
16
58
74
49
27
58

STRAT #1
158
35
162
305
37
77
118

STRAT #2
132

1 35
127
190
32
58
122

Appendix B (continued)

STRAT #I STRAT #2 STRAT #3 STRAT #4
AVERAGE: 105.33 1 17.8 96.6 102.27
RANKING: 3rd 4t h 1 st 2nd

RUN #

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

OF TRANS
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

STRAT #2
134
65
128
238
19
161
91
70
90
75
207
142
108
145
94

INIT SEED
140
5
20
155
132
138
144
163
196
555
225
12

286
80
48

STRAT #3
85
22
69
152
65
126
114
24
79
35
246
144
97
95
96

STRAT #I
23 1
27
69
171
19

180
65
24
91
75
1 63
172
113
75
105

STRAT #4

72
70
73
162
19
198
114
26
148
35
246
103
97
75
96

Appendix B (continued)

STRAT #1 STRAT #2 STRAT #3 STRAT #4
AVERAGE: 90.24 85.56 80.04 96.84
RANKING: 3rd 2nd 1 st 4t h

RUN #

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1

STRAT #1 STRAT #2 STRAT #3 STRAT #4
AVERAGE: 136.86 177.43 166.71 141.57
RANKING: 1 st 4t h 3 rd 2nd

OF TRANS
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

RUN #

1
2
3
4
5
6
7

INIT SEED
15
29
62
8
95
73
35
48
57
88
150
123
176
182
206
309
21 9
267
242
293
327
345
365
41 6
392

OF TRANS
13
13
13
13
13
13
13

STRAT #1
95
130
20
177
39
65
172
105
59
30
170
164
127
24
80
113
77
145
27
118
30
102
29
132
26

INIT SEED
95
73
242
365
20
144
80

STRAT #2
77
196
18
162
98
63
142
94
59
27
170
70
105
15
72
108
58
134
65
122
29
9 1
67
7 1
26

STRAT #1
79
147
192
121
42
180
197

STRAT #3
79
82
18
148
109
122
144
96
118
30
104
70
119
24
74
97
58
75
22
118
30
100
67
71
26

STRAT #4
95
208
20
177
109
122
103
96
1 28
30
128
175
130
24
82
97
72
145
70
74
30
102
29
146
29

STRAT #4
33
93
157
74
97
259
278

STRAT #2

143
22 1
1 58
1 24
87
236
273

STRAT #3
77
222
157
74
97
259
28 1

Appendix B (continued)

STRAT #1 STRAT #2 STRAT #3 STRAT #4
AVERAGE: 179.73 233.93 204.93 219.67
RANKING: 1 st 4t h 2nd 3rd

RUN #

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

STRAT #4
563
45
29 0
374
161
259
91
285
543
33
183
79
100
144
145

OF TRANS
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13

INIT SEED
225
26 1
28 1
12

204
90
49
79
83
95
116
148
189
57
386

STRAT #2
563
45
249
242
27 1
256
258
386
490
143
171
80
3 1
118
206

STRAT #1
33 1
46
288
247
196
161
1 68
220
260
79
102
85
104
155
254

STRAT #3
31 0
45
264
376
27 1
421
91
283
395
77
183
64
3 1
118
145

Appendix B (continued)

STRAT #1 STRAT #2 STRAT #3 STRAT #4
AVERAGE: 184.2 178.36 143.72 161.2
RANKING: 4t h 3 rd I st 2nd

RUN #

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

STRAT #1 STRAT #2 STRAT #3 STRAT #4
AVERAGE: 327.86 357.29 352.29 331.57
RANKING: 1 st 4t h 3 rd 2nd

I

RUN #
1
2
3
4
5
6
7

OF TRANS
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13

STRAT #3
145
233
174
106
31 7
152
90
29 1
262
160
154
156
289
74
92
35
39
145
160
39
157
157
96
45
25

OF TRANS
15
15
15
15
15
15

I 15

STRAT #4
82
343
248
106
342
172
158
29 1
334
167
93
156
387
74
92
35
39
82
167
39
157
157
239
45
25

INIT SEED
43 2
145
41 8
196
525
160
99
197
229
150
6 1
176
650
319
275
237
26
34
1 73
309
357
28
4 1
399
30

INIT SEED
35
80
16
45
96
116
137

STRAT #1
254
263
250
106
31 6
522
158
41 2
337
95
154
165
248
121
105
35
39
254
95
39
192
192
186 -------
46
2 1

STRAT #2
20 6
341
21 7
177
28 1
337
156
424
31 1
223
146
77
146
1 24
95
87
30
20 6
223
30
158
158
23 6
45
25

STRAT #1
31 0
247
21 4
449
333
31 1 . 43 1

STRAT #2

240
258
308
477
41 6
550
252

STRAT #3
29 1
41 8
189
478
393
432
265

STRAT #4

309
268
31 3
47 1
308
275
377

Appendix B (continued)

STRAT #1 STRAT #2 STRAT #3 STRAT #4
AVERAGE: 373 380.33 360.6 385.4
RANKING: 2nd 3 rd I st 4t h

Appendix B (continued)

STRAT #1 STRAT #2 STRAT #3 STRAT #4
AVERAGE: 262.12 273.28 230.8 263.04
RANKING: 2nd 4t h 1 st 3 rd

STRAT #4
41 3
690
118
172
309
172
118
172
183
194
62
273
47 1
41 1
377
118
166
402
420
21 3
195
61 3
37
194
83

STRAT #3
52 1
552
99
173
40
173
99
173
183
154
76
168
478
383
265
99
21 7
196
192
397
162
61 3
120
154
83

RUN #
I

1
2 -
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/

OF TRANS
15

1 15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

lNlT SEED
38
185
288
23 1
31 5
300
380
41 5
457
402
7

163
259
42
650
357
111
43
49
609
190
180
222
333
444

STRAT #1
444
529
115
31 2
309
31 2
115
31 2
182
206
62
269
449
362
43 1
115
168
234
29 1
494
189
323
37
206
87

STRAT #2

359
647 -----
99

31 0
96
31 0
99
31 0
170
190
62
134
477
505
252
99
181
40 1
380
543
189
63 7
112
190
80

Appendix C - An example run of the program

Enter the number of transactions
7

Enter the initial seed value
35

Transaction # I has 1 Data ltems
Transaction #2 has 2 Data ltems
Transaction #3 has 4 Data ltems
Transaction #4 has 3 Data ltems
Transaction #5 has 2 Data ltems
Transaction #6 has 4 Data ltems
Transaction #7 has 4 Data ltems

Transaction # Data Item #
1 2
2 5

7
3 9

1
3
6
8

10
2
5
7

10
2
4
6
9
1
3
5

Lock Time
8

14
8

21
2

10
7
9
5
3
6

17
1

13
5

15
10
7
4

2 1

Unlock Time
12
20
16
23

6
16
14
19
8
7

13
26
4

18
11
23
20
11
9

28

SCHEDULE
T 1 T2 T3 T4 T5 T6 T7

Li = Lock Time for Ti

Appendix C (continued)

a transaction in a

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Choose

U7

cycle.

U2

a methoc
1. Least Steps Performed
2. Most Recent Entry to the Cycle
3. Maximum Data Items Requested
4. Non 2-Phase Transaction
1

T I T2 T3 T4 T5 T6 T7
T I 0 0 0 1 0 0 0
T2 0 0 0 0 0 0 0
T3 0 0 0 0 0 0 1
T4 0 0 0 0 0 1 0
T5 0 0 0 0 0 0 0
T6 0 0 0 0 0 0 0
T7 0 0 1 0 0 0 0

Tree
3 7
7 3

TNodes Array
3
7

Cycle? Yes
Time is 10

Appendix C (continued)

STARTABTRAN: 2
MAXENDTIME: 28
ABWAITTIME: 26
PREVWAITTIME: 26

Transaction 3 has been delayed.

SCHEDULE
T I T2 T3 T4 T5 T6 T7

Appendix C (continued)

T 1
T 1 0
T2 0
T3 0
T4 0
T5 0
T6 1
T7 0

Tree
1 4
4 6
6 1

TNodes Array
1
4
6

Cycle? Yes
Time is 13

STARTTRAN : 8
MAXENDTIME: 50
WAITTIME: 42
SCHEDWAITTIME: 68

Transaction 1 has been delayed.

Appendix C (continued)

SCHEDULE
T 1 T2 T3

Appendix C (continued)

T1 T2 T3 T4 T5 T6 T7

Tree
4 6
6 4

TNodes Array
4
6

Cycle? Yes
Time is 14

STARTTRAN : 3
MAXENDTIME: 55
WAITTIME: 52
SCHEDWAITTIME: 120

Transaction 4 has been delayed.

SCHEDULE
T I T2 T3 T4 T5 T6 1 7

ncn-
3 -1 I)

Appendix C (continued)

T 1 T2 T3

T I
T I 0
1 2 0
T3 0
T4 0
T5 0
T6 0
T7 0

Tree
2 5
5 2

TNodes Array
2
5

Cycle? Yes
Time is 17

Appendix C (continued)

STARTTRAN: 8
MAXENDTIME: 72
WAITTIME: 64
SCHEDWAITTIME: 184

Transaction 2 has been delayed.

SCHEDULE
T1 T2 T3 T4 T5 T6 T7

Appendix C (continued)

Appendix C (continued)

Number of transactions delayed: 4
Cycle detected at time 10
Cycle detected at time 13
Cycle detected at time 14
Cycle detected at time 17
The total wait time for the schedule: 184

Do you want to generate another schedule?
No

