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[1] We derive a gravity wave propagation equation for a
compressible and non-isothermal atmosphere with a
variable background wind profile. Impact of all the
gradient terms on the vertical wavenumber depends only
on the intrinsic horizontal phase velocity and the
background atmosphere. For the background wind
variation, any one of the linear first order derivative,
second order derivative and the square of the first order
derivative terms can be the dominant term under different
conditions. For temperature variation, only the linear first
order derivative is important for waves having a slow
intrinsic horizontal phase velocity. Our equation indicates
that the effect of wind shear on the vertical wavenumber is
opposite to that predicted by the Taylor-Goldstein equation,
which assumes an incompressible fluid. We also derive an
expression for the amplitude of the vertical wind
perturbation. Citation: Zhou, Q., and Y. T. Morton (2007),

Gravity wave propagation in a nonisothermal atmosphere with

height varying background wind, Geophys. Res. Lett., 34, L23803,

doi:10.1029/2007GL031061.

1. Introduction

[2] Study of gravity waves is an important topic in
atmospheric sciences. All gravity wave theories are based
on the fundamental principles of momentum, energy and
mass conservation. However, due the complexity of the real
atmosphere, linear approximations are needed to obtain
analytical solutions. Taylor [1931] and Goldstein [1932]
formulated the theory for an incompressible fluid having a
vertical variation in the background horizontal velocity. The
Taylor-Goldstein equation is widely applied to the lower
and middle atmosphere. The theory presented by Hines
[1960] is for a compressible, isothermal and windless
atmosphere. The case of a non-isothermal atmosphere with
a constant wind is discussed by Einaudi and Hines [1970]
as well as by Beer [1974]. Advances on gravity wave
theories and comparison with observations are summarized
in a review paper by Fritts and Alexander [2003]. Despite
numerous publications on gravity waves, a linear theory
considering a compressible atmosphere with height varying
temperature and background wind is not found in the
literature. In the following, we present analytical results of
gravity wave propagation in a compressible atmosphere

having a vertical variation in both background wind and
temperature.

2. Wave Propagation Equation

[3] The atmosphere we assume is inviscid and irrotation-
al but compressible with the background temperature and
wind having a vertical variation. The equations of motion,
energy and mass conservation are [e.g., Beer, 1974; Fritts
and Alexander, 2003]
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In the above equations, U, p, r are wind velocity vector,
pressure and density, respectively. Parameters c =

ffiffiffiffiffiffiffiffiffi
ggH

p

and g are the speed of sound and gravitational constant,
respectively. g is the adiabatic index, and H = kT/(mg) is the
scale height, where k is the Boltzmann’s constant, T is the
temperature and m is the mean molecular weight. Using
subscript ‘‘0’’ and ‘‘1’’ for background and perturbed
parameters, respectively, and further letting Uo = (Ux0, Uy0,
0) be the background wind and u1 = (u, v, w) be the
perturbed velocity in the Cartesian coordinate with upward
being positive, the linearized equations for small perturba-
tions are
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We will seek wave solutions of the following form:
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where kx and ky are the two horizontal wavenumbers, which
are assumed to be constants.
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[4] With the assumption of equation (3), reduction of
variables from the linear equations will lead to the following
coupled equations between p and the vertical perturbed
velocity w:

i W2gH � g g þ g
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where W = w � U0 . k is the Doppler shifted angular
frequency, k = kxx̂ + kyŷ with ^ indicating unit vector. From
equation (4), we obtain the following differential equation
governing the vertical wind motion:
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In the above equations, wg 
 (g � 1)1/2 g/c is the Brunt-
Vaisalla frequency, and k = jkj. Equation (5) is reduced to
the Taylor-Goldstein equation [e.g., Nappo, 2002, p. 29]
if there is no temperature variation and g = 1. The
general expression for w is reduced to that for a
temperature varying atmosphere given by Beer [1974,
p. 65] if U0 does not vary with height.
[5] Equation (5) can be rewritten into a standard wave-

equation of the form
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Defining the intrinsic horizontal phase velocity in the
frame of the background wind as vf 
 W

k
, and vd

2 
 c2 �

vf
2, we have the dispersion relation for an atmosphere with
varying temperature and background wind as
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[6] Quantity q in the above can be largely interpreted as
the vertical wavenumber. Although the dispersion relation,
equation (9), is a cumbersome equation, it is easily
simplified to other known dispersion relations under more
restricted assumptions. By letting U0 = 0 and dH

dz
= 0, the q2

expression is the dispersion relation derived by Hines
[1960] for a windless isothermal atmosphere. It is reduced
to the Taylor-Goldstein equation if there is no temperature
variation and g = 1 [e.g., Nappo, 2002]. We further note

that the signs of (k̂ . dU0

dz
)2 and (dH

dz
)2 terms are negative. This

is consistent with the fact that gravity waves cannot
propagate freely at discontinuous boundaries. Otherwise,

when (k̂ . dU0

dz
)2 or (dH

dz
)2 is very large, as at a discontinuous

boundary, q2 could be positive, signifying a freely
propagating wave.
[7] In order for the linear theory to be applicable, the

atmosphere needs to be stable. In the middle and lower
atmosphere, stable conditions require jdU0

dz
j < 2wg  0.04/s

and �dT
dz

< 10�K/km  0.01 K/m, which leads to jdH
dz
j <

0.3. In order to estimate the second order derivatives, we
assume that the background wind and temperature are
sinusoidal functions of altitude with a vertical wavelength
larger than a couple of scale heights. The dispersion relation
for waves having a slow horizontal intrinsic phase velocity
(vf < 0.5c), applicable to most of the airglow observations
in the mesosphere [Hecht, 2004], is simplified to
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[8] Since
dvf
dz

= �k̂ . dU0

dz
, we can rewrite equation (10a) in

terms of vf as
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[9] At even smaller intrinsic horizontal phase velocity
(vf < 0.2c), the square term can be omitted. Note that q2 +
k2 is the total wavenumber, and it depends on the instrinsic
horizontal phase velocity and the state of the background
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atmosphere. The background wind affects the wave
propagation characteristics through its effect on phase
velocity. For brevity, we will use ‘‘phase velocity’’ to mean
‘‘intrinsic horizontal phase velocity’’, vf from here on.
[10] Plane wave solution requires that q be independent

of altitude z. Strict independence is difficult under the
assumption that background wind and temperature are both
varying with z. Nevertheless, if the atmospheric variation in

temperature and background wind is relatively small in a
vertical wavelength, the so-called WKB solution of
equation (7) is

~w zð Þ � w0ffiffiffi
q

p e
�i
R z

z0
qdz ð11Þ

where wo is a constant and z0 is a reference height. In the
following discussion, we will assume the above equation is
applicable and q is largely independent of z.

3. Discussion

[11] It is of interest to point out that function f, as
expressed in equation (6a), determines how the wave
amplitude changes under the condition that q2 is larger than
0 and not a strong function of z. With the definition of vd

2

given in the above, the expression for f can be expressed as,

f ¼ � 1

H
� 1

v2d

dv2d
dz

ð12Þ

The amplitude of the vertical wind perturbation as a
function of z becomes
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[12] It is well understood that the exponential increase in

amplitude (e
1
2

R z

z0

dz
H ) is to balance the atmospheric density

change. Our result shows that the vertical wind amplitude
has a relatively simple expression for height varying
background wind and temperature as well. If the total effect
of the temperature and background wind variation makesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � v2f

� 	
=q

r
a weak function of altitude, the vertical

wind amplitude, as in an isothermal and windless atmosphere,
grows exponentially. Gravity waves cannot have a vertical
velocity component at a (horizontal) phase velocity of the
speed of the sound. This is the same conclusion that one can
draw from the gravity wave polarization relations and it is a
characteristic of the Lamb waves.
[13] To see how vertical wavenumber q is affected by the

height variation of the background wind and temperature,
let us assume dH

dz
= 0.15, dU0

dz
= 0.02/s, which are

approximately half of the values before instability occurs
in the mesosphere. (Since it is only the projection of the
background wind in the direction of wave propagation that
matters, we will assume that background wind is aligned
with the propagation direction in the ensuing discussion.)
Let us further assume that the background wind and
temperature are sinusoidal functions of height with a
vertical wavelength of 30 km. This puts values of d2H

dz2
and

d2U0

dz2
at 3.1 � 10�5m�1 and 4.2 � 10�6m�1s�1, respectively.

Using these values and assuming H = 6 km and g =
9.5 ms�2, we plot how each term in equation (9) varies with
the phase velocity in Figures 1a and 1b. In order for a
gravity wave to freely propagate in the vertical direction,
q2 needs to be larger than zero. The solid black line is the
first term in equation (9), which is the square of the total

Figure 1. (a) Effect of background wind change on the
vertical wavenumber. Horizontal axis is the intrinsic
horizontal phase velocity relative to the speed of the sound.
Vertical axis is the vertical wavenumber squared. Solid and
dotted lines are for isothermal and constant background
wind. Lines with symbols are background wind modifica-
tions to the square of the vertical wavenumber by assuming
dU0

dz
= 0.02/s and d2U0

dz2
= 4.2 � 10�6m�1s�1. (b) Effect of

temperature or scale height change on the vertical
wavenumber. Solid line is the same as in Figure 1a. Lines
with symbols are temperature modifications to the square of
the vertical wavenumber by assuming dH

dz
= 0.15, d

2H
dz2

= 3.1 �
10�5m�1, and dU0

dz
= 0.02/s.
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wavenumber in the absence of temperature or wind
gradient. The dotted line is the second term in equation
(9) by assuming a horizontal wavelength of 40 km and its
sign is always negative. The terms associated with (dUo

dz
)2

and (dH
dz
)2 are always negative as well. The linear 1st and 2nd

derivative terms can be either positive or negative.
[14] For the conditions given above, we see, from

Figure 1a, that the d2U0

dz2
term dominates the dU0

dz
and (dU0

dz
)2

terms for small phase velocities. In order for the (wind)
shear term to be about the same as the curvature term, the
equivalent vertical wavelength of the background wind
needs to be longer than 2pHg/(2 � g), which is about
15H for g = 1.4. The (dU0

dz
)2 term dominates when the phase

velocity exceeds 0.6c. The shear term dominates only when
dU0

dz
is small and the background wavelength is very large.

With dU0

dz
< 0.02/s, a gravity wave having a horizontal

wavelength larger than 20 km (corresponding to k2 <
10�7 m�2) will likely be able to propagate with a real
vertical number in the region where the phase velocity is
smaller than 0.2c. For the given conditions, a gravity wave
having a phase velocity larger than 0.4c is likely evanescent
since the (dU0

dz
)2 term, which is always negative, exceeds

w2
g

v2f
� 1

4H2.

[15] In Figure 1b, we see that the linear variation of the
scale height (or equivalently temperature) dominates other
temperature variation related terms when the phase velocity
is below 0.5c. In a stable atmosphere and with vf < 0.5c,
dominance of the dH

dz
term over (dH

dz
)2 and (dH

dz
dU0

dz
) terms is

always true. Under the same condition, dH
dz

term will also
dominate the d2H

dz2
term as long as the equivalent vertical

wavelength of the background temperature is larger than
about one scale height.
[16] In the above, we discussed how the height gradients

of temperature and background wind affect q2. Plane wave
solution, equation (11), depends on the condition that the
magnitude of the following second order residue, R2, is
much smaller than unity [Einaudi and Hines, 1970]:

R2 ¼
1

2q3
d2q

dz2
� 3

4q4
dq

dz

� �2

ð14Þ

In terms of q2, this condition is

R2j j ¼ 1

4q4
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dz2
� 5

16q6
dq2
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�����

������ 1 ð15Þ

One can take the first and second order derivatives of
equation (9) and substitute them into equation (15) to see
how the temperature and background wind variations affect
the above condition. Such an exercise for a general case
involving both temperature and wind variations will
produce complicated equations. Einaudi and Hines [1970]
discussed the case of temperature variation in detail. Here
we consider the isothermal atmosphere with jdvf

dz
H
vf
j � 1 and

the second order derivative negligible. For this simplified
case, the condition in equation (15) becomes

dvf

dz

1
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� 4q4

6� 5
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g

v2f

� �����
����
v2f

w2
g

ð16Þ

[17] Finally, we note that Taylor-Goldstein equation is
often used to discuss gravity wave propagation and ducting.
Since it is derived under the assumption of an incompress-
ible atmosphere (g = 1), it is of interest to compare it with
our result here for a compressible atmosphere. Taylor-
Goldstein equation [e.g., Nappo, 2002] is

q2 ¼ �k2 þ
w2
g

v2f
� 1

4H2
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dz2
1

vf
� 1

H
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dz

1
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With dH
dz

= 0 and vf
2 � c2, our equation for a compressible

atmosphere is
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w2
g

v2f
� 1
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dz2
1
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g
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Using g = 1.4, our equation becomes,

q2 ¼ �k2 þ
w2
g

v2f
� 1

4H2
þ d2U0

dz2
1

vf
þ 0:43

1

H

dU0

dz

1

vf
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We see that the Taylor-Goldstein equation is only valid at
slow phase velocities for a compressible atmosphere. For
vf
2 � c2, in addition to the fact that the wg definition
depends on g, the shear terms are opposite in sign and the
magnitude of the shear term in the Taylor-Goldstein equation
is about twice of our result. If the shear term ever plays a
significant role in modifying the propagating characteristics
of a gravity wave, past quantitative conclusions drawn from
Taylor-Goldstein equation are likely incorrect.

4. Conclusions

[18] We present the dispersion relation of gravity waves
for a compressible atmosphere with temperature and back-
ground wind variation using linearized equations. In its
general form, there are seven terms associated with the
temperature and wind variations: linear first/second order
derivatives and quadratic of first order derivative for each of
the two variables, and the product of the two first order
derivatives. The coefficients of the quadratic terms are
negative, implying that a gravity wave cannot propagate
freely through a discontinuous boundary. The dispersion
relation contains previously known dispersion relations
derived under more restricted assumptions. Horizontal
phase velocity in the neutral wind frame plays a key role
in determining how the gradient terms affect the vertical
wavenumber. The higher the intrinsic horizontal phase
velocity, the more difficult it is for a gravity wave to
propagate in the vertical direction. For moderate wind and
temperature variations, gravity waves having an intrinsic
horizontal phase velocity larger than 0.5c are likely to
become evanescent. For gravity waves having a relatively
slow intrinsic horizontal phase velocity (vf < 0.5c), d2U0

dz2

term dominates dU0

dz
and (dU0

dz
)2 terms if the equivalent vertical

wavelength of the background wind is less than 15H. For
temperature variation, the dH

dz
term in general dominates all

other temperature variation terms. We also show that
gravity vertical wind amplitude growth is also propor-

tional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � v2f

� 	
=q

r
in additional to the exponential

term for an isothermal and windless atmosphere.
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