
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year

A Case Tool for Developing Process

Control Specifications in Dairy

Manufacturing

Douglas Troy∗ Robert McQueen†

∗Miami University, commons-admin@lib.muohio.edu
†Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/26

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1994-009

A Case Tool for Developing Process Control Specifications
in Dairy Manufacturing

Douglas Troy and Robert McQueen

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

A CASE TOOL FOR DEVELOPING PROCESS

CONTROL SPECIFICATIONS IN DAIRY MANUFACTURING

Douglas Troy Robert McQueen
Systems Analysis Department University of Waikato
Miami University Hamilton
Oxford, Ohio 45056 New Zealand
Working Paper #94-009 Dec. 1994

Troy and McQueen 3

A CASE Tool for Developing Process Control Specifications in Dairy
Manufacturing

Douglas T R O Y a and Robert McQUEENb

a ~ i a m i University, Oxford, Ohio, USA, troyda@muohio.edu, 513 529 52934 voice, 513 529 1524 fax

b ~ n i v e r s i t ~ of Waikato, Hamilton, New Zealand, bmcqueen@waikato.ac.nz, 64 7 838 4126 voice, 64 7 838
4270 fax

November 10, 1994

Abstract: A computer aided software engineering (CASE) tool designed to assist the task of developing the
specification of control software for programmable logic controllers for dairy process manufacturing is
described. The CASE tool, called the specification assistant, is a part of a larger development environment
that may ultimately include automatic generation of PLC code from the specification. The specification
assistant includes a set of rule bases and associated rule-base editors that permit customization of the tool to
particular manufacturing sites. It aims to standardize control code specifications, support reuse of
specifications, allow inspection of specifications through simulation and reports, and facilitate the long term
maintenance of specifications. The specification assistant was developed to support the domain of dairy
process manufacturing in New Zealand. A domain analysis was performed to identify a specification language
appropriate for the particular domain. Initial experience with the specification assistant indicates that it will
improve the productivity of the software engineers who are the recipients of the specifications. Results also
suggest that quality of both the specifications and the control software will be improved.

Keywords: Computer Aided Software Engineering, CASE, PLC, process control, automated manufacturing

1. Introduction

This paper reports an investigation into the potential of computer aided software engineering

(CASE) tools to support the software development life cycle for production of control

software for programmable logic controllers (PLCs).

Software tools that are designed to automate software development activities are known

as Computer Aided Software Engineering tools. CASE is a technology that is targeted

toward those who perceive automation to affect the timing, cost and quality of the software

development process and product [7]. Individual CASE tools are designed to aid a specific

task in the software-production process [5] .

The predominate control device in automated factories is the programmable logic

controller [lo]. A PLC is a computer that simulates the behaviour of an electromechanical

relay-based control system. In place of hard-wired relay circuits, the PLC uses logic in

software. Inputs to the PLC consist of sensor inputs, such as limit switches and temperature

sensors, both digital and analog. Outputs signals are sent from the PLC to devices such as

motor starters and valve actuators. During execution, the PLC is dedicated to the continuous,

Troy and McQueen

repetitive task of examining system inputs, solving the current control logic, and updating

system outputs.

The current state of control programming with PLCs evidences numerous problems.

PLCs are capable of handling considerably more VO, have more computing power, and are

capable of more higher level functions than when they were introduced two decades ago. An

increasing number of projects are failing because of an inability to properly manage this

complexity using current design and development practices [lo]. This problem becomes

more pronounced as PLCs are applied to larger and more complicated tasks, resulting in

larger and more complex control programs. Moreover, in many cases, the programming

phase is poorly coupled to the design phase of the software life cycle [12]. Planning the

sequence of operations of manufacturing devices and scheduling the execution of this

sequence have traditionally been carried out independently, prior to developing the control

software of manufacturing [2]. In many organisations the output of the planning activity is a

specification consisting of a combination of graphical plant design, natural language

descriptions, and/or logic or flow diagrams, typically produced using generic drawing and

office automation tools. The output of the programming phase is a set of programs produced

using the PLC vendor's proprietary programming software. This necessitates a

transformation from the process engineer's specification into control software by a software

engineer. This transformation introduces opportunities for errors, and, when the software has

to be altered during testing or factory maintenance, the original design specifications are

rarely updated 181.

This investigation was undertaken to determine the potential for CASE tools to addresses

these and related problems.

2. Problem Situation

The investigation is set in the context of an operational process dairy manufacturing

situation at Anchor Products, Ltd.' in New Zealand. Anchor is the largest diary manufacurer

in New Zealand, processing up to 21 million liters of milk per day through the company's ten

highly automated factories.

PLCs are used to monitor and control pumps, valves and other input and output devices in

the processes that produce various milk products. A number of different products may be

1 Anchor Products, hereafter called Anchor, is a member of the New Zealand Dairy Group of
Companies. This research is sponsored in part by grants from Anchor and the Philip and Elaina
Hampton Fund for Faculty International Initiatives. The research approach followed in this work is
a form of action research in which the staff of Anchor participated in the investigation.

Troy and McQueen 3

manufactured using different recipes and sequences through various combinations of plant

facilities such as tanks, separators, pasteurizes, mixers, and dryers.

A process design document called a functional description (FD) is used to describe the

control steps necessary to produce a batch of a given product. The FD is used as the primary

specification document to develop the PLC relay ladder logic (RLL) code which controls the

automated factory. The FD is also used during plant operation as a reference document for

trouble shooting and operator reference.

Traditionally FDs are developed by third party process automation design consultants

(process engineers) using a word processor. Different process engineers produce different

styles of FD in both structure and language. This places a burden on users of the FD, which

include the PLC software engineers, PLC software testers, plant electricians, and plant

operators. The result of these different FD styles is that from project to project training time

is required to adjust to different documents. Another weakness of the current situation is that

the word processor provides no design aids to assist the process engineer in producing and

analyzing the FD. For example, the word processor cannot automatically assist in the

production of the document by offering consistency checking, inspection reports, or

simulation of the specification. The result of this is that testing and debugging of the FD's

logic is delayed until it has been translated into PLC code by the PLC software engineer.

The situation described above is further exacerbated because the development of control

software in this industry operates under severe time constraints and pressure. Typical cycles

might allow two to three months for development of the FD specification, and two months for

E L code development and bench simulation testing. Plant upgrades are done in an intensive

period from late June to late July during the period when New Zealand milk production is

minimal. This leaves about a two week window for in-plant installation, final testing, and

commissioning before the plant must be operational.

Once it is commissioned, PLC software undergoes changes. These may be minor, for

example to fix problems not discovered during testing or to make minor changes to fine tune

production. Such changes are usually done on-line to the RLL code by the plant electrician.

More substantive changes may involve the installation of some new devices in the plant, and

the incorporation of those devices into the control sequences for product production. Since

the control software is modified on-line, the corresponding changes to the FD specification,

which is kept in hard copy format, are often not recorded. Gradually, the FD for the process

diverges from the code actually loaded in the PLCs. Practitioners report that after a period of

as short as 18 months the hard copy FD is so far out of date from the operational PLC code

Troy and McQueen 4

that the FD must be recreated when major software changes, due to major addition of plant

devices, are required.

To address the problems outlined above, the authors, in cooperation with Anchor, sought

to determine whether CASE tools would provide effective support for the design, coding,

testing and commissioning of process control software in this specific domain. The objective

was not to develop a generic CASE product, but rather to develop a prototype domain

specific CASE tool set, so that an evaluation of its utility and impact on the overall design

and software development life cycle for control software could be undertaken. This

evaluation is the object of an onging study. Initial experience indicates that domain specific

methods are superior to generic tools and that they will contribute to improvements in

productivity and quality in the software development life cycle. Section 3 introduces the

potential of CASE tools. Section 4 describes the domain specific language for dairy process

manufacturing. Section 5 presents the prototype CASE tools, and section 6 concludes the

paper and describes the ongoing assessment of the tools.

3. Potential of CASE Tools

Software projects are carried out in the context of some life-cycle model, such as the waterfall

model, iterative enhancement model, or spiral model [I]. The life-cycle model, together with

supplementing methods and tools constitute a software development environment. The goal

of a software development environment is to augment or automate the activities comprising

the software development process [l , 31. The software tools that constitute the environment

are known as CASE tools and are targeted toward those who perceive automation to affect

the timing, cost and quality of the software development process and product 1'71.

Examples of CASE tools include editors (text and graphical), programming tools (e.g.,

assemblers, compilers, debuggers), verification and validation tools (e.g., flowcharters,

syntax checkers, dynamic analyzers, test case generators), configuration management (e.g.,

version control, library managers), metrics and measurement tools (e.g., code and execution

analyzers) and project management (e.g., project planning, cost estimation, project

notebooks) [5].

CASE tools have found limited use in the specification phase of the software

development life cycle, and the impact of CASE tools in industrial practice is unclear [1 1, 71.

One proposition to explain the lack of acceptance is that tools based upon generic, domain-

independent languages are unsuccessful in capturing user requirements [I I]. Basili, et. al.,

point out that software engineering environments should be tailorable so that they can be

altered or adapted to suit a particular project environment (personnel, type of application,

Troy and McQueen 5

etc.) and organization [I]. These results indicate that CASE tools that use domain specific

languages and knowledge are more likely to be adopted and be successful. The identification

of a specification language specific to the domain of dairy manufacturing is the topic of the

next section.

4. The FD Language in Use

4.1 Language Identification

In this investigation, the first step in designing a CASE tool environment for dairy process

manufacturing was to identify a suitable domain specific specification language for the dairy

processing industry. Anchor uses a specification document called the functional description

(FD) which embodies the process engineer's specification of the automated plant's controls.

The specific form and character of the FD has evolved over the past twenty years in the dairy

processing industry in New Zealand. The FD is the primary document used as the

specification for the PLC programmer, and it is also used by plant floor personnel for plant

maintenance.

The content of the FD has not been standardized. In terms of the specific language and

structure utilized, different process engineers produce different FDs.

To support this research, Anchor provided the researchers with a model "Sample

Functional Description" which was to be representative of a typical FD as well as examples

of actual FDs. The model FD contains:

A copy of the plant and instrumentation diagram (P&ID) and a definition of the
symbology.

A high level narrative description of the process.

A listing of the automation database. This is a list of plant items, their types,
and tags.

Selections, which comprise the control specification. A selection of a sub
process of the overall process that contains the control logic.

A listing of software tags, timers, and analog switch points.

Reportingrequirements.

Operator Interface requirements.

The heart of an FD is the set of selections which specify the control logic for a

manufacturing process. The other sections of the FD contain supporting documentation.

Troy and McQueen 6

Selections are, in essence, sub processes which are initiated either by operator action or

automatically by other active selections. A selection is a sequence of steps that specify the

control system's logic. Steps, in turn, are composed of required preconditions, operations,

and fault checks. This hierarchical structure is illustrated in Figure 1.

Selections - Selection 1

- Selection 2

1- Step n

Preconditions

Operates

Fault Checks

I Selection n

Figure 1. Hierarchical Structure of Selections.

Since the selections specify the control logic, the language used to write selections

became the focus of the analysis. This language is the topic of the next section.

4.2 Selections

A selection is a small, identifiable operation in the manufacturing process. Taken together,

the selections that make up an FD constitute a phase in the manufacturing process. An

example of a FD is "Tanker Unloading", the manufacturing phase of unloading milk from

incoming trucks (tanker plus trailer) into storage silos. This FD consists of 43 selections.

Examples are Tanker Bay N Tanker and Trailer water flush, Tanker Bay N Tanker unloading,

~ a n k e r ~ a y N Trailer unloading, Tanker Bay N Tanker line flush, andTanker Bay N Trailer

lineflush, (in the above, N ranges from 1 - 8) [13]. Each selection is numbered, for example

P1001, P1002, etc., sequentially, but this numbering does not imply order of execution. More

than one selection may be active at a time.

Each selection is made up of one or more sequentially numbered steps, starting with step

zero. As with selections, the sequential numbering of steps does not imply a sequential order

of execution, and more than one step within a selection may be active concurrently.

Troy and McQueen 7

Individual selections are activated when they are "selected", either by operator action or

automatically by a step in another selection.

Steps are composed of three sections. All steps have preconditions, and may have

operates and checks. Preconditions are a set of predicates that must be true for the step's

operates to be activated. These conditions may be events (one-shot conditions) or may be

monitored (continuous actions). Operates are actions that are performed as long as all

preconditions are true. Checks are conditions that are evaluated after the operates have been

applied. If any check is false, this is called a fault and results in a message to the operator.

The operates of a step with a fault continue to be applied (as long as the preconditions are all

true). A step can thus be in one of four states: not active (if its selection has not been

selected), precondition, active, or fault.

All steps are independent. More than one step of a selection can be (and usually is) active

concurrently. The active steps of a selection are therefore not necessarily sequential. The

preconditions of a step define whether that step is active.

Preconditions, operates, and checks are coded using structured-English pseudo-code. An

example of a step is shown in Figure 2.

STEP 10116 (OPEN ROUTE)
If all valves on the transfer route that should be closed are checked to be in the correct position,
the (water flush shutdown) transfer route is able to be opened
Preconditions
1. Step l01/5 Active .And. monitor; selection started
2. No faults Step 101/1 Checks monitor; cip interlocks ok
3. No faults Step 101/5 Checks monitor; source silo output closed
Operates
1. Energ (Open) V122 transfer line water supply valve
2. Energ (Open) V112 silo S2 gullet valve
3. Energ (Open) V113 silo S2 process inlet valve
Checks
1. V122 Energ (Open) transfer line water supply valve
2. V112 Energ (Open) silo S2 gullet valve
3. V113 Energ (Open) silo S2 process inlet valve

Figure 2. Example of a Step.

5. Prototype CASE Tool Environment

5.1 CASE Tool Architecture

To investigate the potential of CASE tools in FD development, a prototype environment was

designed and implemented. The goals of the environment are to:

Replace generic office automation tools with domain specific CASE tools;

Troy and McQueen 8

Shift some knowledge from individual people to automated tools by incorporating

domain-specific languages and rules to aid user acceptance;

Provide flexibility through the use of rule-bases and associated editors (i.e.

customizable);

Institutionalize FD language standards;

Support reusability of FDs using a repository of old FDs;

Shift some production steps from manual to automated tools such as generation of

analysis reports based on the FD, for example, cross reference reports;

Support testing (simulation) of some of the FD logic, thus moving this function up in

the life cycle to the specification phase.

The architecture of the environment is illustrated in Figure 3, and has similiarities to the

work reported in [12]. The primary components of the environment are a CASE tool called

the functional description assistant (FDA) and its associated rule bases. Figure 3 illustrates

the rule-based architecture of the environment. The function of the rule-bases is to support

customization of the language, within a defined structure, and to define application specific

information and rules relating to real plant devices that can be enforced by the assistant.

Examples are shown in Figure 4.

Troy and McQueen

Rule Base 1 Editors 1
[FD Terminology Rules

I I Plant Item Type ~ u l e i
I I Plant VO Rules

I Specification I
Assistant Library of

/ Existing FDs

I I Working or
Commissioned FD

Simulation and
Analysis Reports

PLC programmer
FD changes found in testing or automatic code
(plant simulation or generator
commisssioning) or
in maintenance due to new
requirements

I RLL Control Code

PLC Data Table d=
PLC Vendor's
RLL Editor

FD = Functional Description Specification
PLC = Programmable Logic Controller
RLL = Relay Ladder Logic

Figure 3. CASE Architecture.

The CASE tools were implemented as Microsoft Windows applications. Microsoft

Visual C++ was utilized in order to take advantage of its support for MS Windows and to

implement the software using object-oriented constructs. The following sections describe

the rule bases and the FDA in more detail.

Troy and McQueen

5.2 Rule Bases

There are three rule bases that support the specification assistant: terminology, plant item

type, and plant 110. The function of the rule bases is to allow customization of the assistant,

to capture and enforce some rules about plant items and how they can be used, and to capture

information to assist code generation. The terminology rule base allows specification of

operate and state keywords that are used in writing the FD. The plant item type rule base

supports definition of plant item prefixes and associated information about items such as

whether an item is digital or analog, the number of inputs and outputs, and the terminology

that is permitted to be used with items of each type. The plant VO rule base allows definition

of each available plant item, along with a mapping of its 110 points to PLC addresses and

terminology in the functional description. Examples of each of these rule bases are shown in

Figure 4.

Terminology Rules

>

Energ, Denerg Functional
Description

P Purnp Digital 11 1 0 Assistant

2

Plant 110 Rules

VPlOl Gullet Valve
VPlOl Energ 0: 110100
VPl OlE Energised 1:060/00
VPlOlD Denergised 1:050/00
P201 Transfer Pump
P201 Start 0 : 100100
P201 R Running 1:040100

Figure 4. Rule Base Architecture.

The terminology rules permit definition of the words to be used for operates,

preconditions and checks. In the example above, StartIStop are two operates and the

Troy and McQueen 11

corresponding states are RunningIStopped. This rule-base also allows definition of the valid

transitions between operates and states.

An example of the user interface for this rule base is illustrated in Figures 5 and 6. Figure

5 shows the top level dialog box for the rule base. Pressing add or selecting an existing term

and pressing edit brings up the edit box shown in Figure 6.

All rule-bases and the specification assistant have a modification history recording

mechanism. This is invoked from any of the tools by pressing the History button, which pops

up a history dialog box as shown in Figure 7. The history mechanism serves to document

design changes and can be used to audit the evolution of the specification.

Operate
c.sn. !?el
Deenerg
Deenerg
Energ
Flash Energ
Initiate
Start

State
...........B Deenergised ot ~ct..~.reeeeeeee ,....

Off
Energised
Flashing
Active
Running
Stopped

Figure 5. Top Level Terminology Rule Base Dialog Box.

Figure 6. Terminology rule-base edit dialog.

Figure 7. Modification history dialog box.

Troy and McQueen 12

The Plant Item rules support definition of types of items to be used within the factory and

permitted terms from the Terminology rules that may be used with each type. In Figure 4,

where the rule bases were introduced, type P (for pump), is a digital device with one input to,

and one output from the PLC, and the terms start and stop may be used with an item of type

P. As another example, the type VP is a digital device with two inputs, 1 output, and the

terms energldeenergise may be used with items of type VP. Types such as P and VP are

prefixes for the names, or equipment tags, of the devices on the factory, which are defined in

the Plant I10 rule base. The user interface for the Plant Item rule base is similar to the

terminology rule base in that it has a top level dialog box for adding, editing, or deleting and

edit dialog box that pops up in response to the add or edit buttons. An example of an edit

-I IF0 Flov Totaliser Analos 1 0 I 1

Figure 8. Plant item rule-base edit dialogs.

The Plant VO rule base has an entry for each item in the factory. For example, looking

back at Figure 4 above, VPlOl is a CIP (clean in place) supply valve. Its output maps to PLC

address 0:110/00 and this output is tagged VPlO1. Its two inputs map to PLC addresses

I:50/00 and I:60/00 and are tagged VPlOlD and VPlOlE respectively. The Plant I10 rule

base also has a mapping between keywords and PLC addresses. In the example above,

VPlOl would map to the operates (EnergIDeenerg), VPlOlD would map to the deenergized

state and VPlOlE would map to the energized state. This is illustrated by the edit dialog in

Figure 9.

Troy and McQueen 13

Figure 9. Plant I/O rule base edit dialogs.

5.3 Functional Description Specification Assistant

The Functional Description Assistant (FDA) is the CASE tool designed to support

development and analysis of the control system specification, the Functional Description

(FD). It is to be utilized primarily by the process engineer and replaces generic office

automation tools (word processor) in the old system.

Features of the FDA are that it:

Supports the domain-specific specification language;

Uses a visual WIMP (Windows, Icons, Menus, Pointer) windows-based interface;

Supports a library for storage, retrieval, and modification of designs;

Utilizes the rule bases to enforce certain rules, such as correct use of terminology with

plant items;

Generates some portions of the specification automatically, such as fault checks and

item descriptons;

Generates analysis reports such as plant i tedstep cross references, step summaries,

and other reports;

Supports some simulation of the FD logic;

Troy and McQueen 14

Contains some support for coordination and control in terms of modification history

audits for selections and steps.

A primary function of the FDA is to support the creation and reuse of standardized

functional descriptions (FDs). The user can choose to create a new FD (using New) or Open

an existing FD (using Open). Combining Open with Save As provides one way to reuse

existing designs -- the user can open an existing FD, modify it, then save it as a new FD using

Save As. Figure 10 shows the initial FDA screen after the existing FD named SAMPLE2 has

been o~ened.

Figure 10. Initial Screen After Opening an Existing FD. Figure 1 1. FD Menu.

The initial screen (Figure 10) shows the contents of the FD under consideration. Each

section of the FD is accessible by pulling down the FD menu (Figure 11) and selecting the

desired section. The menu item "Schematic" provides future support for representation of the

Process and Instrumentation Diagram (P&ID). The menu items "Selection Summary" and

"Execute" are described later in the analysis section. The other menu items are reviewed

below.

The header (first menu choice in FIgure 11) allows specification of the FD name, its

number, a description, and comment field. (The corresponding dialog box is not illustrated.)

The Real 110 database (also called the automation database) is a listing of all plant items

(and an associated description) that are referenced in the selections. These are a subset of the

items defined in the Plant I 0 rule base. Figure 12 shows the Real I 0 dialog.

Troy and McQueen

L1503 Silo S3 Level
OP401 Milk Transfer Remote lndicatio
P201 Transfer Pump

Silo 52 CIP Supply Gateswitc
Silo 53 CIP Supply Gaterwitc

Silo S1 CIP Supply Valve
Silo S1 Gullet Valve

Figure 12. Real VO Dialog Box.

The Real I 0 database can be constructed prior to entering selections, or automatically by

the FDA as selections are entered. For example, as the user is entering preconditions,

operates, or checks, if a plant item is referenced that is not in the Real VO database, the FDA

will automatically enter it. Descriptions are automatically extracted from the Plant I10

database and item type attributes are automatically extracted from the Item Type Database.

(These are viewable by using the Attributes button in Figure 12.) The user can also build the

Real I 0 database by hand by selecting items from the Plant I 0 rule base and adding them to

the Real I 0 database.

The selections specify the logic of the control specification. Choosing Selections from

the FD menu (Figure 11) will pop up a list of the selections in the FD, as shown in Figure 13.

Pressing Add or Edit will pop up the dialog shown in Figure 14.

Figure 13. Selection Dialog Box.

Troy and McQueen

Figure 14. Step Dialog Box.

Note the icon just above OK in the lower right of the dialog box. This is a visual cue of

the current position in the selection, step, precondition, operate, check hierarchy.

The logic of the selection is coded in the steps. The dialog in Figure 14 is used to add,

edit, or delete steps. For example, editing Step 2 brings up the step dialog box shown in

Figure 15.

PI03 Energ DIP103 Silo S1 Process Outlet Valvel
VP122 Energ DIP122 Silo S3 Gullet Valvel
VP123 Energ (VP123 Silo 53 Process Outlet Valve)

Steploll5 Not Active Shutdown step

VP103 Energised DIP103 Silo S1 Process Outlet Valvel
VP122 Energised DIP122 Silo S3 Gullet Valvel
VP123 Energined (VP123 Silo S3 Process Outlet Valve)

Figure 15. Step Dialog Box.

The language derived from the model FD is used to specify the preconditions, operates,

and fault checks for each step. Dialog boxes were used to create precondition, operate and

Troy and McQueen 17

fault check "forms" to capture the information. The operates dialog box is illustrated in

Figure 16.

Figure 16. Operate Dialog Box.

As much information as possible is automatically supplied by the software. This includes

automatic numbering of steps, provision of a pick list of available plant items, and, once an

item is selected (or entered), its valid operates. Most of this information comes from the rule

bases. Other automatic features include the automatic generation of a fault check if the

"checked" box is clicked, and automatic insertion into the comment field of the plant item's

description from the plant I/O rule base.

Notice that operates can be qualified as stored, time delayed, time limited, one shot, or

conditional. The Qualifications section of the dialog was derived from ideas in Grafcet [4].

A stored operate is latched on and must be explicitly unlatched in a later operate. Operates

can be either time delayed or time limited, thus making use of the PLC's timers. A one-shot

operate is enabled for only one scan of the PLC. Finally, operates may be conditional. These

qualifications can be combined, and the ordering in which they are combined is important.

The ordering is shown in the box above the Stored button in Figure 16. A Delete button

(underneath the drop down list) is used to remove qualifications. As an example of the

importance of ordering, consider DelayedIConditional versus ConditionalIDelayed. In the

former, the condition is applied after the specified delay, whereas in the latter the delay is

applied only after the condition is satisfied.

Preconditions and checks use similar dialog boxes. All conditions in operates,

preconditions, and checks, are highIy structured to remove ambiguity and to support

Troy and McQueen 18

automatic generation of PLC code in the future. A feature of checks is the automatic

generation of a fault message, and the collection of these messages in the message portion of

the FD. This provides additional support for PLC coding.

At the beginning of this sub-section, reference was made to one way that the FDA

supports design reuse by using Open and Save As from the File menu. The FDA also

supports reuse by supporting the MS Windows multiple document interface, copylpaste, and

findlreplace capabilities. The multiple document interface allows the user to open multiple

FDs concurrently and copylpaste between them. The copy-paste capability is structured in

that it supports the ability to copy selections, steps, or plant items from the real 10 database

either within a single FD or between FDs. The findlreplace feature allows the user to replace

plant items when reusing an existing specification. Since the FDA has knowledge of the FD,

it is also capable of updating the replaced item's entry in the Real 1.0 Database as well as in

any preconditions, operates, or fault checks. These functions are invoked by using the Edit

menu items shown in Figures 10 and 13.

The FDA supports analysis and inspection of the FD specification in two ways:

automatic generation of inspection reports and model-based analysis of the specification.

The FDA allows the user to display or print any or all portions of the functional

description. Under the File item of the main menu, the user can use the Report Select menu,

illustrated in Figure 17 to choose a report to print (or print preview). These reports include

each part of the FD, as well as inspection reports that are generated by the FDA.

Figure 17. Report Selection Menu.

Troy and McQueen 19

The FDA automatically generates several reports some of which were produced manually

in the old system. Available reports are:

Selection Summary. A summary report listing the name, number, and descriptions of

every selection in a FD.

Step Summary. A summary report listing the name, number, and descriptions of

every step in a selection.

Item/Step Cross Reference. A report showing each plant item and in which step the

item has been referenced.

The cross reference is a powerful tool to aid in the inspection of the FD. The designer can

use it to determine where (or if) each plant item is utilized. This aids the debugging and

modification process. It is also useful as an aid to the plant operator for trouble shooting,

once the plant is in operation. An example of the cross reference report is shown in Figure

18.

Figure 18. Item/Step Cross Reference.

The CASE tools increase productivity by replacing manual production of reports with

automation. Also, because of the ease with which they can be generated, the designer can

produce intermediate versions of these reports as helshe is developing a specification. In the

old system the designer would not generate intermediate versions of these reports because of

the time required to do so.

To assist the designer in analyzing alternatives and debugging the specification, the FDA

supports model-based analysis, which is simulation (execution) of the specification. The goal

Troy and McQueen 20

of this feature is to permit the designer to test the relationship of steps and their constituent

preconditions, operates, and states. Researchers argue that development environments should

provide a means for modelling the system and techniques for inspecting and analysing the

model [6]. This is consistent with the finding that one of the major dimensions of CASE

technology is the support of design analysis [7]. Further support comes from Kopetz who

identifies support for evaluation of the design before initiating the test phase as one of the

requirements for a process control development system [9].

Using the FDA, the engineer can monitor the state of selections, steps, and plant items, by

manually changing certain states and then letting the FDA simulate the execution of

preconditions, operates and checks. The dialogs below illustrate the ideas. First, the user can

monitor the state of selections or "force" them into new states. This is shown in the Figure 19

where the sel

Figure 19. Selection States.

Selecting a selection and pressing the "Selection" button allows the user to monitor the

state of steps and also to force states and individual plant items into new states. See Figures

20 and 21.

1 Route Check
2 Open Route
3 Start Transfer
4 Running
5 Shutdown
6 Cancel

Troy and McQueen

Figure 20. Examining Step States.

Figure 21. Forcing the State of Steps or Items.

After forcing the state of steps and individual plant items in order to model an operational

scenario, pressing the "Execute" button will cause the FDA to simulate the step logic and

update the states of the selections, steps, and plant items to reflect the logic in the

preconditions, operates and checks of the given selection. After execution, Figures 19 and 20

would be updated to reflect any state changes in selections and steps, respectively, and the

updated item states can be examined by pressing the Items button in Figure 20, giving the

dialog shown in Figure 22.

Flashing
Not Running
Deenergised
Deenergised
Deenergised

Figure 22. Updated State of Steps after Execution.

By using model-based analysis the engineer can test some of the FD's logic prior to code

generation and potentially detect errors earlier in the software development life cycle. This

also permits analysis of alternatives in the FD logic prior to code generation. For example,

suppose that closing a valve should result in a fault and that as a result several steps should

move from the active to the fault state. To test this, the designer could force the appropriate

valve into the closed state, press execute, and verify the new state of the steps. Although this

form of simulation is not sufficient to discover all errors, it can aid in discovering problems in

the control system's logic.

Troy and McQueen

6. Conclusions

This work produced a prototype CASE tool environment to support the specification and

coding of PLC control software. Significant aspects of the tools are the incorporation of

domain methods, model-based analysis (simulation), and flexibility through the use of rule

bases. The prototype has been introduced to practitioners at Anchor and also to contractors

associated with Anchor.

Initial experiences indicate that the domain specific CASE tools will be effective in

supporting the software development life cycle for the production of control software for

programmable logic controllers. The domain-specific specification language is a significant

factor in potential adoption of the CASE tools by practitioners. The standardization of the

specification, imposed by the use of the CASE tools, and model-based analysis show

considerable potential to improve productivity and quality. The potential of automatic code

generation is under investigation. A significant difficulty in automatic code generation in this

domain is that in the testing and maintenance phases, a code generator must support on-line

modification of PLC code. On-line modification of the PLC code is necessary because, once

in production, the PLC cannot be taken off line to reload the code. In the dairy processing

domain, the PLC runs continuously for months without shutdown. To implement an

automatic code generator that supports on-line programming, considerable information and

support is required from the PLC manufacturer because on-line communication with the PLC

utilizes proprietary protocols.

Our investigation is proceeding on two fronts. First, we are studying the potential impact

of the CASE tools on the quality of FD specifications and resulting PLC software, the

productivity of those involved in the process, the effect of standardizing the structure and

content of software specifications, and organizational communication and roles. The second

thrust is to determine the key requirements of a CASE environment in the domain of dairy

process manufacturing, those requirements that can be implemented, and the strengths and

shortcomings of the tools. We are currently investigating the effectiveness of the overall

CASE tool architecture, the domain specific methods, model-based analysis, and the potential

to automatically generate code for PLCs from the specification.

References
1. Basili, V.R.B. and Rombach, H.D. The TAME Project: Towards Improvement-Oriented Software

Environments. IEEE Transactions on Software Engineering 14,6 (June 1988), 758-772.

2. Chaar, J.K., Voltz, R.A., and Davidson, E.S., An Integrated Approach to Developing Manufacturing
Control Software. In Proceedings of the 1991 IEEE International Conference on Robotics and
Automation, IEEE, Sacramento, California, April 1991, pp. 1979- 1984.

3. Dart, S.A. Software Development Environments. IEEE Computer 20, 11 (November 1987), 18-28.

Troy and McQueen 23

David, R. and Alla, H. Petri Nets & Grafcet Tools for modeling discrete event systems, Prentice Hall
International, Hertfordshire, UK (1992).
Fuggetta, A., di Milano, P., and CEFRIEL. A Classification of CASE Technology. IEEE Computer
26, 12 (December 1993), 25-38.

Harel, D. Biting the Silver Bullet Toward a Brighter Future for System Development. IEEE
Computer 25, 1 (January 1992), 8-20.

Henderson, J.C. and Cooprider, J.G. Dimensions of 11s Planning and Design Aids: A Functional
Model of CASE Technology. Information Systems Research 1 , 3 (September 1990), 227-254.
Higginson, J. PLC Software Moves into the New Decade. Control & Instrumentation 22,4 (April
1990), 90-91.
Kopetz, H. The design of real-time systems: from specification to implementation and verification.
Software Engineering Journal (May 199 I), 72-83.

Neidert, R. The Object Oriented Paradigm and Industrial Control. In IPC '91 Proceedings of the 20th
Annual ESD International Programmable Controllers Corzference and Exposition, ESD-The
Engineering Society, ESD, Detroit, Michigan, April 1991, pp. 495-505.
Potts, C. Software-Engineering Research Revisited. IEEE Software (September 1993), 19-28.
Roberts, C.A. Generation of Relay Ladder Logic From A Real-Time Network Control Specification,
Ph.D. dissertation, Virginia Polytechnic Institute & State Univ., May 1990.
Wise, M., Tanker Unloading Functional Description, Ashton Project Services Ltd., Hamilton, New
Zealand, Third Revision, February, 1994.

