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Abstract
Composite models have a long history in actuarial science because they provide a

flexible method of curve-fitting for heavy-tailed insurance losses. The ongoing research
in this area continuously suggests methodological improvements for existing composite
models and considers new composite models. A number of different composite models
have been previously proposed in the literature to fit the popular data set related to Dan-
ish fire losses. This paper provides the most comprehensive analysis of composite loss
models on the Danish fire losses data set to date by evaluating 256 composite models
derived from 16 parametric distributions that are commonly used in actuarial science.
If not suitably addressed, inevitable computational challenges are encountered when
estimating these composite models that may lead to sub-optimal solutions. General im-
plementation strategies are developed for parameter estimation in order to arrive at an
automatic way to reach a viable solution, regardless of the specific head and/or tail dis-
tributions specified. The results lead to an identification of new well-fitting composite
models and provide valuable insights into the selection of certain composite models for
which the tail-evaluation measures can be useful in making risk management decisions.
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1 Introduction
Fitting distributions to insurance losses is an integral component of pricing and risk man-
agement for many insurance products. Generally, the claims analyzed by insurers cover
several orders of magnitude and therefore are not amenable to standard parametric models.
However, the distribution can be approximated by combining several standard parametric
models. Composite parametric loss models assume that the observed losses can be split into
two groups, where one group consists of small and moderate losses for the head of the distri-
bution, while the other group contains the large losses in the tail of the distribution. For each
group of observations, a standard truncated parametric distribution is used to approximate its
distribution (Klugman et al., 2012). Different composite models emerge depending on the
distributions used for the head and the tail as well as the conditions imposed at the threshold,
where these two parametric distributions are switched. The performance of the proposed
composite models has often been assessed based on the popular Danish fire losses data set
(Davison, 2013).

The first generation of composite models was based on the idea of using the Log-normal
distribution to model the moderate and small claims that occur with high frequency in the
head and the Pareto distribution to model the large claims that occur with low frequency in
the tail. Cooray and Ananda (2005) proposed such a model with the Log-normal density
used up to a specified threshold and the Pareto density used beyond this threshold value.
They used the Log-normal and the Pareto density directly for the two components with a
common normalization constant. They also imposed additional constraints in order to en-
sure continuity and differentiability of the composite density at the threshold value, and thus
obtained a smooth density curve. This model was criticized by Scollnik (2007) because it
implies that the mixing weights of the two components are fixed a-priori. Fixing the mixing
weights in advance implies that the proportion of observations from the Log-normal distri-
bution as well as from the Pareto distribution cannot be varied when fitting the composite
distribution density, and thus cannot be adapted to fit the available data. In order to rem-
edy this issue, Scollnik (2007) proposed a composite Log-normal-Pareto model with a-priori
unrestricted mixing weights. This implies that the fitted distribution can accommodate dif-
ferent proportions of observations from either of the two distributions. Furthermore, the
Log-normal-Pareto model proposed by Scollnik (2007) uses the Generalized Pareto Distri-
bution (GPD), instead of the two-parameter Pareto distribution for modeling losses in the tail
of the distribution, in order to increase the flexibility of the model. Pigeon and Denuit (2011)
extended this model by assuming that the threshold is not the same for all observations, but
rather allowed the threshold to vary among observations. This corresponds to introducing
a distribution for the threshold and assuming that each observation has its own threshold as
a realization of a random variable from the threshold distribution. The authors considered
the Gamma and the Log-normal distributions as threshold distributions when modeling Dan-
ish fire losses. Nadarajah and Bakar (2014) further extended the methodology of Scollnik
(2007) by introducing the Log-normal-Burr composite model.

In the spirit of Log-normal-Pareto models, another class of composite models has emerged
based on fitting the Weibull distribution up to an unknown threshold, and then using the

2



Pareto distribution beyond the threshold value. These models include the composite Weibull-
Pareto models proposed by Ciumara (2006), Cooray (2009), and Scollnik and Sun (2012).
Bakar et al. (2015) further extended this class of Weibull composite models by considering a
family of Transformed Beta distributions for modeling the tail losses, beyond the unknown
threshold. These distributions include the following: Burr, Log-logistic, Paralogistic, Gen-
eralized Pareto, Pareto, Inverse Burr, Inverse Pareto, and Inverse Paralogistic. In these com-
posite models the mixing weights, and the unknown threshold are both in principle allowed
to vary. However, due to the continuity and differentiability conditions imposed on the com-
posite density at the threshold, these parameters are already implicitly defined by the other
parameters of the composite density.

Recently, Calderı́n-Ojeda and Kwok (2016) introduced composite Log-normal-Stoppa
and Weibull-Stoppa models by matching the modes of the two distributions of the composite
model. The truncated Log-normal or Weibull component was used up to its modal value.
At this point it is switched to the appropriate truncated Stoppa distribution which also has
its modal value at this point. This “mode-matching” approach replaced the previously used
continuity and differentiability conditions. The authors argued that it is easier to match
modal values than to deal with the second derivatives of the corresponding density functions.
In fact, when matching modes, the parameter estimates can be derived in closed form.

Extensions of composite models to left-truncated data were studied by Brazauskas and
Kleefeld (2016). These authors employed Log-normal-Pareto, Log-normal-GPD (General-
ized Pareto), Weibull-Pareto, and Weibull-GPD composite models in modeling the distri-
bution and measuring the tail risk of Norwegian fire claims. The authors showed through
an extensive model validation process that the composite models with GPD in the tail “do
not consistently yield a statistically closer fit when compared to that of the simpler models”
(p. 15). However, these composite models provided substantially different results related to
the risk evaluations; therefore, using multiple models is helpful when testing the sensitivity
of risk measures in the tail.

Punzo et al. (2018) also studied curve-fitting of insurance losses. The authors proposed
nine compound models which have greater tail flexibility than if two-parameter unimodal
distributions are used such as the Log-normal, Gamma, and Inverse Gaussian distributions.
The greater tail flexibility is achieved by adding one parameter, which leads to the final three-
parameter compound models. While these models are different from composite models, they
have been tested on the same real data sets and therefore they add to the mix of models used
in the general area of loss modeling and curve-fitting.

Despite the progress made in composite modeling so far, it remains unclear if there are
other composite models yet to be discovered that can provide a superior fit compared to
the aforementioned models for modeling Danish fire losses. Also, the computational chal-
lenges associated with fitting the composite models have not been sufficiently discussed in
the literature so far. This makes the estimation problems and how they can be addressed less
transparent within the research community, and therefore estimation more challenging for
practitioners who aim to use these models in practice on different data sets. Previous appli-
cations obviously faced estimation problems. Specifically, Bakar et al. (2015) indicated the
use of different optimizers to obtain the best solutions for different composite models, where
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the results for the different composite models are reported for different general purpose opti-
mizers available in the R environment for statistical computing and graphics (R Core Team,
2018).

This paper is motivated by the recent work of Miljkovic and Grün (2016) where the
best model for fitting Danish fire losses was found to be a finite mixture based on either
Burr or Inverse Burr components. The fact that these two distributions improve the fit of
the previously published composite models by Bakar et al. (2015) prompted the exploration
of additional composite models which have either Burr or Inverse Burr as head distribution
and the various other distributions in the tail. We undertake a large-scale comparison of 256
different composite models for curve-fitting which emerge from combining 16 commonly
used parametric distributions as head and tail distributions. This comprehensive evaluation
of composite models has the following research objectives: 1) to uncover any potential com-
posite models that fit well which have not been previously studied; 2) to identify suitable
computational strategies that can be used to obtain maximum likelihood estimates in a reli-
able way without manual tuning; 3) to assess the implications of different composite models
in risk management applications with a special focus on risk measures, such as Value-at-Risk
(VaR) and Conditional-Tail-Expectation (CTE); 4) to enable and indicate the advantages of
automatically fitting a large number of composite models rather than only fitting a subset of
models based on some preconceived ideas.

This paper is organized as follows. In Section 2, we discuss the methodology which in-
cludes model specification, derivation of the risk measures, numerical and computational
methods for parameter estimation and risk measure determination, and model selection
strategies. In Section 3, we present the empirical analysis, which contains the results of all
composite models fitted to the Danish fire losses data set. Further, goodness-of-fit measures
and tail-risk measures are evaluated for the best subset of models selected using a suitable
model selection criterion. Section 4 concludes.

2 Methodology

2.1 Model specification
The general composite model, as introduced by Bakar et al. (2015) for modeling loss data
takes the following form (using slightly different notation than used in Bakar et al., 2015, to
improve clarity):

f(x|ϑ1, ϑ2, θ, φ) =

{
1

1+φ
f ∗1 (x|ϑ1, θ), if 0 < x ≤ θ,

φ
1+φ

f ∗2 (x|ϑ2, θ), if θ < x ≤ ∞,
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together with the two conditions on continuity and continuous differentiability at the thresh-
old θ

lim
x→θ−

f(x|ϑ1, ϑ2, θ, φ) = lim
x→θ+

f(x|ϑ1, ϑ2, θ, φ),

lim
x→θ−

f ′(x|ϑ1, ϑ2, θ, φ) = lim
x→θ+

f ′(x|ϑ1, ϑ2, θ, φ).

ϑ1 and ϑ2 are the unknown parameter sets associated with the probability density function up
to the threshold θ and the one beyond the threshold θ, respectively. The two conditions imply
that the weight parameter φ and the threshold parameter θ are already implicitly determined
given ϑ1 and ϑ2 and the set of free parameters can be considered to only consist of ϑ1 and
ϑ2.

f ∗i (x|ϑi, θ), i = 1, 2 are the truncated probability density functions (PDFs) of the com-
posite model with parameters ϑi. The truncated distributions are obtained from the PDFs fi
and the cumulative distribution functions (CDFs) Fi as

f ∗1 (x|ϑ1, θ) =
f1(x|ϑ1)

F1(θ|ϑ1)
, f ∗2 (x|ϑ2, θ) =

f2(x|ϑ2)

1− F2(θ|ϑ2)
.

φ and θ can be obtained given ϑ1 and ϑ2 in the following way:

• Using the continuity constraint at the threshold θ the parameter φ is determined in
closed form as a function of the other parameters ϑ1, ϑ2 and θ:

φ = −

d lnF1(θ|ϑ1)

dθ
d ln(1− F2(θ|ϑ2))

dθ

=

f1(θ|ϑ1)

F1(θ|ϑ1)

f2(θ|ϑ2)

1− F2(θ|ϑ2)

. (2.1)

• Inserting the expression for φ in Equation (2.1) into the continuous differentiability
condition yields the following condition for θ

d

dθ
ln

[
f1(θ|ϑ1)

f2(θ|ϑ2)

]
= 0,

which is equivalent to

f ′1(θ|ϑ1)

f1(θ|ϑ1)
− f ′2(θ|ϑ2)

f2(θ|ϑ2)
= 0. (2.2)

2.2 Risk measures
In order to evaluate exposure to risk, two well-known risk measures are VaR and CTE.
Following the notation of Klugman et al. (2012), at the 100p% security level, VaRp(X) or πp
denotes the 100p% quantile of the continuous distribution of X satisfying

P (X < πp) = p, F−1(p) = πp,
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where F−1(·) denotes the inverse of the CDF of X . In the case of a composite model, the
CDF is defined based on the parameters ϑ1, ϑ2, the threshold θ, and the weight parameter φ
as follows

F (x|ϑ1, ϑ2, θ, φ) =

{
1

1+φ
F1(x|ϑ1)
F1(θ|ϑ1)

, if 0 < x ≤ θ,
1

1+φ

[
1 + φF2(x|ϑ2)−F2(θ|ϑ2)

1−F2(θ|ϑ2)

]
, if θ < x ≤ ∞.

The VaRp(X) function is defined for the composite model as follows

VaRp(X) =

{
F−1

1

(
p(1 + φ)F1(θ|ϑ1)|ϑ1

)
, if 0 < p ≤ 1

1+φ
,

F−1
2

(
F2(θ|ϑ2) + 1−F2(θ|ϑ2)

φ
(p(1 + φ)− 1)|ϑ2

)
, if 1

1+φ
< p ≤ 1.

The CTEp(X), at the 100p% security level, represents the expected loss conditional on
the loss exceeding the 100p% quantile of the continuous distribution of X , and it is defined
as

CTEp(X) = E(X|X > πp) =

∫∞
πp
xf(x)dx

1− F (πp)
.

If we consider the two possible locations of πp relative to the threshold θ separately, the
CTEp(X) is computed as follows

CTEp(X) =

{
1

1−p

[∫ θ
πp
xf1(x|ϑ1)dx

F1(θ|ϑ1)
+

∫∞
θ xf2(x|ϑ2)dx

1−F2(θ|ϑ2)

]
, if 0 < p ≤ 1

1+φ
,

1
1−p

1
1−F2(θ|ϑ2)

[ ∫∞
πp
xf2(x|ϑ2)dx

]
, if 1

1+φ
< p ≤ 1.

Computation of the CTEp only gives finite values if the first moment of the tail distribution
exists.

Additional actuarial risk measures based on higher order moments were investigated
by Maria Sarabia and Calderı́n-Ojeda (2018). These measures are also referred to as k
conditional tail moments and only exist if the higher order moments of the tail distributions
exist. Maria Sarabia and Calderı́n-Ojeda (2018) developed analytical expressions for these
measures based on the kth moment of the composite distribution given by

E(Xk) =
1

1 + φ
E(Xk

1 )
F

(k)
1 (θ|ϑ1)

F1(θ|ϑ1)
+

φ

1 + φ
E(Xk

2 )
1− F (k)

2 (θ|ϑ2)

1− F2(θ|ϑ2)
,

where F (k)
i for i = 1, 2 represents the kth incomplete moment distribution associated with

the ith component distribution and Xi denotes the random variable with PDF fi(·). More
specifically, the k conditional tail moment, defined as E(Xk|X > πp), is given by 1

1−p

[
1

1+φ
E(Xk

1 )
F

(k)
1 (θ|ϑ1)−F (k)

1 (πp|ϑ1)

F1(θ|ϑ1)
+ φ

1+φ
E(Xk

2 )
1−F (k)

2 (θ|ϑ2)

1−F2(θ|ϑ2)

]
, if 0 < πp < θ,

E(Xk
2 )

1−F (k)
2 (πp|ϑ2)

1−F2(πp|ϑ2)
, if θ < πp <∞.

The kth incomplete moment distributions can be further used to compute the kth moment of
the stop-loss and limited-loss variables. Additional details about these distributional quanti-
ties can be found in Klugman et al. (2012).
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2.3 Parameter estimation and risk measure determination
Given a data set x = (x1, . . . , xn), maximum likelihood estimation aims at determining the
values for ϑ1 and ϑ2 which maximize

`(ϑ1, ϑ2|x) =
n∑
i=1

ln(f(xi|ϑ1, ϑ2)).

The parameters θ and φ are not included in the log-likelihood function stated above. Due
to the continuity and smoothness conditions imposed in composite models two degrees of
freedom are lost and these parameters are already determined given values for the remaining
parameters ϑ1 and ϑ2. In fact θ and φ can be calculated based on Equations (2.1) and (2.2).
Thus, for estimating composite models the marginal likelihood is maximized where these
two parameters are implicitly determined.

No closed form solutions are available for determining the parameter values ϑ1 and ϑ2

that maximize the log-likelihood which could be used regardless of the parametric distribu-
tions specified for the head and tail. As a result, a general procedure is developed which
determines the parameter values of a composite distribution regardless of the parametric dis-
tributions used for the head and tail. Numeric optimization, derivative calculation, as well
as root finding methods are employed to determine the maximum likelihood estimates when
the functions for evaluating the PDFs and CDFs of the parametric tail and head distributions
are provided.

The steps required for numerical maximum likelihood estimation of a composite distri-
bution are summarized in Algorithm 1 and explained in the following in more detail. Given
the data, select two parametric distributions f1 and f2 to be used in the composite model.
Define the functions which can be used to evaluate the probability density functions (PDFs)
as well as the cumulative distribution functions (CDFs) for the two parametric distributions,
given the parameter values ϑ1 and ϑ2. Define a function h1 that determines θ and φ based on
Equations (2.1) and (2.2) when given ϑ1 and ϑ2. Function h1 involves calculating the deriva-
tives of the PDFs using numerical methods as well as employing a root finding method. This
step is complicated by the fact that the solutions are not necessarily unique (see the example
given below).

[Algorithm 1 about here.]

Define a function h2 that evaluates the log-likelihood given ϑ1, ϑ2, and x by using h1

internally to determine suitable values for θ and φ. If θ and φ are not uniquely determined,
the values that provide a higher likelihood value are retained in this step, thus resolving the
ambiguity associated with multiple suitable values for θ and φ given ϑ1 and ϑ2 by also taking
x into account.

Select the initial values for ϑ1 and ϑ2. The maximum likelihood estimates can then be
determined based on a general purpose optimizer. This general purpose optimizer requires
initial values for ϑ1 and ϑ2 and the function h2 (using h1 internally) as input in order to
iteratively find a (local) maximum of the log-likelihood.
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For different composite models, only the parametric distributions used for the head and
tail are varied in this numeric procedure. Thus, the algorithm only needs to be changed
by inserting different PDFs and CDFs for the parametric distributions. All other steps are
generic.

General purpose optimizers. The parameter space of the parametric distributions usually
employed in composite models for insurance loss modeling is restricted, e.g., by imposing
a positivity condition on parameters that capture spread. Thus, general purpose optimizers
used for parameter estimation need to allow for the inclusion of constraints for the parameters
or the parameter vector needs to be suitably transformed to ensure an unrestricted parameter
space. Thus after transformation any general purpose optimizer may be used to determine ϑ1

and ϑ2 given h2. In the implementation used to obtain the presented results, the optimization
method implemented in the function nlminb within the R package stats is used after taking
the exponential of parameters restricted to be positive.

Numeric tools for determining derivatives. Solving Equation (2.2) requires finding the
derivatives of the two PDFs, f1 and f2. These can either be determined analytically, or found
using numerical methods. Analytic solutions would need to be explicitly specified for the
parametric distributions used for head and tail. To obtain an implementation which is gener-
ally applicable, regardless of the parametric distributions specified, numeric differentiation
methods are employed in the code used to obtain the presented results. Specifically, the R
package numDeriv (Gilbert and Varadhan, 2016) is used.

Initialization. The general purpose optimizer needs valid initial values in order to start the
algorithm. A convergence is reached, at best, only to a local optimum. Values of 1 for all
parameters in ϑ1 and ϑ2 lie within the feasible region for any of the parametric distributions
considered. Therefore, this represents a set of valid initial values that can be applicable for
any composite distribution.

Using this single set of initial values alone, the general purpose optimizer failed to detect
the global optimum for some of the fitted composite models. This failure was detected by
comparing the solutions obtained with those previously reported in the literature with respect
to the negative log-likelihood (NLL) values. Lower NLL values in the literature indicated
that the specific general purpose optimizer employed, together with this set of initial values,
only arrived at a sub-optimal solution.

Thus, more elaborate initialization strategies are required to increase the chances of de-
tecting either the global optimum, or at least a good solution. One possibility is to use random
initialization strategies together with local optimizers, and then select the best solution from
a set of solutions obtained by using different sets of initial values for the general purpose
optimizer. Random initialization strategies need to be able to explore the parameter space
sufficiently well, but should also generate sets of initial values that are feasible and target
promising areas of the parameter space. To address these issues, a local adaptive strategy is
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pursued in the following. This random initialization strategy generates feasible initial values
in the neighborhood of the currently best solution in order to explore the parameter space.

In particular, given feasible parameter values and the log-likelihood associated with these
parameters, new parameter values are proposed using a random walk with independent nor-
mal distributions and a pre-specified step size. Several replications of such proposals are
generated, by using winsorization to ensure that the parameter values lie within the feasible
range. The best proposal is then selected by considering the log-likelihood values. The new
proposal is used with probability equal to the exponential value of the log-likelihood of the
difference between the old and new parameter values as the new initial value for the gen-
eral purpose optimizer. This scheme is inspired by random walk Metropolis sampling (e.g.,
Sherlock et al., 2010).

In this implementation, a step size of 0.5 is employed, together with 100 replications.
In addition, this iterative strategy for generating new initial values for the general purpose
optimizer is repeated 100 times. This fixed scheme is utilized for any composite model
regardless of the head and tail distributions specified. Certainly, tuning of the step size, as
well as the number of replications, might be considered in order to increase the acceptance
probabilities, and thus the computational efficiency of the scheme.

Root finding algorithms. As noted by Bakar et al. (2015), closed form solutions of Equa-
tion (2.2) for θ may not exist, but the equation can be solved by using numerical root finding
methods. In fact, efficient methods for finding the root of a univariate function are available,
if an interval is provided that contains at least one root, and the function evaluations are of
different signs at the end points. To determine θ, an interval can be specified by using the
data range. However, the function evaluations may not have different signs at the end points.
In addition the interval may include more than one root, or Equation (2.2) might not be finite
for all values of θ in this interval. Thus, the interval needs to be split into sub-intervals where
the function changes its sign so that standard root finding algorithms can be used for each of
the sub-intervals. In the implementation employed first, the function is evaluated on a grid to
identify these sub-intervals and then function uniroot from the R package stats is applied
to each sub-interval to determine the roots.

Calculation of standard errors. Numeric tools for determining derivatives can also be
employed to determine the Hessian of the log-likelihood function at the maximum likelihood
estimate. Thus standard errors of the parameter estimates can be calculated based on this
Hessian which is also known a observed Fisher information matrix, I(Ψ) = − ∂2`(Ψ)

∂Ψ∂Ψ′
where

Ψ represents the parameter vector that consists of both parameter sets Ψ = (ϑ1, ϑ2)
′ . The

inverse of this approximation, I(Ψ̂)−1 provides a useful estimate for the covariance matrix,
Cov(Ψ̂). Taking the square root of the diagonal elements of Cov(Ψ̂) gives estimates of the
standard errors of the corresponding parameter estimates. For transformed parameters the
variances are determined on the original scale using the Delta method.
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Risk measures. For determining the VaR, the inverse at the specific values can again be
calculated using a root finding procedure such as the function uniroot() from the R
package stats. The numerical integration for some parts of the CTEp(X) formula can be
done using quadinf() in the R package pracma developed by Borchers (2017). The
other actuarial risk measures based on higher order moments may be calculated analogously.

Example illustrating non-unique θ. A composite model with the Inverse Gaussian distri-
bution in the head and the Log-logistic distribution in the tail, is fitted to the Danish fire data
set. One possible model has the estimated parameters µ̂ = 3.06 and τ̂ = 3.44 for the Inverse
Gaussian distribution and α̂ = 2.62 and σ̂ = 1.76 for the Log-logistic distribution. For these
parameter values, there are five non-unique θ values possible, which all produce a continuous
and continuously differentiable density. These solutions are summarized in Table 1.

[Table 1 about here.]

Solutions 1 and 2 are special cases of a composite model where either f1 is the empty
component and f2 covers the entire data range, resulting in a single component Log-logistic
model, or f1 covers the entire data range and f2 is the empty component, yielding a single
component Inverse Gaussian model. Solutions 3, 4 and 5 represent genuine composite model
distributions, with Solution 3 providing the best model fit according to the NLL.

The densities of the five solutions are visualized in Figure 1. The solid, dashed, and
narrow dashed lines represent composite models where the head and tail distributions are the
same with identical parameter values ϑ1 and ϑ2 but different threshold values. The vertical
lines indicate the thresholds of Solutions 3 (solid line) and 4 (dashed line). The threshold of
Solution 5 is at 12.15 and hence not visible in the plot. The composite model which fits the
Danish fire losses data set best is represented by the solid line. The dotted line corresponds
to the Log-logistic distribution with the same parameter value ϑ2 as in the composite models
and the dashed-dotted line to an Inverse Gaussian distribution with the same parameter value
ϑ1 as in the composite models.

[Figure 1 about here.]

2.4 Model selection
In the area of loss modeling and curve-fitting, two commonly used model selection criteria
appear in the literature: Akaike Information Criterion (Akaike, 1974) and Bayesian Infor-
mation Criterion (Schwarz, 1978), known as AIC and BIC, respectively. The values of AIC
and BIC are computed for each composite model using the following equations:

AIC = 2NLL + 2p,

BIC = 2NLL + p ln(n),
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where NLL represents the value of the negative log-likelihood function, p represents the
number of estimated parameters in the model, and n is the sample size. The best model is
selected by finding the lowest value of AIC or BIC. We compute both AIC and BIC for each
of the composite models considered. However, we analyze the results with a special focus
on BIC only.

3 Empirical analysis and results
In this section, we illustrate the proposed methodology using the well-known Danish fire
losses data set, and then compare our findings to the previously published results for the
same data set. The Danish fire losses data set contains 2,492 claims, reported in millions of
1985 Danish Krones (DKK), for the time period 1980 to 1990 inclusive. These losses are
highly skewed with a skewness coefficient of 19.9. Standard insurance data sets share many
common characteristics similar to those observed in the Danish fire losses; thus, the Danish
fire data set has been very attractive for demonstrating the suitability of different proposed
models in the area of curve-fitting and loss modeling. For the purpose of our analysis, we
obtained the Danish fire losses data through the SMPracticals (Davison, 2013) package in
R.

3.1 Goodness-of-fit
The parametric distributions considered for the head and/or the tail of the composite model
are listed in Table 2. In total, sixteen parametric distributions are used, leading to a total of
256 different composite models. Table 2 also gives the parameters of the distributions and
the probability density functions in order to unambiguously define the distributions, given
the parameters.

[Table 2 about here.]

The composite models determined are first evaluated by comparing them to previously
reported fitted models (see Appendix A). Table 3 contains the NLL values as well as the
degrees of freedom, AIC, and BIC values for the composite models previously reported. The
Log-normal-Pareto model with the same NLL value is also reported in Scollnik and Sun
(2012) as well as Nadarajah and Bakar (2014). The same results for the Log-normal-Burr
composite model are also reported in Nadarajah and Bakar (2014). In Bakar et al. (2015), the
composite models with head distribution Weibull and all listed tail distributions are also con-
sidered. In addition, Scollnik and Sun (2012) also considered the Weibull-Pareto composite
model. The same NLL values are reported in all cases, except for slight differences when
the generalized Pareto and inverse Burr distribution are in the tail. A comparison of the esti-
mated parameter values indicates that the slight differences might be due to the maximization
algorithm being stopped prematurely for the previously reported results.

[Table 3 about here.]
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[Table 4 about here.]

An overview of the model fit for all composite models considered is provided in Fig-
ure 2. The composite models are organized using the head distribution on the x-axis and the
tail distribution on the y-axis. Each bubble on this plot represents the size of the individual
model weight, wi. The model weights are computed based on the approximate calculation of
the posterior probability of each model, assuming equal prior model weights. Specifically,

the formula wi = e−
1
2 ·BICi∑256

j=1 e
− 1

2 ·BICj
is used to determine the posterior model weights. More in-

formation about how to determine posterior model weights can be found in Burnham and
Anderson (2003). The top 20 best models, based on the minimum value of BIC, have the
largest weights calculated based on the posterior model probability. These 20 models are
enumerated, and can be easily located on the grid by their corresponding tail and head distri-
butions. More details on these top 20 best models are reported in Table 4 and in Appendix B.

[Figure 2 about here.]

Figure 2 reveals several interesting observations. Previous applications of composite
models evolved around fitting either a Weibull or Log-normal distribution in the head. How-
ever, the results indicate that this approach is only partially valid. There are four distributions
in the head that repeatedly produce the best results: Weibull, Paralogistic, Inverse Burr, and
Log-logistic. The Log-normal distribution in the head does not show up in the top 20 best
models. The top three models have a Weibull, Paralogistic or Inverse Burr distribution in the
head. While the Weibull distribution was already widely considered in previous research,
Inverse Burr received no consideration until the paper by Miljkovic and Grün (2016), which
indicated that the Burr and Inverse Burr distributions could be used to obtain a superior fit
to the Danish fire losses data. None of the previous applications considered a Paralogistic
distribution in the head of a composite model fitted to the Danish fire losses. It is worth not-
ing that some of the composite models that utilized the Paralogistic distribution in the head
perform significantly better than all the models proposed by Cooray and Ananda (2005);
Scollnik (2007); Pigeon and Denuit (2011); Scollnik and Sun (2012); Nadarajah and Bakar
(2014). In addition, these composite models perform better than the models that used the
Log-normal distribution in the head considered by Calderı́n-Ojeda and Kwok (2016). The
only model that outperforms these top three models, based on the BIC, is the Weibull-Stoppa
model proposed by Calderı́n-Ojeda and Kwok (2016).

The previous research on composite modeling had a strong focus on fitting the Pareto
and Generalized Pareto distributions in the tail. However, our findings show that several
distributions can be considered in the tail: Inverse Weibull, Inverse Paralogistic, Log-logistic,
Burr, Inverse Gamma, and Paralogistic. The top three distributions based on BIC all have the
Inverse Weibull distribution in the tail. Interestingly, none of the top 20 models include the
Pareto or Generalized Pareto distributions in the tail. While there is a general perception that
Pareto and Generalized Pareto distributions are good options for curve-fitting of heavy tail
insurance losses, other distributions should not be ignored because they too exhibit excellent
goodness-of-fit properties.
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The top three models based on the BIC are Weibull-Inverse Weibull, Paralogistic-Inverse
Weibull and Inverse Burr-Inverse Weibull. The fourth best model according to the BIC is the
Weibull-Inverse Paralogistic composite model, which was already reported by Bakar et al.
(2015). However, the authors did not pair Weibull with Inverse Weibull in order to achieve an
even better fit to the Danish fire losses data. Miljkovic and Grün (2016) suggested that using
the Burr or Inverse Burr distributions as the component distribution of a finite mixture model
can provide a density with improved goodness-of-fit when estimated to the Danish fire loss
data. The three top models that involve the Weibull, the Paralogistic and the Inverse Burr
distributions in the head have comparable values of BIC (7671.30 vs. 7671.56 vs. 7671.79),
which indicates that these three models are indistinguishable with respect to this criterion
(the difference in BIC is less than 1).

In addition to NLL, AIC, and BIC which are used for model selection and determin-
ing overall goodness-of-fit, specific goodness-of-fit tests have been proposed in the litera-
ture related to curve-fitting for insurance losses in order to compare different models. In
the following the results for the Kolmogorov-Smirnov, Anderson-Darling, and Chi-square
goodness-of-fit tests are considered as in Lee and Lin (2010) and Miljkovic and Grün (2016).
Table 5 gives these results for the composite models previously considered in the literature,
and Table 6 those for the 20 best fitting models based on the BIC. For most of the previ-
ously considered composite models, as well as for all 20 of the best composite models, the
Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit tests would retain the null
hypothesis at a significance level of 5%, which indicates a suitable fit. With respect to the
Chi-square test, the null hypothesis would be rejected at a significance level of 5%, except
for the three composite models where the tail distribution is the Burr distribution, and for
the Weibull-Inverse Weibull composite model. In these cases the p-value obtained is slightly
above 5%.

The results for the Chi-square test need to be critically viewed. The Chi-square test
requires the data to be binned before application and the results strongly depend on how the
data is binned. Scollnik and Sun (2012) and Scollnik (2007) point out that the Chi-square
test is not a good tool to compare model fit across multiple models under consideration in
case of highly skewed data such as the Danish fire losses due to the issue of determining
adequate class limits. For the presented results the data was grouped into 10 classes using
the sample quantiles for the probabilities from 0 to 1 with increments of 0.10 as thresholds
for the binning. The bins thus have unequal length while containing approximately the same
number of observations. Chen and Miljkovic (2019) show through a simulation study that the
Chi-square test is more sensitive for skewed than symmetric data in curve-fitting applications
if quantiles and a small number of classes are used. Thus, it is not surprising that only four
models passed the Chi-square test at the 5% significance level.

[Table 5 about here.]

[Table 6 about here.]
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3.2 Risk measures
The most common application of curve-fitting models in risk management is to determine
risk measures. Table 7 shows the summary of two risk measures, VaR and CTE at the
0.95 and 0.99 security levels for the composite models where results for the Danish fire
losses were already reported in the literature. Table 8 provides a summary of the same risk
measures for the 20 best fitting models reported in Table 4.

[Table 7 about here.]

[Table 8 about here.]

Figure 3 shows a panel plot of the VaR and CTE at the security level 0.99 for the 20
best models displayed in Table 8. The labels on the x-axis show the distributions used
in the head and each of the panels correspond to a different distribution in the tail. The
size of each bubble corresponds to the model weight, wi. A few interesting observations
can be drawn from this panel plot. First, there is an obvious pattern of clustering in the
VaR and CTE values. The highest VaR and CTE values are observed in the three of the
20 models that have the Burr distribution in the tail: Weibull-Burr, Paralogistic-Burr, and
Inverse Burr-Burr. This cluster with the three aforementioned models is well-separated from
the remaining 17 models. Second, Weibull-Inverse Weibull, Paralogistic-Inverse Weibull,
and Inverse Burr-Inverse Weibull do not produce substantially different values of VaR and
CTE when compared to the other composite models, although they do have the smallest BIC
values. Further, the minimum values of both VaR and CTE are observed for the Inverse
Burr-Inverse Gamma composite model.

[Figure 3 about here.]

Based on AIC and BIC, the Weibull-Pareto and Weibull-Generalized Pareto models were
not ranked among the top 20 best models in Table 8 even though their VaR and CTE val-
ues are among the closest to the empirical counterparts in comparison to the other models
reported. The models in Table 8 provide the best overall fit to the data, not necessary the
best fit in the tail area. In fact Blostein and Miljkovic (2019) argue that risk measures and
model selection criteria should be simultaneously evaluated and considered on a grid across
the entire space of models under consideration. This gives insights into the variability of
risk measures and model selection criteria and may guide risk assessment. This also con-
firms Embrechts et al. (2014) who point out that model uncertainty is a crucial aspect when
aiming at reliable risk measures.

4 Conclusion
Composite models have been embraced as a versatile model class for curve-fitting in actuarial
science and statistics despite the computational issues faced in their estimation. In this paper,
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a comprehensive set of composite models obtained by combining 16 parametric distributions
has been tested on the Danish fire losses data set. The computational tools developed are
generally applicable once the probability density and cumulative distribution functions are
available for the parametric distributions considered for the head and the tail. In the early
phase of research on composite models, special attention was given to composite models
that used the Log-normal distribution in the head and the Pareto distribution in the tail. Later
on, the use of a Weibull distribution in the head received more attention. The most recent
research used the Weibull distribution in the head, with various other distributions considered
for the tail. The presented results expand this research by using a larger set of parametric
distributions for the head as well as the tail.

Rather than taking a small incremental step in the search to discover a new best fitting
model, we take a more comprehensive approach. We evaluated a very large set of composite
models, consisting of 256 different models that involve 16 commonly used parametric dis-
tributions in actuarial science. Using the BIC model selection criterion, we identified the top
20 best fitting composite models for the Danish fire losses data set. For these models, the
goodness-of-fit properties and risk measures were analyzed.

The findings of this study do not support previous approaches regarding the selection of
distributions for the head and the tail in order to obtain the best fit for the Danish fire losses
data set. Previous research focused mostly on the Log-normal and Weibull distributions
for modeling the head of the composite model. Based on analyzing the BIC results, none
of the top 20 best fitting models among the considered 256 composite models contain the
Log-normal distribution in the head. On the other hand, using distributions such as Weibull,
Paralogistic, and Inverse Burr in the head is found to be ideal for modeling the small and
moderate size claims of Danish fire losses. The tail distributions such as Inverse Weibull,
Inverse Paralogistic, Log-logistic, Burr, Inverse Gamma, and Paralogistic seem to be the
best choices for modeling the long tail of Danish fire losses. Interestingly, the Pareto and
Generalized Pareto distributions are not included among the top 20 best models based on the
BIC.

Computational advances and numerical methods available in today’s world enable us to
test a variety of composite models, through pairing different distributions so that we can
achieve an optimal fit to a given data set. We have seen that evaluating a subset of models
based on some preconceived idea may result in a sub-optimal fit in the case of the Danish
fire losses data set. In this instance, the calculation of risk measures will be subject to greater
uncertainty, as there is no guarantee that an accurate amount of capital will be reserved for
an adverse outcome.

Future work in this area might consider adjustments of the proposed method to accom-
modate composite modeling of incomplete data, such as the left-truncated loss data (see
Brazauskas and Kleefeld, 2016) or the right-censored benefit data (see Miljkovic and Bara-
banov 2015 and Miljkovic and Orr 2017).
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A Previous results
Table 9 summarizes the results previously reported for the Log-normal-Pareto and Log-
normal-Burr composite models as well as several composite models with the Weibull dis-
tribution in the head and eight different parametric distributions in the tail. These mod-
els, together with the reported results, are included in Cooray and Ananda (2005); Scollnik
(2007); Pigeon and Denuit (2011); Scollnik and Sun (2012); Bakar et al. (2015); Nadarajah
and Bakar (2014); Bakar et al. (2015). In addition the Stoppa and Lomax models considered
by Calderı́n-Ojeda and Kwok (2016) are also included.

[Table 9 about here.]

B Detailed results
The parameter estimates together with the standard errors are given in Tables 10 and 11 for
the 20 best fitting composite models (according to the BIC).

[Table 10 about here.]

[Table 11 about here.]
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Figure 1: Density plot of the solutions summarized in Table 1. The line style for each density
is displayed as follows: Solution 1 (dotted line), Solution 2 (dashed-dotted line), Solution 3
(solid line), Solution 4 (dashed line) and Solution 5 (narrow dashed line). The vertical lines
indicate the θ values for Solutions 3 and 4 in the respective line styles.
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Figure 2: Summary of the composite models. The head distribution is shown on the x-
axis, while the tail distribution is shown on the y-axis. The size of each bubble represents

the model weight, computed as wi = e−
1
2 ·BICi∑256

j=1 e
− 1

2 ·BICj
. The top 20 best models, based on the

minimum value of BIC, have the largest weights based on the estimated posterior model
probability. They are enumerated using the numbers 1 through 20.
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Figure 3: Panel plot for the visual summary of the VaR0.99 (left) and CTE0.99 (right) for the
20 best fitting composite models. The labels on the x-axis show the head distribution. Each
panel contains the results for the tail distribution given by the strip name. The size of each

bubble represents the model weight, computed as wi = e−
1
2 ·BICi∑256

j=1 e
− 1

2 ·BICj
.
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Possible Solutions θ φ NLL VaR0.99 CTE0.99

Solution 1 (Inverse Gaussian) ∞ 0.00 4516.33 14.43 18.44
Solution 2 (Log-logistic) 0.00 ∞ 4281.05 10.19 16.53
Solution 3 (Inverse Gaussian-Log-logistic) 0.58 23.80 4249.94 10.24 16.61
Solution 4 (Inverse Gaussian-Log-logistic) 1.63 1.04 4313.09 9.92 16.09
Solution 5 (Inverse Gaussian-Log-logistic) 12.15 0.02 4392.69 16.83 27.26

Table 1: Summary of the non-unique solutions for a composite model with respect to θ and
φ given ϑ1 and ϑ2. Both VaR and CTE are computed at the 0.99 security level.
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Distribution Parameters Density
Burr α, β, τ = 1/σ f(x) = αβ(x/σ)β

x(1+(x/σ)β)α+1

Exponential λ f(x) = λe−λx

Gamma α, τ = 1/σ f(x) = xα−1

σαΓ(α)
e−(x/σ)

Generalized Pareto α, β, τ = 1/σ f(x) = Γ(α+β)
Γ(α)Γ(β)

σαxβ−1

(x+σ)α+β

Inverse Burr α, β, τ = 1/σ f(x) = αβ (x/σ)αβ

x(1+(x/σ)β)α+1

Inverse Exponential λ f(x) = λe−λ/x 1
x2

Inverse Gamma α, τ = 1/σ f(x) = 1
σαΓ(α)

x−(α+1)e−(1/(σx))

Inverse Gaussian µ, τ = 1/σ f(x) =
√

1
2πσx3

e
− (x−µ)2

2µ2σx

Inverse Paralogistic α, τ = 1/σ f(x) = α2 (x/σ)α
2

x(1+(x/σ)α)(α+1)

Inverse Pareto α, σ f(x) = ασ xα−1

(x+σ)(α+1)

Inverse Weibull α, τ = 1/σ f(x) = α(σ/x)αe−(σ/x)α 1
x

Log-logistic α, σ f(x) = α (x/σ)α

x(1+(x/σ)α)2

Log-normal µ, σ f(x) = 1√
2πσx

e−((log(x)−µ)2/(2σ2))

Paralogistic α, τ = 1/σ f(x) = α2 (x/σ)α

x(1+(x/σ)α)(α+1)

Pareto α, σ f(x) = ασα

(x+σ)(α+1)

Weibull α, β f(x) = α
β

(
x
β

)(α−1)

e−(x/β)α

Table 2: Sixteen parametric distributions considered as the tail and/or head distributions in
the composite model.
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Head Tail NLL p AIC BIC
Log-normal Pareto 3860.47 4 7728.94 7752.23
Log-normal Burr 3835.12 5 7680.24 7709.34
Weibull Burr 3817.57 5 7645.14 7674.24
Weibull Log-logistic 3821.23 4 7650.46 7673.74
Weibull Paralogistic 3822.44 4 7652.88 7676.17
Weibull Generalized Pareto 3822.13 5 7654.25 7683.36
Weibull Pareto 3823.70 4 7655.40 7678.68
Weibull Inverse Burr 3820.01 5 7650.02 7679.12
Weibull Inverse Pareto 3894.88 4 7797.77 7821.05
Weibull Inverse Paralogistic 3820.93 4 7649.87 7673.15

Table 3: Summary of the results obtained for the previously fitted composite models.
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Head Tail NLL p AIC BIC
Weibull Inverse Weibull 3820.01 4 7648.02 7671.30
Paralogistic Inverse Weibull 3820.14 4 7648.28 7671.56
Inverse Burr Inverse Weibull 3816.34 5 7642.68 7671.79
Weibull Inverse Paralogistic 3820.93 4 7649.87 7673.15
Inverse Burr Inverse Paralogistic 3817.07 5 7644.14 7673.25
Paralogistic Inverse Paralogistic 3821.04 4 7650.08 7673.36
Weibull Log-logistic 3821.23 4 7650.46 7673.74
Inverse Burr Log-logistic 3817.37 5 7644.74 7673.85
Paralogistic Log-logistic 3821.32 4 7650.65 7673.93
Log-logistic Inverse Weibull 3821.38 4 7650.76 7674.04
Weibull Burr 3817.57 5 7645.14 7674.24
Paralogistic Burr 3817.72 5 7645.43 7674.54
Inverse Burr Burr 3814.00 6 7639.99 7674.92
Log-logistic Inverse Paralogistic 3822.15 4 7652.31 7675.59
Inverse Burr Inverse Gamma 3818.30 5 7646.61 7675.71
Paralogistic Inverse Gamma 3822.22 4 7652.43 7675.72
Log-logistic Log-logistic 3822.41 4 7652.82 7676.10
Weibull Paralogistic 3822.44 4 7652.88 7676.17
Paralogistic Paralogistic 3822.53 4 7653.05 7676.34
Inverse Burr Paralogistic 3818.68 5 7647.37 7676.47

Table 4: Summary of results for the 20 best fitting composite models (according to the BIC).
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Kolmogorov-Smirnov Anderson-Darling Chi-square
Head Tail T p-value T p-value T p-value
Log-normal Pareto 0.020 0.295 1.950 0.098 23.2 0.006
Log-normal Burr 0.038 0.001 3.427 0.017 35.6 0.000
Weibull Burr 0.015 0.655 0.715 0.547 12.3 0.197
Weibull Log-logistic 0.021 0.214 1.373 0.210 18.4 0.031
Weibull Paralogistic 0.023 0.151 1.627 0.149 19.5 0.021
Weibull Generalized Pareto 0.022 0.171 1.565 0.162 19.3 0.023
Weibull Pareto 0.026 0.078 1.916 0.102 25.4 0.003
Weibull Inverse Burr 0.021 0.222 1.159 0.284 16.3 0.060
Weibull Inverse Pareto 0.079 0.000 32.714 0.000 136.9 0.000
Weibull Inverse Paralogistic 0.021 0.210 1.318 0.227 17.0 0.049

Table 5: Results of goodness-of-fit tests for the models corresponding to previously fitted
composite models.
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Kolmogorov-Smirnov Anderson-Darling Chi-square
Head Tail T p-value T p-value T p-value
Weibull Inverse Weibull 0.021 0.222 1.159 0.284 16.3 0.060
Paralogistic Inverse Weibull 0.021 0.226 1.156 0.285 17.1 0.047
Inverse Burr Inverse Weibull 0.021 0.216 1.160 0.283 17.1 0.047
Weibull Inverse Paralogistic 0.021 0.210 1.318 0.227 17.0 0.049
Inverse Burr Inverse Paralogistic 0.021 0.211 1.327 0.224 17.1 0.047
Paralogistic Inverse Paralogistic 0.021 0.217 1.311 0.229 17.6 0.040
Weibull Log-logistic 0.021 0.214 1.373 0.210 18.4 0.031
Inverse Burr Log-logistic 0.021 0.204 1.398 0.203 17.7 0.038
Paralogistic Log-logistic 0.021 0.216 1.369 0.211 18.9 0.026
Log-logistic Inverse Weibull 0.020 0.255 1.148 0.288 17.8 0.038
Weibull Burr 0.015 0.655 0.715 0.547 12.3 0.197
Paralogistic Burr 0.015 0.656 0.715 0.546 12.3 0.197
Inverse Burr Burr 0.015 0.636 0.711 0.550 12.4 0.191
Log-logistic Inverse Paralogistic 0.021 0.235 1.288 0.236 18.9 0.026
Inverse Burr Inverse Gamma 0.023 0.155 1.612 0.152 18.4 0.031
Paralogistic Inverse Gamma 0.022 0.172 1.561 0.163 19.3 0.023
Log-logistic Log-logistic 0.021 0.234 1.340 0.220 19.9 0.018
Weibull Paralogistic 0.023 0.151 1.627 0.149 19.5 0.021
Paralogistic Paralogistic 0.023 0.152 1.621 0.150 19.5 0.021
Inverse Burr Paralogistic 0.023 0.137 1.705 0.134 20.6 0.015

Table 6: Results of goodness-of-fit tests for the 20 best fitting composite models (according
to the BIC).

27



VaR0.95 VaR0.99 CTE0.95 CTE0.99

Empirical estimates 8.41 24.61 22.16 54.60
Head Tail
Log-normal Pareto 8.25 23.75 23.54 66.57
Log-normal Burr 9.07 30.98 38.32 130.93
Weibull Burr 8.22 25.18 26.98 82.59
Weibull Log-logistic 8.05 22.70 22.43 62.80
Weibull Paralogistic 8.11 22.60 21.98 60.35
Weibull Generalized Pareto 8.11 22.43 21.56 58.43
Weibull Pareto 8.20 22.65 21.63 58.21
Weibull Inverse Burr 8.02 22.77 22.64 63.86
Weibull Inverse Pareto 17.35 86.77 – –
Weibull Inverse Paralogistic 8.03 22.64 22.38 62.65

Table 7: Summary of the results for VaR and CTE at the 0.95 and 0.99 security level, obtained
for previously fitted composite models. Empirical estimates are provided for comparison
purposes. The missing value of CTE indicated by “–” is due to the non-existence of the
moments for the Inverse Pareto distribution.
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VaR0.95 VaR0.99 CTE0.95 CTE0.99

Empirical estimates 8.41 24.61 22.16 54.60
Head Tail
Weibull Inverse Weibull 8.02 22.77 22.64 63.86
Paralogistic Inverse Weibull 8.02 22.79 22.67 64.00
Inverse Burr Inverse Weibull 8.01 22.73 22.59 63.67
Weibull Inverse Paralogistic 8.03 22.64 22.38 62.65
Inverse Burr Inverse Paralogistic 8.03 22.65 22.39 62.69
Paralogistic Inverse Paralogistic 8.03 22.68 22.44 62.89
Weibull Log-logistic 8.05 22.70 22.43 62.80
Inverse Burr Log-logistic 8.04 22.64 22.35 62.46
Paralogistic Log-logistic 8.05 22.71 22.46 62.89
Log-logistic Inverse Weibull 8.05 22.96 22.93 65.02
Weibull Burr 8.22 25.18 26.98 82.59
Paralogistic Burr 8.22 25.18 26.98 82.61
Inverse Burr Burr 8.22 25.13 26.88 82.15
Log-logistic Inverse Paralogistic 8.05 22.79 22.60 63.55
Inverse Burr Inverse Gamma 8.10 22.33 21.42 57.83
Paralogistic Inverse Gamma 8.11 22.44 21.57 58.48
Log-logistic Log-logistic 8.06 22.82 22.61 63.52
Weibull Paralogistic 8.11 22.60 21.98 60.35
Paralogistic Paralogistic 8.11 22.62 21.99 60.41
Inverse Burr Paralogistic 8.10 22.47 21.78 59.52

Table 8: Summary of the results for VaR and CTE at the 0.95 and 0.99 security level for
the 20 best fitting composite models in ascending order based on the BIC value. Empirical
estimates are provided for comparison purposes.
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Model p NLL AIC BIC Reference
Log-normal-Pareto (1) 2 3877.84 7759.69 7771.33 Cooray and Ananda (2005)
Log-normal-Pareto (2) 2 3878.67 7761.34 7772.98 Cooray and Ananda (2005)
Log-normal-Pareto (1) 2 3877.84 7759.69 7771.33 Scollnik (2007)
Log-normal-Pareto (2) 3 3864.89 7735.79 7753.25 Scollnik (2007)
Log-normal-Pareto (3) 4 3858.83 7725.65 7748.94 Scollnik (2007)
Log-normal-Pareto (4) 3 4422.99 8851.97 8869.43 Scollnik (2007)
Model (1) 2 3878.00 7760.00 7748.76 Pigeon and Denuit (2011)
Model (2) 3 3866.00 7739.00 7755.46A Pigeon and Denuit (2011)
Model (3) 4 3860.00 7728.00 7751.28 Pigeon and Denuit (2011)
Model (4) 4 3860.00 7728.00 7751.28 Pigeon and Denuit (2011)
Log-normal-Pareto (2) 3 3865.86 7737.73 7755.19 Scollnik and Sun (2012)
Log-normal-Pareto (3) 4 3860.47 7728.94 7752.23 Scollnik and Sun (2012)
Weibull-Pareto (1) 2 3959.01 7922.01 7933.65 Scollnik and Sun (2012)
Weibull-Pareto (2) 3 3840.38 7686.75 7704.22 Scollnik and Sun (2012)
Weibull-Pareto (3) 4 3823.70 7655.40 7678.68 Scollnik and Sun (2012)
Log-normal-Pareto 4 3860.47 7728.94 7752.22 Nadarajah and Bakar (2014)
Log-normal-Burr 5 3857.83 7725.65 7754.76 Nadarajah and Bakar (2014)
Weibull-Burr 5 3817.57 7645.14 7674.24 Bakar et al. (2015)
Weibull-Loglogistic 4 3821.23 7650.46 7673.74 Bakar et al. (2015)
Weibull-Paralogistic 4 3822.44 7652.88 7676.16 Bakar et al. (2015)
Weibull-Gen. Pareto 5 3822.75 7655.50 7684.61 Bakar et al. (2015)
Weibull-Pareto 4 3823.70 7655.40 7678.68 Bakar et al. (2015)
Weibull-Inv. Burr 5 3821.20 7652.40 7681.51 Bakar et al. (2015)
Weibull-Inv. Pareto 4 3894.88 7797.77 7821.05 Bakar et al. (2015)
Weibull-Inv. Paralogistic 4 3820.93 7649.87 7673.15 Bakar et al. (2015)
Log-normal-Stoppa 4 3858.74 7717.48B 7748.76 Calderı́n-Ojeda and Kwok (2016)
Log-normal-Lomax 4 3860.47 7728.94 7752.22 Calderı́n-Ojeda and Kwok (2016)
Log-normal-Pareto 4 3865.86 7737.72 7755.18 Calderı́n-Ojeda and Kwok (2016)
Weibull-Stoppa 4 3818.82 7645.64 7668.92 Calderı́n-Ojeda and Kwok (2016)
Weibull-Lomax 4 3823.70 7655.40 7676.68 Calderı́n-Ojeda and Kwok (2016)
Weibull-Pareto 3 3840.38 7686.76 7704.22 Calderı́n-Ojeda and Kwok (2016)

Table 9: Summary of results reported for previously fitted composite models. p denotes the
number of estimated parameters.
Exceptions: (A)The BIC value is calculated based on the NLL provided in the original paper
by Pigeon and Denuit (2011). (B)The AIC value is calculated based on NLL and it defers
from the value of 7717.48 reported in the original paper by Calderı́n-Ojeda and Kwok (2016).
However, our calculation agrees with the BIC value reported.
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Algorithm 1: Numerical Computation of the Maximum Likelihood Estimates.
Data: x = (x1, . . . , xn).
Select the parametric distributions for the tail and head.
Define their PDFs and CDFs: f1(x|ϑ1), f2(x|ϑ2), F1(x|ϑ1), F2(x|ϑ2).
Provide a function h1 which given ϑ1 and ϑ2 returns the values of θ and φ, which
are compliant with Equations (2.1) and (2.2).
Provide a function h2 which evaluates the log-likelihood h2 = `(ϑ1, ϑ2|x) based on
h1.
Initialize the parameters: ϑ(0)

1 and ϑ(0)
2 .

Maximize h2: ϑ(opt)
1 , ϑ(opt)

2 ← arg maxϑ h2(·).
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